Transformação leucêmica do microambiente das células-tronco hematopoiéticas

Autores

DOI:

https://doi.org/10.11606/issn.1679-9836.v101i6e-174413

Palavras-chave:

Microambiente tumoral, Leucemia, Hematopoese, Células-tronco

Resumo

O microambiente das células-tronco hematopoiéticas é responsável por coordenar diversos eventos envolvidos na produção de células sanguíneas. Essa renovação hematopoiética só é possível graças às interações e sinalizações bem ordenadas que mantém a harmonia do tecido. Nas leucemias ocorre ruptura nesses mecanismos de controle e ocorre processo de transformação leucêmica do microambiente, de forma a favorecer a manutenção neoplásica do tecido sanguíneo. O objetivo deste estudo foi expor o processo de transformação leucêmica do microambiente, no âmbito das modificações celulares e moleculares sofridas para sustentar o tumor. Trata-se de um artigo de revisão narrativa e as bases de dados Pubmed, Scielo, Cocrahne Library e MedLine foram consultadas em busca de publicações dos últimos anos sobre o tema. Os dados apresentados contribuem para o entendimento holístico acerca das leucemias. A transformação leucêmica, seja por mutações primárias nos componentes do microambiente ou pelo sequestro de suas funções normais pelas células iniciadoras de leucemia, é relevante para que ocorra a instalação, a progressão, a disseminação e a quimiorresistência tumoral. Por meio da atuação de vários componentes este microambiente sustenta as células-tronco leucêmicas e representa caminho promissor para o desenvolvimento de novas terapias antileucêmicas.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Daley GQ. Stem cells and the evolving notion of cellular identity. Philos Trans R Soc Lond B Biol Sci. 2015;370(1680):20140376. doi: http://doi.org/10.1098/rstb.2014.0376

Sugiyama T, Omatsu Y, Nagasawa T. Niches for hematopoietic stem cells and immune cell progenitors. Int Immunol. 2019;31(1):5-11. doi: http://doi.org/10.1093/intimm/dxy058

Vernot J-P, Bonilla X, Rodriguez-Pardo V, Vanegas ND. Phenotypic and functional alterations of hematopoietic stem and progenitor cells in an in vitro leukemia-induced microenvironment. Int J Mol Sci. 2017;18(2):199. doi: http://doi.org/10.3390/ijms18020199

Geyh S, Oz S, Cadeddu RP, Fröbel J, Brückner B, Kündgen A, Fenk R, et al. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia. 2013;27(9):1841-51. doi: http://doi.org/10.1038/leu.2013.193

Duarte D, Hawkins ED, Akinduro O, et al. Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in AML. Cell Stem Cell. 2018;22(1):64-77.e6. doi: http://doi.org/10.1016/j.stem.2017.11.006

Raaijmakers MH, Mukherjee S, Guo S, et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature. 2010;464(7290):852-7. doi: http://doi.org/10.1038/nature08851

Kumar B, Garcia M, Weng L, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia. 2018;32(3):575-587. doi: http://doi.org/10.1038/leu.2017.259

Akinduro O, Weber TS, Ang H, et al. Proliferation dynamics of acute myeloid leukaemia and haematopoietic progenitors competing for bone marrow space. Nat Commun. 2018;9(1):519. doi: http://doi.org/10.1038/s41467-017-02376-5

Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730-7. doi: http://doi.org/10.1038/nm0797-730

Quail DF, J Taylor M, Postovit LM. Microenvironmental regulation of cancer stem cell phenotypes. Curr Stem Cell Res Ther. 2012;7(3):197-216. doi: http://dx.doi.org/10.2174/157488812799859838

Chaffer CL, Weinberg RA. How does multistep tumorigenesis really proceed? Cancer Discov. 2015;5(1):22-4. doi: http://doi.org/10.1158/2159-8290.CD-14-0788

Kim JA, Shim JS, Lee GY, et al. Microenvironmental remodeling as a parameter and prognostic factor of heterogeneous leukemogenesis in acute myelogenous leukemia. Cancer Res. 2015;75(11):2222-31. doi: http://doi.org/10.1158/0008-5472.CAN-14-3379

Haas S, Trumpp A, Milsom MD. Causes and consequences of hematopoietic stem cell heterogeneity. Cell Stem Cell. 2018;22(5):627-638. doi: http://doi.org/10.1016/j.stem.2018.04.003

Hu X, Shen H, Tian C, et al. Kinetics of normal hematopoietic stem and progenitor cells in a Notch1-induced leukemia model. Blood. 2009;114(18):3783-92. doi: http://doi.org/10.1182/blood-2009-06-227843

Brown G, Sánchez L, Sánchez-García I. Lineage Decision-Making within Normal Haematopoietic and Leukemic Stem Cells. Int J Mol Sci. 2020;21(6):2247. doi: http://doi.org/10.3390/ijms21062247

Lopes MR, Pereira JK, de Melo Campos P, et al. De novo AML exhibits greater microenvironment dysregulation compared to AML with myelodysplasia-related changes. Sci Rep. 2017;7:40707. doi: http://doi.org/10.1038/srep40707

Cuiffo BG, Karnoub AE. Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adh Migr. 2012;6(3):220-30. doi: http://doi.org/10.4161/cam.20875

Jacamo R, Chen Y, Wang Z, et al. Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-κB mediates chemoresistance. Blood. 2014;123(17):2691-702. doi: http://doi.org/10.1182/blood-2013-06-511527

Heath JL, Cohn GM, Zaidi SK, Stein GS. The role of cell adhesion in hematopoiesis and leukemogenesis. J Cell Physiol. 2019;234(11):19189-19198. doi: http://doi.org/10.1002/jcp.28636

Le PM, Andreeff M, Battula VL. Osteogenic niche in the regulation of normal hematopoiesis and leukemogenesis. Haematologica. 2018;103(12):1945-1955. doi: http://doi.org/10.3324/haematol.2018.197004

Goulard M, Dosquet C, Bonnet D. Role of the microenvironment in myeloid malignancies. Cell Mol Life Sci. 2018;75(8):1377-1391. doi: http://doi.org/10.1007/s00018-017-2725-4

Ladikou EE, Sivaloganathan H, Pepper A, Chevassut T. Acute myeloid leukaemia in its niche: the bone marrow microenvironment in acute myeloid leukaemia. Curr Oncol Rep. 2020;22(3):27. doi: http://doi.org/10.1007/s11912-020-0885-0

Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501(7467):346-54. doi: http://doi.org/10.1038/nature12626

Cabarcas SM, Mathews LA, Farrar WL. The cancer stem cell niche - there goes the neighborhood? Int J Cancer. 2011;129(10):2315-27. doi: http://doi.org/10.1002/ijc.26312

Schmitt-Graeff AH, Nitschke R, Zeiser R. The hematopoietic niche in myeloproliferative neoplasms. Mediators Inflamm. 2015;2015:347270. doi: http://doi.org/10.1155/2015/347270

Wang A, Zhong H. Roles of the bone marrow niche in hematopoiesis, leukemogenesis, and chemotherapy resistance in acute myeloid leukemia. Hematology. 2018;23(10):729-739. doi: http://doi.org/10.1080/10245332.2018.1486064

Mussai F, De Santo C, Abu-Dayyeh I, et al. Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood. 2013;122(5):749-58. doi: http://doi.org/10.1182/blood-2013-01-480129

Kitamura T, Qian BZ, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15(2):73-86. doi: http://doi.org/10.1038/nri3789

Binder S, Luciano M, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia (AML): A focus on pro-and anti-inflammatory mediators. Cytokine Growth Factor Rev. 2018;43:8-15. doi: http://doi.org/10.1016/j.cytogfr.2018.08.004

Jaiswal R, Luk F, Gong J, Mathys JM, Grau GER, Bebawy M. Microparticle conferred microRNA profiles-implications in the transfer and dominance of cancer traits. Mol Cancer. 2012;11:37. doi: http://doi.org/10.1186/1476-4598-11-37

Corrado C, Raimondo S, Saieva L, Flugy AM, De Leo G, Alessandro R. Exosome-mediated crosstalk between chronic myelogenous leukemia cells and human bone marrow stromal cells triggers an interleukin 8-dependent survival of leukemia cells. Cancer Lett. 2014;348(1-2):71-6. doi: http://doi.org/10.1016/j.canlet.2014.03.009

Fernandes Q. MicroRNA: Defining a new niche in Leukemia. Blood Rev. 2017;31(3):129-138. doi: http://doi.org/10.1016/j.blre.2016.11.003

Mashreghi M, Azarpara H, Bazaz MR, et al. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol. 2018;233(4):2949-2965. doi: http://doi.org/10.1002/jcp.26049

Harjunpää H, Llort Asens M, Guenther C, Fagerholm SC. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front Immunol. 2019;10:1078. doi: http://doi.org/10.3389/fimmu.2019.01078

Sanchez VE, Nichols C, Kim HN, Gang EJ, Kim YM. Targeting PI3K signaling in acute lymphoblastic leukemia. Int J Mol Sci. 2019;20(2):412. doi: http://doi.org/10.3390/ijms20020412

Windisch R, Pirschtat N, Kellner C, et al. Oncogenic deregulation of cell adhesion molecules in leukemia. Cancers (Basel). 2019;11(3):311. doi: http://doi.org/10.3390/cancers11030311

Quere R, Andradottir S, Brun A, et al. High levels of the adhesion molecule CD44 on leukemic cells generate acute myeloid leukemia relapse after withdrawal of the initial transforming event. Leukemia. 2011;25(3):515-26. doi: http://doi.org/10.1038/leu.2010.281

Spertini C, Baïsse B, Bellone M, Gikic M, Smirnova T, Spertini O. Acute myeloid and lymphoblastic leukemia cell interactions with endothelial selectins: critical role of PSGL-1, CD44 and CD43. Cancers (Basel). 2019;11(9):1253. doi: http://doi.org/10.3390/cancers11091253

Godavarthy PS, Kumar R, Herkt SC, et al. The vascular bone marrow niche influences outcome in chronic myeloid leukemia via the E-selectin-SCL/TAL1-CD44 axis. Haematologica. 2020;105(1):136-147. doi: http://doi.org/10.3324/haematol.2018.212365

Morath I, Hartmann T, Orian-Rousseau V. CD44: more than a mere stem cell marker. Int J Biochem Cell Biol. 2016;81(Pt A):166-173. doi: http://doi.org/10.1016/j.biocel.2016.09.009

Krause DS, Lazarides K, Lewis JB, von Andrian UH, Van Etten RA. Selectins and their ligands are required for homing and engraftment of BCR-ABL1+ leukemic stem cells in the bone marrow niche. Blood. 2014;123(9):1361-71. doi: http://doi.org/10.1182/blood-2013-11-538694

Barbier V, Erbani J, Fiveash C, et al. Endothelial E-selectin inhibition improves acute myeloid leukaemia therapy by disrupting vascular niche-mediated chemoresistance. Nat Commun. 2020 Apr 27;11(1):2042. doi: http://doi.org/10.1038/s41467-020-15817-5

Chien S, Haq SU, Pawlus M, et al. Adhesion of acute myeloid leukemia blasts to E-selectin in the vascular niche enhances their survival by mechanisms such as Wnt activation. Blood. 2013;122(21):61. http://doi.org/10.1182/blood.V122.21.61.61

Mansour I, Zayed RA, Said F, Latif LA. Indoleamine 2, 3-dioxygenase and regulatory T cells in acute myeloid leukemia. Hematology. 2016;21(8):447-53. doi: http://doi.org/10.1080/10245332.2015.1106814

Yanagisawa B, Ghiaur G, Smith BD, Jones RJ. Translating leukemia stem cells into the clinical setting: harmonizing the heterogeneity. Exp Hematol. 2016;44(12):1130-1137. doi: http://doi.org/10.1016/j.exphem.2016.08.010

Song M, Wang H, Ye Q. Increased circulating vascular endothelial growth factor in acute myeloid leukemia patients: a systematic review and meta-analysis. Syst Rev. 2020;9(1):103. doi: http://doi.org/10.1186/s13643-020-01368-9

Lu RM, Chiu CY, Liu IJ, Chang YL, Liu YJ, Wu HC. Novel human Ab against vascular endothelial growth factor receptor 2 shows therapeutic potential for leukemia and prostate cancer. Cancer Sci. 2019;110(12):3773-3787. doi: http://doi.org/10.1111/cas.14208

Ceci C, Atzori MG, Lacal PM, Graziani G. Role of VEGFs/VEGFR-1 Signaling and its inhibition in modulating tumor invasion: Experimental evidence in different metastatic cancer models. Int J Mol Sci. 2020;21(4):1388. doi: http://doi.org/10.3390/ijms21041388

Palodetto B, Duarte ASS, Lopes MR, Adolfo Corrocher F, Roversi FM, Soares Niemann F, Priscila Vieira Ferro K, Leda Figueiredo Longhini A, Melo Campos P, Favaro P, Teresinha Olalla Saad S. SEMA3A partially reverses VEGF effects through binding to neuropilin-1. Stem Cell Res. 2017;22:70-78. doi: http://doi.org/10.1016/j.scr.2017.05.012

Marone G, Gambardella AR, Mattei F, Mancini J, Schiavoni G, Varricchi G. Basophils in tumor microenvironment and surroundings. Adv Exp Med Biol. 2020;1224:21-34. doi: http://doi.org/10.1007/978-3-030-35723-8_2

Giannoni P, Fais F, Cutrona G, Totero D. Hepatocyte growth factor: a microenvironmental resource for leukemic cell growth. Int J Mol Sci. 2019;20(2):292. doi: http://doi.org/10.3390/ijms20020292

Publicado

2022-11-29

Edição

Seção

Artigos de Revisão/Review Articles

Como Citar

Guisande, M. T. C. R., Lima, L. J. L. de, Costa, G. S., Sampaio Filho, J. D. R., & Lopes, M. R. (2022). Transformação leucêmica do microambiente das células-tronco hematopoiéticas. Revista De Medicina, 101(6), e-174413. https://doi.org/10.11606/issn.1679-9836.v101i6e-174413