Determinação da temperatura de queima e datação por termoluminescência de um tijolo com caracteres cuneiformes encontrado nas ruínas da antiga Babilônia

Autores

  • Rodrigo P. da Silva Centro Universitário Adventista de São Paulo
  • Diego R.G. Tudela Universidade de São Paulo. Escola Politécnica. Departamento de Engenharia Elétrica
  • Casimiro S. Munita Comissão Nacional de Energia Nuclear Instituto de Pesquisas Nucleares
  • Roberto Hazenfratz Comissão Nacional de Energia Nuclear Instituto de Pesquisas Nucleares
  • Sonia H. Tatumi Universidade Federal de São Paulo
  • Marcio Yee Universidade Federal de São Paulo
  • Juan C.R. Mittani Universidade Federal de São Paulo

DOI:

https://doi.org/10.11606/issn.2448-1750.revmae.2017.133911

Palavras-chave:

Difração de raios X, Ressonância paramagnética de elétron, Termoluminescência, Análise por ativação instrumental com nêutrons, Tijolo babilônico com escrita cuneiforme.

Resumo

Este artigo tem por objetivo estudar um tijolo com inscrições em caracteres cuneiformes cujas sentenças estão praticamente completas. Estudos tipológicos correspondentes aos relatos históricos sugerem que o tijolo foi manufaturado no século VI a.C., durante a dinastia de Nabucodonosor II, grande monarca da Babilônia. A amostra foi estudada através da difração de raios X (DRX), ressonância paramagnética de elétron (RPE), termoluminescência (TL) e técnicas de análise por ativação instrumental com nêutrons (AAIN). Os resultados demonstraram que o tijolo tem 2350 anos de idade (± 40) e queima menor que 400o C.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Rodrigo P. da Silva, Centro Universitário Adventista de São Paulo
    Rodrigo Pereira da Silva é formado em Teologia pelo Instituto Adventista de Ensino do Nordeste (1992), graduado em Filosofia pelo Centro Universitário Assunção (1999), tem mestrado em Teologia Histórica pelo Centro de Estudos Superiores da Companhia de Jesus (1996) e doutorado em Teologia Bíblica pelo Centro Universitário Assunção (2001). Fez estudos pós doutorais em arqueologia bíblica pela Andrews University, EUA (2008). Cursou doutorado em arqueologia clássica pela Universidade de São Paulo. É professor do Centro Universitário Adventista de São Paulo e curador do Museu Paulo Bork de Arqueologia do Oriente Médio. Rodrigo Pereira da Silva apresenta o programa da TV Novo Tempo "Evidências" sobre arqueologia do oriente médio, Bíblia e História.
  • Diego R.G. Tudela, Universidade de São Paulo. Escola Politécnica. Departamento de Engenharia Elétrica

    Doctorate student at Universidade de São Paulo.

  • Casimiro S. Munita, Comissão Nacional de Energia Nuclear Instituto de Pesquisas Nucleares
    Researcher from Instituto de Pesquisas Energéticas e Nucleares.
  • Roberto Hazenfratz, Comissão Nacional de Energia Nuclear Instituto de Pesquisas Nucleares

    PhD from Instituto de Pesquisas Energéticas e Nucleares.

  • Sonia H. Tatumi, Universidade Federal de São Paulo

    Professor at Universidade Federal de São Paulo, Campus Baixada Santista.

     

  • Marcio Yee, Universidade Federal de São Paulo
    Professor at Universidade Federal de São Paulo.
  • Juan C.R. Mittani, Universidade Federal de São Paulo
    Professor at Universidade Federal de São Paulo.

Referências

AFOUXENIDIS D, POLYMERIS GS, TSIRLIGANIS NC, KITIS G. 2012. Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program. Radiat Prot Dosimetry 149 (4): 363-370.
AITKEN, MJ. 1985. Thermoluminescence Dating. Oxford Academic Press, London.
ARTIORI G. 2010. Scientific Methods and Cultural Heritage – An Introduction to the Application of Materials Science to Archaeometry and Conservation Science. Oxford University Press.
ASHMORE W, SHERER R. 2013. Discovering our past: a brief introduction to archaeology. 6th edition, McGraw-Hill.
BENSIMON Y, DEROIDE B, CLAVEL S, ZANCHETTA JV. 1998. Electron spin resonance and dilatometric studies of ancient ceramics applied to the determination of firing temperature. Jpn J Appl Phys 37: 4367-4372.
BENSIMON Y, DEROIDE B, DIJOUX F, MARTINEA M. 2000. Nature and thermal stability of paramagnetic defects in natural clay: a study by electron spin resonance. J Phys Chem Solids 61(10): 1623-1632.
BENSIMON Y, DEROIDE B, ZANCHETTA JV. 1999. Comparison between the electron paramagnetic resonance spectra obtained in X- and W-bands on a fired clay: a preliminary study. J Phys Chem Solids 60: 813-818.
BISHOP RL, CANOUTS V, CROWN PL, DE ATLEY SP. 1990. Sensitivity, precision and accuracy: their roles in ceramic compositional data bases. Amer Antiquity 55 (3): 537-546.
BORGER PR. 1981. Assyrich-babylonisches Zeichenliste, Auflage: Neukirchen-Vluyn, Germany.
BOUQUILLON A, COLINART S, PORTO E, ZINK A. 2003. Authenticité, matières et couleurs. Etude en laboratoire des Tanagréennes du Louvre. In: Tanagra, Mythe et archeology. V. Jammet (Ed.). RMN, Paris, 298-301.
CANO NF, MUNITA CS, WATANABE S, BARBOSA RF, CHUBACI ,JFD, TATUMI SH, NEVES EG. 2014. OSL and EPR dating of pottery from the archaeological sites in Amazon Valley. Quatern Intern 352: 176-180.
CANO, NF, RIBEIRO, R.B, MUNITA C.S, WATANABE S, NEVES EG, TAMANAHA EK. 2015. Dating and determination of firing temperature of ancient potteries from São Paulo II archaeological site, Brazil by TL and EPR techniques. J Cult Herit 16: 361-364.
CULLITY BD. 1978. Elements of X-ray diffraction. Reading, Mass., Addison-Wesley, 2nd edn, 531.
DUTTINE M. VILLENEUVE G, POUPEAU G, ROSSI AM, SCORZELLI SB. 2003. Electron spin resonance of Fe3+ ion in obsidians from Mediterranean islands. Application to provenance studies. J Non-Cryst Solids 323: 193-199.
EVERLING J. 2000. The neo-Babylonian royal inscription of the Bibliothèque Nationale et Universitaire de Strasbourg. Nouvelles Assyriologiques Brèves et Utilitaires, 56.
FEATHERS JK. 2003. Use of luminescence dating in archaeology. Meas Sci Technol 14: 1493–1509.
GLASCOCK M. NEFF H. 2003. Neutron activation analysis and provenance research in archaeology. Meas Sci Technol 14: 1516-1526.
GLASCOCK MD. 1992. Characterization of archaeological ceramics at MURR by neutron activation analysis and multivariate statistics. In: Neff, H. (Ed), Chemical Characterization of Ceramic Pastes in Archaeology, Monography in World Archaeology, Prehistory Press, New York.
GODFREY-SMITH DI, DEAL M, KUNELIUS I. 1997. Thermoluminescence dating of St. Croix ceramics: Chronology building in Southwestern Nova Scotia. Geoarchaeology 12 (3): 251–273.
GOEDICKE C. 1994. Authenticity of Tanagra figurines based on thermoluminescence method. In: Middle-class Worlds, Hellenistic Terracotta and Recreation in 19th Century. Kriseleit, I., Zimmer, G., Cordelia, J. (Eds.). Mainz am Rhein, pp.77-81.
GOREN Y, MOMMSEN H, KLINGER J. 2011 Non-destructive provenance study of cuneiform tablest using portable X-ray fluorescence (pXRF). J Archaeol Sci 38: 684-696.
HAZENFRATZ R, MUNITA CS, GLASCOCK MD, NEVES EG. 2016. Study of exchange networks between two Amazon archaeological sites by INAA. J Radioanal Nucl Chem 309: 195-205.
JENKIS R. 2002. X-ray powder methods. Encyclopedia of Science and Technology, 19, pp.668-673.
LABAT R, LABAT FM. 1995. Manuel d’épigraphie akkadienne: signes, syllabaire, ideogrammes, Paul Geuthner, Paris, France, 379 pp.
LAMOTHE M. 2004. Optical dating of pottery, burnt stones, and sediments from selected Quebec archaeological sites. Can J Earth Sci 41: 659–667.
MANGUEIRA GM, TOLEDO R, TEIXEIRA S, FRANCO RWA. 2011. A study of the firing temperature of archeological pottery by X-ray diffraction and electron paramagnetic resonance. J Phys Chem Solids 72: 90-96.
MARTINI M, SIBILIA E. 2001. Radiation in archaeometry: archaeological dating. Radiat Phys Chem 61: 241–246.
MCCONVILLE CJ, LEE WE. 2005. Microstrutural development on firing illite and smectite clays compared with that in kaolinite. J Am Ceram Soc 88: 2267-2276.
MITCHELL TC. 2004. The Bible in the British Museum: interpreting the evidence. Paulist Press, New York/Mahwah.
MOOREY PRS. 1994. Ancient Mesopotamian materials and industries: the archaeological evidence. Clarendon Press.
MURRAY AS, WINTLE AG. 2000. Application of the single-aliquot regenerative-dose protocol to the 375oC quartz TL signal. Radiat Meas 32: 579-583.
PAPACHRISTODOULOU C, OIKONOMOU A, LOANNIDES K, GRAVANI KA. 2006. A study of ancient pottery by means of X-ray fluorescence spectroscopy, multivariate statistics and mineralogical analysis. Anal Chim Acta 573/574: 347-353.
PRESCIUTTI F, CAPITANI D, SGAMELLOTTI A, BRUNETTI BG, COSTANTINO F, VIEL S, SEGRE A. 2005. Electron paramagnetic resonance, scanning electron microscopy with energy dispersión X-ray spectrometry, X-ray powder diffraction, and NMR characterization of iron-rich fired clays. J Phys Chem B 109: 22147-22158.
PRESCOTT JR, STEPHAN LG. 1982. The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. Latitude, altitude and deph dependences. PACT Journal (Council of Europe) 6, 17-25.
RICE PM. 1987. Pottery analysis. A sourcebook. The University of Chicago Press, Chicago, USA.
ROCCA RR, TATUMI SH, WATANABE S, ROSSETTI DF. 2012. OSL Dating of Coastal Post-Barreira Sediments from Northern Brazil. J Earth Sci Engn 2: 515-521.
SEYMOUR M. 2014. Babylonian Art and Architecture. T. da Costa, Ed., Oxford University Press, Oxford.
SILVA RS. 2005. A historicidade de Nabudodonosor: análise paleográfica e interpretativa de uma inscrição neo-Babilônica. Kerygma 39-44.
TANI A, BARTOLL J, IKEYA M, KOMURA K, KAJIWARA H, FUJIMURA S, KAMADA T, YOKOYAMA Y. 1997. ESR study of thermal history and dating of a stone tool. Appl Magn Reson 13 (3): 561-569.
TITE MS. 1972. Methods of physical examination in archaeology. London, Seminar Press.
ZINK A, PORTO E. 2005. Luminiscence dating of the Tanagra terracottas of the Louvre collections. Geochronometria 24: 21-26.

Downloads

Publicado

2017-12-31

Edição

Seção

Artigos

Como Citar

Determinação da temperatura de queima e datação por termoluminescência de um tijolo com caracteres cuneiformes encontrado nas ruínas da antiga Babilônia. (2017). Revista Do Museu De Arqueologia E Etnologia, 28. https://doi.org/10.11606/issn.2448-1750.revmae.2017.133911