Birth weight is related with bone mineral content in adulthood: results of ELSA-Brasil

Authors

DOI:

https://doi.org/10.11606/s1518-8787.2022056004064

Keywords:

Bone Density, Birth Weight, Embryonic and Fetal Development, Sex Distribution

Abstract

OBJECTIVE: To investigate the association between birth weight and BMC, and whether this relationship differs between men and women. METHODS: A total of 10,159 participants from the ELSA-Brasil cohort were eligible for this analysis. The outcome was the Z-score of the ratio BMC (Kg)/height (m). The exposure was the low birth weight (< 2.5Kg). The magnitude of the associations was estimated by mean differences and their respective 95% confidence intervals (95%CI) using linear regression. All analyses were presented for the total population and stratified by sex. RESULTS: Most were women (54.98%), and the mean age was 52.72 years (SD ± 6.6). In the crude model, we observed that low birth weight was associated with a lower mean BMC/height z-score, compared to adequate birth weight (mean difference: -0.30; 95%CI: -0.39 to -0.21), and this effect was stronger in men (mean difference: -0.43; 95%CI: -0.56 to -0.30) than in women (mean difference: -0.31; 95%CI: -0.44 to -0.19). After adjusting for age, sex per total population, race/skin color, maternal education, individual education, and current weight, there was a considerable reduction in the magnitude of the association (total population: -0.10; 95%CI: -0.14 to -0.06; men: -0.13; 95%CI: -0.21 to -0.06; women: -0.13; 95%CI: -0.21 to -0.05). CONCLUSION: Low birth weight is related to BMC/height z-score in both sexes with no indication of differences by sex. The magnitude of the associations was attenuated after adjustment for the current weight.

References

WHO Scientific Group. Prevention and management of osteoporosis. Geneva (CH): World Health Organization; 2003 [cited 2014 Jan 30]. Available from: https://apps.who.int/iris/handle/10665/42841

World Health Organization. ICD-10: international statistical classification of diseases and related health problems: tenth revision; 2nd ed. Geneva (CH): WHO; ‎2004 [cited 2021 May 3]. Available from: https://apps.who.int/iris/handle/10665/42980

Tourinho AB, Reis LBSM. Birth weight: a nutritional approach. Comun Cienc Saude. 2012;23(1):19-30.

Ministério da Saúde (BR), Secretaria de Vigilância em Saúde, Departamento de Análise em Saúde e Vigilância das Doenças Não Transmissíveis. Sistema de Informações sobre Nascidos Vivos – SINASC. Painel de Monitoramento de Nascidos Vivos. Brasília, DF; 2021 [cited 2021 May 3]. Available from: http://svs.aids.gov.br/dantps/centrais-de-conteudos/paineis-de-monitoramento/natalidade/nascidos-vivos/

Zadik Z. Maternal nutrition, fetal weight, body composition and disease in later life. J Endocrinol Invest. 2003;26(9):941-5. https://doi.org/10.1007/BF03345248

Cooper C, Westlake S, Harvey N, Javaid K, Dennison E, Hanson M. Review: developmental origins of osteoporotic fracture. Osteoporos Int. 2005;17(3):337-47. https://doi.org/10.1007/s00198-005-2039-5

Cho WK, Ahn M, Jeon YJ, Jung IA, Kim SH, Cho KS, et al. Birth weight could influence bone mineral contents of 10- to 18-year-old Korean adolescents: results from the Korea National Health and Nutrition Examination Survey (KNHANES) 2010. Horm Res Paediatr. 2016;85(2):125-30. https://doi.org/10.1159/000443236

Dennison EM, Syddall HE, Sayer AA, Gilbody HJ, Cooper C. Birth weight and weight at 1 year are independent determinants of bone mass in the seventh decade: The Hertfordshire Cohort Study. Pediatr Res. 2005;57(4):582-6. https://doi.org/10.1203/01.PDR.0000155754.67821.CA

Schlüssel MM, Castro JAS, Kac G, Silva AAM, Cardoso VC, Bettiol H, et al. Birth weight and bone mass in young adults from Brazil. Bone. 2010;46(4):957-63. https://doi.org/10.1016/j.bone.2010.01.365

Leunissen RWJ, Stijnen T, Boot AM, Hokken-Koelega ACS. Influence of birth size and body composition on bone mineral density in early adulthood: the PROGRAM study. Clin Endocrinol. 2008;69(3):386-92. https://doi.org/10.1111/j.1365-2265.2008.03226.x

Laitinen J, Kiukaanniemi K, Heikkinen J, Sovio U, Keinänen-Kiukaanniemi S, Järvelin MR. Body size from birth to adulthood and bone mineral content and density at 31 years of age: results from the northern Finland 1966 birth cohort study. Osteoporos Int. 2005;16(11):1417-24. https://doi.org/10.1007/s00198-005-1857-9

Steer CD, Tobias JH. Insights into the programming of bone development from the Avon Longitudinal Study of Parents and Children (ALSPAC). Am J Clin Nutr. 2011;94(6 Suppl)):1861S-4S. https://doi.org/10.3945/ajcn.110.001495

Pearce MS, Birrell FN, Francis RM, Rawlings DJ, Tuck SP, Parker L. Lifecourse study of bone health at age 49-51 years: the Newcastle thousand families cohort study. J Epidemiol Community Health. 2005;59(6):475-80. https://doi.org/10.1136/jech.2004.025999

Aquino EML, Barreto SM, Bensenor IM, Carvalho MS, Chor D, Duncan BB, et al. Brazilian Longitudinal Study of Adult Health (ELSA-Brasil): objectives and design. Am J Epidemiol. 2012;175 (4):315-24. https://doi.org/10.1093/aje/kwr294

Aquino EML, Vasconcellos-Silva PR, Coeli CM, Araújo MJ, Santos SM, Figueiredo RC, et al. Ethical issues in longitudinal studies: the case of ELSA-Brasil. Rev Saude Publica. 2013;47 Suppl 2:19-26. https://doi.org/10.1590/S0034-8910.2013047003804

Silva ACV, Rosa MI, Fernandes B, Lumertz S, Diniz RM; Damiani MEFR. Fatores associados à osteopenia e osteoporose em mulheres submetidas à densitometria óssea. Rev Bras Reumatol. 2005;55(3):223-8. https://doi.org/10.1016/j.rbr.2014.08.012

Embleton N, Wood CL. Growth, bone health, and later outcomes in infants born preterm. J Pediatr (Rio J). 2014;90(6):529-32. https://doi.org/10.1016/j.jped.2014.08.002

Lohman TG, Roche AF, Martorel R. Anthropometric standardization reference manual. Champaign, IL: Human Kinetics Books; 1988.

Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey (NHANES): anthropometry procedures manual. Atlanta, GA: CDC; 2004.

Bensenor IM, Griep RH, Pinto KA, Faria CP, Felisbino-Mendes M, Caetano EI, et al. Routines of organization of clinical tests and interviews in the ELSA-Brasil investigation center. Rev Saude Publica. 2013;47 Suppl 2:37-47. https://doi.org/10.1590/S0034-8910.2013047003780

Rubim BD. Multiple imputation for non-response in survey. New York: Wiley, 1987.

Barker DJP, Godfrey KM, Gluckman PD, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993;341(8850):938-41. https://doi.org/10.1016/0140-6736(93)91224-a

Ben-Shlomo Y, Kuh D. A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives. Int J Epidemiol. 2002;31(2):285-93. https://doi.org/10.1093/ije/31.2.285

Callréus M, McGuigan F, Åkesson K. Birth weight is more important for peak bone mineral content than for bone density: the PEAK-25 study of 1,061 young adult women. Osteoporos Int. 2012;24(4):1347-55. https://doi.org/10.1007/s00198-012-2077-8

Ministério da Saúde (BR). Portaria Nº 2.528 de 19 de outubro de 2006. Aprova a Política Nacional de Saúde da Pessoa Idosa. Brasília, DF; 2006 [cited 2021 May 1]. Available from: https://bvsms.saude.gov.br/bvs/saudelegis/gm/2006/prt2528_19_10_2006.html.

Ministério da Saúde (BR), Secretaria de Atenção à Saúde, Departamento de Ações Programáticas e Estratégicas. Política Nacional de Atenção Integral à Saúde da Criança: orientações para implementação. Brasília, DF; 2018 [cited 2021 May 3]. Available from: https://portaldeboaspraticas.iff.fiocruz.br/wp-content/uploads/2018/07/Pol%C3%ADtica-Nacional-de-Aten%C3%A7%C3%A3o-Integral-%C3%A0-Sa%C3%BAde-da-Crian%C3%A7a-PNAISC-Vers%C3%A3o-Eletr%C3%B4nica.pdf

Instituto Brasileiro de Geografia e Estatística. Pesquisa Nacional por Amostra de Domicílios - Contínua (PNAD). Rio de Janeiro: IBGE; 2016 [cited 2019 Nov 4]. Available from: https://www.ibge.gov.br/estatisticas/sociais/educacao/17270-pnad-continua.html?=&t=o-que-e

Menezes APR, Moretti B, Reis AAC. The future of the SUS: impacts of neoliberal reforms on public health – austerity versus universality. Saude Debate. 2019;43(5 Spec):58-70. https://doi.org/10.1590/0103-11042019S505

Nilsen TS, Kutschke J, Brandt I, Harris JR. Validity of self-reported birth weight: results from a Norwegian twin sample. Twin Res Hum Genet. 2017;20(5):406-13. https://doi.org/10.1017/thg.2017.44

Donders ART, Heijden GJMG, Stijnen T, Moons KGM. Review: a gentle introduction to imputation of missing values. J Clin Epidemiol. 2006;59(10):1087-91. https://doi.org/10.1016/j.jclinepi.2006.01.014

Schoenau E, Land C, Stabrey A, Remer T, Kroke A. The bone mass concept: problems in short stature. Eur J Endocrinol. 2004;151 Suppl 1:S87-S91. https://doi.org/10.1530/eje.0.151s087

Downloads

Published

2022-11-18

Issue

Section

Original Articles

How to Cite

Tavares, N. H. C., Coelho, . C. G., Barreto, S. M., Giatti, L., & Araújo, . L. F. (2022). Birth weight is related with bone mineral content in adulthood: results of ELSA-Brasil. Revista De Saúde Pública, 56, 103. https://doi.org/10.11606/s1518-8787.2022056004064