Differences in food consumption of the Brazilian population by race/skin color in 2017–2018

Authors

  • Janaína Calu Costa Universidade Federal de Pelotas. Centro Internacional para Equidade em Saúde. Programa de Pós-Graduação em Epidemiologia. Pelotas, RS, Brasil https://orcid.org/0000-0002-7912-8685
  • Amanda Cristina da Silva de Jesus Universidade de São Paulo. Faculdade de Saúde Pública. Programa de Pós-Graduação em Nutrição em Saúde Pública. São Paulo, SP, Brasil https://orcid.org/0000-0002-0125-0808
  • Juliana Giaj Levra de Jesus Universidade de São Paulo. Faculdade de Saúde Pública. Programa de Pós-Graduação em Nutrição em Saúde Pública. São Paulo, SP, Brasil https://orcid.org/0000-0003-0166-5568
  • Mariana Ferreira Madruga Universidade de São Paulo. Faculdade de Medicina. Programa de Pós-Graduação em Saúde Coletiva. São Paulo, SP, Brasil. https://orcid.org/0000-0002-9141-8079
  • Thays Nascimento Souza Universidade de São Paulo. Núcleo de Pesquisas Epidemiológicas em Nutrição e Saúde. São Paulo, SP, Brasil https://orcid.org/0000-0001-5405-5398
  • Maria Laura da Costa Louzada Universidade de São Paulo. Faculdade de Saúde Pública. Programa de Pós-Graduação em Nutrição em Saúde Pública. São Paulo, SP, Brasil https://orcid.org/0000-0002-3756-2301

DOI:

https://doi.org/10.11606/s1518-8787.2023057004000

Keywords:

Diet, Food, and Nutrition, Race Factors, Socioeconomic Factors, Nutrition Surveys

Abstract

OBJECTIVE: Evaluate food consumption in Brazil by race/skin color of the population. METHODS: Food consumption data from the Pesquisa de Orçamentos Familiares (POF – Household Budget Survey) 2017–2018 were analyzed. Food and culinary preparations were grouped into 31 items, composing three main groups, defined by industrial processing characteristics: 1 – in natura/minimally processed, 2 – processed, and 3 – ultra-processed. The percentage of calories from each group was estimated by categories of race/skin color – White, Black, Mixed-race, Indigenous, and Yellow– using crude and adjusted linear regression for gender, age, schooling, income, macro-region, and area. RESULTS: In the crude analyses, the consumption of in natura/minimally processed foods was lower for Yellow [66.0% (95% Confidence Interval 62.4–69.6)] and White [66.6% (95%CI 66.1–67.1)] groups than for Blacks [69.8% (95%CI 68.9–70.8)] and Mixed-race people [70.2% (95%CI 69.7–70.7)]. Yellow individuals consumed fewer processed foods, with 9.2% of energy (95%CI 7.2–11.1) whereas the other groups consumed approximately 13%. Ultra-processed foods were less consumed by Blacks [16.6% (95%CI 15.6–17.6)] and Mixed-race [16.6% (95%CI 16.2–17.1)], with the highest consumption among White [20.1% (95%CI 19.6–20.6)] and Yellow [24.5% (95%CI 20.0–29.1)] groups. The adjustment of the models reduced the magnitude of the differences between the categories of race/skin color. The difference between Black and Mixed-race individuals from the White ones decreased from 3 percentage points (pp) to 1.2 pp in the consumption of in natura/minimally processed foods and the largest differences remained in the consumption of rice and beans, with a higher percentage in the diet of Black and Mixed-race people. The contribution of processed foods remained approximately 4 pp lower for Yellow individuals. The consumption of ultra-processed products decreased by approximately 2 pp for White and Yellow groups; on the other hand, it increased by 1 pp in the consumption of Black, Mixed-race, and Indigenous peoples. CONCLUSION: Differences in food consumption according to race/skin color were found and are influenced by socioeconomic and demographic conditions.

References

Gonzales L. A categoria político-cultural de amefricanidade. Tempo Bras. 1988;(92-93):69-82.

Ramos AR. ¡Vivos, contra todo y contra todos! Los pueblos indígenas de Brasil enfrentan el genocidio. Rev Estud Genocidio. 2018 [citado 30 Mar 2021];13:81-101. Disponível em: http://revistas.untref.edu.ar/index.php/reg/article/view/259

Batista LE, Barros S. Confronting racism in health services. Cad Saude Publica. 2017;33 Supl 1:e00090516. https://doi.org/10.1590/0102-311X00090516

Chor D, Lima CRA. Aspectos epidemiológicos das desigualdades raciais em saúde no Brasil. Cad Saude Publica. 2005;21(5):1586-94. https://doi.org/10.1590/S0102-311X2005000500033

Secretaria de Políticas de Ações Afirmativas (BR), Secretaria de Políticas de Promoção da Igualdade Racial. Racismo como determinante social de saúde. Brasília, DF: SEPPIR; 2011 [citado 30 Mar 2021]. Disponível em: https://www.gov.br/mdh/pt-br/centrais-de-conteudo/igualdade-racial/racismo-como-determinante-social-de-saude

Ministério da Saúde (BR). Portaria Nº 344, de 1º de fevereiro de 2017. Dispõe sobre o preenchimento do quesito raça/cor nos formulários dos sistemas de informação em saúde. Brasília, DF; 2017 [citado 31 Mar 2021]. Disponível em: https://bvsms.saude.gov.br/bvs/saudelegis/gm/2017/prt0344_01_02_2017.html

Canuto R, Fanton M, Lira PIC. Iniquidades sociais no consumo alimentar no Brasil: uma revisão crítica dos inquéritos nacionais. Cien Saude Colet. 2018;24(9):3193-212. https://doi.org/10.1590/1413-81232018249.26202017

Claro RM, Santos MAS, Oliveira TP, Pereira CA, Szwarcwald CL, Malta DC. Consumo de alimentos não saudáveis relacionados a doenças crônicas não transmissíveis no Brasil: Pesquisa Nacional de Saúde, 2013. Epidemiol Serv Saude. 2015;24(2):257-65. https://doi.org/10.5123/S1679-49742015000200008

Barros MBA, Lima MG, Medina LPB, Szwarcwald CL, Malta DC. Social inequalities in health behaviors among Brazilian adults: National Health Survey, 2013. Int J Equity Health. 2016;15(1):148. https://doi.org/10.1186/s12939-016-0439-0

Malta DC, Moura L, Bernal RTI. Differentials in risk factors for chronic non-communicable diseases from the race/color standpoint. Cien Saude Colet. 2015;20(3):713-25. https://doi.org/10.1590/1413-81232015203.16182014

Medina LPB, Barros MBA, Sousa NFS, Bastos TF, Lima MG, Szwarcwald CL. Desigualdades sociais no perfil de consumo de alimentos da população brasileira: Pesquisa Nacional de Saúde, 2013. Rev Bras Epidemiol. 2019;22 Supl 2:E190011.SUPL.2. https://doi.org/10.1590/1980-549720190011.supl.2

Velásquez-Meléndez G, Mendes LL, Pessoa MC, Sardinha LMV, Yokota RTC, Bernal RTI, et al. Tendências da frequência do consumo de feijão por meio de inquérito telefônico nas capitais brasileiras, 2006 a 2009. Cien Saude Colet. 2012;17(12):3363-70. https://doi.org/10.1590/S1413-81232012001200021

Jaime PC, Stopa SR, Oliveira TP, Vieira ML, Szwarcwald CL, Malta DC. Prevalence and sociodemographic distribution of healthy eating markers, National Health Survey, Brazil 2013. Epidemiol Serv Saude. 2015;24(2):10. https://doi.org/10.5123/S1679-49742015000200009

Ministério da Saúde (BR), Secretaria de Atenção à Saúde. Departamento de Atenção Básica. Guia alimentar para a população brasileira. 2. ed. Brasília, DF; 2014 [citado 15 Fev 2021]. Disponível em: https://bvsms.saude.gov.br/bvs/publicacoes/guia_alimentar_populacao_brasileira_2ed.pdf

Monteiro CA, Cannon G, Lawrence M, Louzada MLC, Machado PP. Ultra-processed foods, diet quality, and health using the NOVA classification system. Rome (IT): FAO; 2019 [citado 15 Fev 2021]. Disponível em: https://www.fao.org/3/ca5644en/ca5644en.pdf

Monteiro CA, Levy RB, Claro RM, Castro IRR, Cannon G. Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil. Public Health Nutr. 2011;14(1):5-13. https://doi.org/10.1017/S1368980010003241

Instituto Brasileiro de Geografia e Estatística, Coordenação de Trabalho e Regimento. Pesquisa de Orçamentos Familiares 2017-2018: análise do consumo alimentar pessoal no Brasil. Rio de Janeiro: IBGE; 2020 [citado 15 Fev 2021]. Disponível em: https://biblioteca.ibge.gov.br/visualizacao/livros/liv101742.pdf

Martins APB, Levy RB, Claro RM, Moubarac JC, Monteiro CA. Participação crescente de produtos ultraprocessados na dieta brasileira (1987-2009). Rev Saude Publica. 2013;47(4):656-65. https://doi.org/10.1590/S0034-8910.2013047004968

Tabela Brasileira de Composição de Alimentos (TBCA) da Universidade de São Paulo (USP). São Paulo: Food Research Center; 2019.

Monteiro CA, Cannon G, Levy RB, Moubarac J-C, Louzada MLC, Rauber F, et al. Ultra-processed foods: what they are and how to identify them. Public Health Nutr. 2019;22(5):936-41. https://doi.org/10.1017/S1368980018003762

Louzada MLC, Martins APB, Canella DS, Baraldi LG, Levy RB, Claro RM, et al. Ultra-processed foods and the nutritional dietary profile in Brazil. Rev Saude Publica. 2015;49:38. https://doi.org/10.1590/S0034-8910.2015049006132

Multiple Source Method (MSM) for estimating usual dietary intake from short-term measurement data: user guide. Postdam (DE): EFCOVAL; DIfE; 2011 [citado 18 Fev 2021]. Disponível em: https://msm.dife.de/static/MSM_UserGuide.pdf

Harttig U, Haubrock J, Knüppel S, Boeing H, EFCOVAL Consortium. The MSM program: web-based statistics package for estimating usual dietary intake using the Multiple Source Method. Eur J Clin Nutr. 2011;65 Suppl 1:S87-91. https://doi.org/10.1038/ejcn.2011.92

Swinburn BA, Kraak VI, Allender S, Atkins VJ, Baker PI, Bogard JR, et al. The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report. Lancet. 2019;393(10173):791-846. https://doi.org/10.1016/S0140-6736(18)32822-8

Borges CA, Claro RM, Martins APB, Villar BS. Quanto custa para as famílias de baixa renda obterem uma dieta saudável no Brasil? Cad Saude Publica. 2015;31(1):137-48. https://doi.org/10.1590/0102-311X00005114

Claro RM, Monteiro CA. Renda familiar, preço de alimentos e aquisição domiciliar de frutas e hortaliças no Brasil. Rev Saude Publica. 2010;44(6):1014-20. https://doi.org/10.1590/S0034-89102010000600005

Rodrigues PRM, Monteiro LS, Cunha DB, Sichieri R, Pereira RA. Adult food consumption by household composition: an analysis of the first National Dietary Survey, Brazil, 2008–2009. Public Health Nutr. 2019;23(2):193-201. https://doi.org/10.1017/S1368980019002374

Maia EG, Passos CM, Levy RB, Martins APB, Mais LA, Claro RM. What to expect from the price of healthy and unhealthy foods over time? The case from Brazil. Public Health Nutr. 2020;23(4):579-88. https://doi.org/10.1017/S1368980019003586

Almeida S. Racismo estrutural? São Paulo: Pólen; 2019. 264 p.

Instituto Brasileiro de Geografia e Estatística. Desigualdades sociais por cor ou raça no Brasil. Rio de Janeiro: IBGE; 2019 [citado 20 Mar 2021]. Disponível em: https://biblioteca.ibge.gov.br/visualizacao/livros/liv101681_informativo.pdf

Coimbra CEA, Santos RV, Welch JR, Cardoso AM, Souza MC, Garnelo L, et al. The First National Survey of Indigenous People’s Health and Nutrition in Brazil: rationale, methodology, and overview of results. BMC Public Health. 2013;13:52. https://doi.org/10.1186/1471-2458-13-52

Instituto Brasileiro de Geografia e Estatística. Censo Demográfico 2010: características gerais dos indígenas: resultados do universo. Rio de Janeiro: IBGE; 2012 [citado 20 Mar 2021]. Disponível em: https://biblioteca.ibge.gov.br/visualizacao/periodicos/95/cd_2010_indigenas_universo.pdf

Instituto Brasileiro de Geografia e Estatística, Coordenação de Trabalho e Rendimento. Pesquisa de Orçamentos Familiares 2017-2018: análise da segurança alimentar no Brasil. Rio de Janeiro: IBGE; 2020 [citado 20 Mar 2021]. Disponível em: https://biblioteca.ibge.gov.br/visualizacao/livros/liv101749.pdf

Araújo EM, Costa MCN, Hogan VK, Araújo TM, Dias AB, Oliveira LOA. A utilização da variável raça/cor em Saúde Pública: possibilidades e limites. Interface (Botucatu). 2009;13(31):383-94. https://doi.org/10.1590/S1414-32832009000400012

Maciel ME. Uma cozinha à brasileira. Estud Hist. 2004 [citado 30 Mar 2021];(33):25-39.Disponível em: https://bibliotecadigital.fgv.br/ojs/index.php/reh/article/view/2217/1356

Braz RM, Oliveira PTR, Reis AT, Machado NMS. Avaliação da completude da variável raça/cor nos sistemas nacionais de informação em saúde para aferição da equidade étnico-racial em indicadores usados pelo Índice de Desempenho do Sistema Único de Saúde. Saude Debate. 2013 [citado 30 Mar 2021];37(99):554-62. Disponível em: https://www.scielo.br/j/sdeb/a/ZqDr6yqgFryL5zXqCyrLVLc/?format=pdf&lang=pt

Verly-Jr E, Oliveira DCRS, Fisberg RM, Marchioni DML. Performance of statistical methods to correct food intake distribution: comparison between observed and estimated usual intake. Br J Nutr. 2016;116(5):897-903. https://doi.org/10.1017/S0007114516002725

Published

2023-02-17

How to Cite

Costa, J. C., Jesus, A. C. da S. de, Jesus, J. G. L. de, Madruga, M. F., Souza, T. N., & Louzada, M. L. da C. (2023). Differences in food consumption of the Brazilian population by race/skin color in 2017–2018. Revista De Saúde Pública, 57(1), 4. https://doi.org/10.11606/s1518-8787.2023057004000

Issue

Section

Original Articles