High-risk spatial clusters for Zika, dengue, and chikungunya in Rio de Janeiro, Brazil

Authors

  • Reinaldo Souza-Santos Fundação Oswaldo Cruz. Escola Nacional de Saúde Pública Sergio Arouca. Departamento de Endemias Samuel Pessoa. Rio de Janeiro, RJ, Brasil https://orcid.org/0000-0003-2387-6999
  • Andrea Sobral Fundação Oswaldo Cruz. Escola Nacional de Saúde Pública Sergio Arouca. Departamento de Endemias Samuel Pessoa. Rio de Janeiro, RJ, Brasil https://orcid.org/0000-0003-0552-771X
  • Andre Reynaldo Santos Périssé Fundação Oswaldo Cruz. Escola Nacional de Saúde Pública Sergio Arouca. Departamento de Endemias Samuel Pessoa. Rio de Janeiro, RJ, Brasil https://orcid.org/0000-0002-5253-5774

DOI:

https://doi.org/10.11606/s1518-8787.2023057004932

Keywords:

Zika, Dengue, Chikungunya, Epidemiology, Spatial Analysis, Cluster Detection, Ecological Studies

Abstract

OBJECTIVE: To analyze the spatial distribution and identify high-risk spatial clusters of Zika, dengue, and chikungunya (ZDC), in the city of Rio de Janeiro, Brazil, and their socioeconomic status. METHODS: An ecological study based on data from a seroprevalence survey. Using a rapid diagnostic test to detect the arboviruses, 2,114 individuals were tested in 2018. The spatial distribution was analyzed using kernel estimation. To detect high-risk spatial clusters of arboviruses, we used multivariate scan statistics. The Social Development Index (SDI) was considered in the analysis of socioeconomic status. RESULTS: Among the 2,114 individuals, 1,714 (81.1%) were positive for at least one arbovirus investigated. The kernel estimation showed positive individuals for at least one arbovirus in all regions of the city, with hot spots in the North, coincident with regions with very low or low SDI. The scan statistic detected three significant (p<0.05) high-risk spatial clusters for Zika, dengue, and chikungunya viruses. These clusters correspond to 35.7% (n=613) of all positive individuals of the sample. The most likely cluster was in the North (cluster 1) and overlapped regions with very low and low SDI. Clusters 2 and 3 were in the West and overlapping regions with low and very low SDI, respectively. The highest values of relative risks were in cluster 1 for CHIKV (1.97), in cluster 2 for ZIKV (1.58), and in cluster 3 for CHIKV (1.44). Regarding outcomes in the clusters, the Flavivirus had the highest frequency in clusters 1, 2, and 3 (42.83%, 54.46%, and 52.08%, respectively). CONCLUSION: We found an over-risk for arboviruses in areas with the worst socioeconomic conditions in Rio de Janeiro. Moreover, the highest concentration of people negative for arboviruses occurred in areas considered to have better living conditions.

References

Azeredo EL, Santos FB, Barbosa LS, Souza TMA, Badolato-Corrêa J, Sánchez-Arcila JC, et al. Clinical and laboratory profile of zika and dengue infected patients: lessons learned from the co-circulation of dengue, zika and chikungunya in Brazil. PLoS Curr. 2018;15:10. https://doi.org/10.1371/currents.outbreaks.0bf6aeb4d30824de63c4d5d745b217f5

Carrillo-Hernández MY, Ruiz-Saenz J, Villamizar LJ, Gómez-Rangel SY, Martínez-Gutierrez M. Co-circulation and simultaneous co-infection of dengue Venezuelan, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian- border. BMC Infect Dis. 2018;18(1):61. https://doi.org/10.1186/s12879-018-2976-1

Freitas LP, Cruz OG, Lowe R, Carvalho MS. Space–time dynamics of a triple epidemic: dengue, chikungunya and Zika clusters in the city of Rio de Janeiro. Proc Biol Sci. 2019;286(1912):20191867. https://doi.org/10.1098/rspb.2019.1867

Kazazian L, Lima Neto AS, Sousa GS, Nascimento OJ, Castro MC. Spatiotemporal transmission dynamics of co-circulating dengue, Zika, and chikungunya viruses in Fortaleza, Brazil: 2011–2017. PLoS Negl Trop Dis. 2020;14(10):e0008760. https://doi.org/10.1371/journal.pntd.0008760

Rico-Mendoza A, Porras-Ramírez AR, Chang A, Encinales L, Lynch R. Co-circulation of dengue, chikungunya, and Zika viruses in Colombia from 2008 to 2018. Rev Panam Salud Publica. 2019;43:e49. https://doi.org/10.26633/RPSP.2019.49

Périssé ARS, Souza-Santos R, Duarte R, Santos F, Andrade CR, Rodrigues NCP, et al. Zika, dengue and chikungunya population prevalence in Rio de Janeiro city, Brazil, and the importance of seroprevalence studies to estimate the real number of infected individuals. PLoS One. 2020;15(12):e0243239. https://doi.org/10.1371/journal.pone.0243239

Fritzell C, Rousset D, Adde A, Kazanji M, Van Kerkhove MD, Flamand C. Current challenges and implications for dengue, chikungunya and Zika seroprevalence studies worldwide: a scoping review. PLoS Negl Trop Dis. 2018;12(7):e0006533. https://doi.org/10.1371/journal.pntd.0006533

Power GM, Vaughan AM, Qiao L, Sanchez Clemente N, Pescarini JM, Paixão ES, et al. Socioeconomic risk markers of arthropod-borne virus (arbovirus) infections: a systematic literature review and meta-analysis. BMJ Glob Health. 2022;7(4):e007735. https://doi.org/10.1136/bmjgh-2021-007735

Kulldorff M, Mostashari F, Duczmal L, Yih W, Kleinman K, Platt R. Multivariate scan statistics for disease surveillance. Stat Med. 2007;26(8):1824-33. https://10.1002/sim.2818

Instituto Pereira Passos. Data Rio. Índice de Desenvolvimento Social (IDS) por Áreas de Planejamento (AP), Regiões de Planejamento (RP), Regiões Administrativas (RA), Bairros e Favelas do Município do Rio de Janeiro – 2010. [cited 2022 Jun 28]. Available from: https://www.data.rio/documents/fa85ddc76a524380ad7fc60e3006ee97/about

Aubry M, Teissier A, Huart M, Merceron S, Vanhomwegen J, Mapotoeke M, et al. Seroprevalence of dengue and Chikungunya virus antibodies, French Polynesia, 2014–2015. Emerg Infect Dis. 2018;24(3):558-61. https://doi.org/10.3201/eid2403.171149

Chiaravalloti-Neto F, Silva RA, Zini N, Silva GCD, Silva NS, Parra MCP, et al. Seroprevalence for dengue virus in a hyperendemic area and associated socioeconomic and demographic factors using a cross-sectional design and a geostatistical approach, state of São Paulo, Brazil. BMC Infect Dis. 2019;19(1):441. https://doi.org/10.1186/s12879-019-4074-4

Ali S, Gugliemini O, Harber S, Harrison A, Houle L, Ivory J, et al. Environmental and social change drive the explosive emergence of Zika Virus in the Americas. PLoS Negl Trop Dis. 2017;11(2):e0005135. https://doi.org/10.1371/journal.pntd.0005135

Ashmore P, Lindahl JF, Colón-González FJ, Sinh Nam V, Quang Tan D, Medley GF. Spatiotemporal and socioeconomic risk factors for dengue at the province level in Vietnam, 2013–2015: clustering analysis and regression model. Trop Med Infect Dis. 2020;5(2);81. https://doi.org/10.3390/tropicalmed5020081

Costa SSB, Branco MRFC, Aquino Junior J, Rodrigues ZMR, Queiroz RCS, Araujo AS, et al. Spatial analysis of probable cases of dengue fever, chikungunya fever and zika virus infections in Maranhao State, Brazil. Rev Inst Med Trop Sao Paulo. 2018;60:e62. https://doi.org/10.1590/S1678-9946201860062

Farinelli EC, Baquero OS, Stephan C, Chiaravalloti-Neto F. Low socioeconomic condition and the risk of dengue fever: a direct relationship. Acta Trop. 2018;180:47-57. https://doi.org/1016/j.actatropica.2018.01.005

Martins Netto E, Moreira-Soto A, Pedroso C, Höser C, Funk S, Kucharski AJ, et al. High Zika virus seroprevalence in Salvador, Northeastern Brazil limits the potential for further outbreaks. mBio. 2017;8(6):e01390-17. https://doi.org/10.1128/mBio.01390-17

Vargas WP, Kawa H, Sabroza PC, Soares VB, Honório NA, Almeida AS. Association among infestation index, dengue incidence, and sociodemographic indicators: surveillance using house geographic information system. BMC Public Health. 2015;15:746. https://doi.org/10.1186/s12889-015-2097-3

Almeida AS, Medronho RA, Valencia LIO. Spatial analysis of dengue and the socioeconomic context of the city of Rio de Janeiro (Southeastern Brazil). Rev Saude Publica. 2009;43(4):666-73. https://doi.org/10.1590/s0034-89102009000400013

Carvalho S, Magalhães MAFM, Medronho RA. Analysis of the spatial distribution of dengue cases in the city of Rio de Janeiro, 2011 and 2012. Rev Saude Publica. 2017;51:79. https://doi.org/10.11606/S1518-8787.2017051006239

Dalvi APR, Braga JU. Spatial diffusion of the 2015–2016 Zika, dengue and chikungunya epidemics in Rio de Janeiro Municipality, Brazil. Epidemiol Infect. 2019;147:e237. https://doi.org/10.1017/S0950268819001250

Favier C, Schmit D, Müller-Graf CDM, Cazelles B, Degallier N, Mondet B, et al. Influence of spatial heterogeneity on an emerging infectious disease: the case of dengue epidemics. Proc Biol Sci. 2005;272(1568):1171-7. https://doi.org/10.1098/rspb.2004.3020

Donnelly MAP, Kluh S, Snyder RE, Barker CM. Quantifying sociodemographic heterogeneities in the distribution of Aedes aegypti among California households. PLoS Negl Trop Dis. 2020;14(7):e0008408. https://doi.org/10.1371/journal.pntd.0008408

Santos JPCD, Honório NA, Nobre AA. Definition of persistent areas with increased dengue risk by detecting clusters in populations with differing mobility and immunity in Rio de Janeiro, Brazil. Cad Saude Publica. 2019;35(12):e00248118. https://doi.org/10.1590/0102-311X00248118

Downloads

Published

2023-05-30

Issue

Section

Original Articles

How to Cite

Souza-Santos, R., Sobral, A., & Périssé, A. R. S. (2023). High-risk spatial clusters for Zika, dengue, and chikungunya in Rio de Janeiro, Brazil. Revista De Saúde Pública, 57(1), 32. https://doi.org/10.11606/s1518-8787.2023057004932

Funding data