Geocoding processes in cohort studies: methods applied in the EpiFloripa Aging

Authors

DOI:

https://doi.org/10.11606/s1518-8787.2023057004976

Keywords:

Health of Aged Persons, Environment and Public Health, Health Surveys, Geographic Mapping, Geographic Information Systems, Spatial Analysis

Abstract

OBJECTIVE: To describe the process and epidemiological implications of georeferencing in EpiFloripa Aging samples (2009–2019). METHOD: The EpiFloripa Aging Cohort Study sought to investigate and monitor the living and health conditions of the older adult population (≥ 60) of Florianópolis in three study waves (2009/2010, 2013/2014, 2017/2019). With an automatic geocoding tool, the residential addresses were spatialized, allowing to investigate the effect of the georeferencing sample losses regarding 19 variables, evaluated in the three waves. The influence of different neighborhood definitions (census tracts, Euclidean buffers, and buffers across the street network) was examined in the results of seven variables: area, income, residential density, mixed land use, connectivity, health unit count, and public open space count. Pearson’s correlation coefficients were calculated to evaluate the differences between neighborhood definitions according to three variables: contextual income, residential density, and land use diversity. RESULT: The losses imposed by geocoding (6%, n = 240) caused no statistically significant difference between the total sample and the geocoded sample. The analysis of the study variables suggests that the geocoding process may have included a higher proportion of participants with better income, education, and living conditions. The correlation coefficients showed little correspondence between measures calculated by the three neighborhood definitions (r = 0.37–0.54). The statistical difference between the variables calculated by buffers and census tracts highlights limitations in their use in the description of geospatial attributes. CONCLUSION: Despite the challenges related to geocoding, such as inconsistencies in addresses, adequate correction and verification mechanisms provided a high rate of assignment of geographic coordinates, the findings suggest that adopting buffers, favored by geocoding, represents a potential for spatial epidemiological analyses by improving the representation of environmental attributes and the understanding of health outcomes.

References

Schulz AJ. Urban environments and health. In : Nriagu JO, ed. Encyclopedia of Environmental Health. [place unknown] : Elsevier; 2011.p. 549-55.

Giles-Corti B, Vernez-Moudon A, Reis R, Turrell G, Dannenberg AL, Badland H, et al. City planning and population health: a global challenge. Lancet. 2016 Dec;388(10062):2912-24. https://doi.org/10.1016/S0140-6736(16)30066-6

Renalds A, Smith TH, Hale PJ. A systematic review of built environment and health. Fam Community Health. 2010;33(1):68-78. https://doi.org/10.1097/FCH.0b013e3181c4e2e5

Bauman AE, Reis RS, Sallis JF, Wells JC, Loos RJ, Martin BW; Lancet Physical Activity Series Working Group. Correlates of physical activity: why are some people physically active and others not? Lancet. 2012 Jul;380(9838):258-71. https://doi.org/10.1016/S0140-6736(12)60735-1

Michael Y, Beard T, Choi D, Farquhar S, Carlson N. Measuring the influence of built neighborhood environments on walking in older adults. J Aging Phys Act. 2006 Jul;14(3):302-12. https://doi.org/10.1123/japa.14.3.302

McElroy JA, Remington PL, Trentham-Dietz A, Robert SA, Newcomb PA. Geocoding addresses from a large population-based study: lessons learned. Epidemiology. 2003 Jul;14(4):399-407. https://doi.org/10.1097/01.EDE.0000073160.79633.c1

Brownson RC, Hoehner CM, Day K, Forsyth A, Sallis JF. Measuring the built environment for physical activity: state of the science [Internet]. Am J Prev Med. 2009 Apr;36(4 Suppl):S99-123. e12. https://doi.org/10.1016/j.amepre.2009.01.005

Frank LD, Fox EH, Ulmer JM, Chapman JE, Kershaw SE, Sallis JF, et al. International comparison of observation-specific spatial buffers: maximizing the ability to estimate physical activity. Int J Health Geogr. 2017 Jan;16(1):4. https://doi.org/10.1186/s12942-017-0077-9

Lopes AA, Hino AA, Moura EN, Reis RS. Hino AAF, Moura EN de, Reis RS. O Sistema de Informação Geográfica em pesquisas sobre ambiente, atividade física e saúde. Rev Bras Atividade Física Saúde. 2019 Aug;23:1-11. https://doi.org/10.12820/rbafs.23e0065

Leslie E, Coffee N, Frank L, Owen N, Bauman A, Hugo G. Walkability of local communities: using geographic information systems to objectively assess relevant environmental attributes. Health Place. 2007 Mar;13(1):111-22. https://doi.org/10.1016/j.healthplace.2005.11.001

Jacquez GM. A research agenda: does geocoding positional error matter in health GIS studies? Spat Spatio-Temporal Epidemiol. 2012 Apr;3(1):7-16. https://doi.org/10.1016/j.sste.2012.02.002

Hino P, Villa TC, Sassaki CM, Nogueira JD, Dos Santos CB. Geoprocessamento aplicado à área da saúde. Rev Lat Am Enfermagem. 2006 Nov;14(6):939-43. https://doi.org/10.1590/S0104-11692006000600016

Oliver LN, Schuurman N, Hall AW. Comparing circular and network buffers to examine the influence of land use on walking for leisure and errands. Int J Health Geogr. 2007 Sep;6(1):41. https://doi.org/10.1186/1476-072X-6-41

Vine MF, Degnan D, Hanchette C. Geographic information systems: their use in environmental epidemiologic research. J Environ Health. 1997 Jun;105(6);598-605. https://doi.org/10.1289/ehp.97105598

Bonner MR, Han D, Nie J, Rogerson P, Vena JE, Freudenheim JL. Positional accuracy of geocoded addresses in epidemiologic research. Epidemiology. 2003 Jul;14(4):408-12. https://doi.org/10.1097/01.EDE.0000073121.63254.c5

Zinszer K, Jauvin C, Verma A, Bedard L, Allard R, Schwartzman K, et al. Residential address errors in public health surveillance data: a description and analysis of the impact on geocoding. Spat Spatio-Temporal Epidemiol. 2010 Jul;1(2-3):163-8. https://doi.org/10.1016/j.sste.2010.03.002

Silveira IH, Oliveira BFA, Junger WL. Utilização do Google Maps para o georreferenciamento de dados do Sistema de Informações sobre Mortalidade no município do Rio de Janeiro, 2010-2012. Epidemiol Serv Saude. 2017 Oct-Dec;26(4):881-6. https://doi.org/10.5123/S1679-49742017000400018

Schootman M, Sterling DA, Struthers J, Yan Y, Laboube T, Emo B, et al. Positional accuracy and geographic bias of four methods of geocoding in epidemiologic research. Ann Epidemiol. 2007 Jun;17(6):464-70. https://doi.org/10.1016/j.annepidem.2006.10.015

Davis CA Jr, Alencar RO. Evaluation of the quality of an online geocoding resource in the context of a large Brazilian city. Trans GIS. 2011;15(6):851-68. https://doi.org/10.1111/j.1467-9671.2011.01288.x

Schneider IJ, Confortin SC, Bernardo CO, Bolsoni CC, Antes DL, Pereira KG, et al. EpiFloripa Aging cohort study: methods, operational aspects, and follow-up strategies. Rev Saude Publica. 2017;51:104. https://doi.org/10.11606/S1518-8787.2017051006776

Weber Corseiul Giehl M, Hallal PC, Weber Corseuil C, Schneider IJ, d’Orsi E. Built environment and walking behavior among Brazilian older adults: a population-based study. J Phys Act Health. 2016 Jun;13(6):617-24. https://doi.org/10.1123/jpah.2015-0355

Corseuil Giehl MW, Hallal PC, Brownson RC, d’Orsi E. Exploring associations between perceived measures of the environment and walking among Brazilian Older adults. J Aging Health. 2017 Feb;29(1):45-67. https://doi.org/10.1177/0898264315624904

Orsi E, Rech CR, Paiva KM, Lopes, AAS, Boing AC, Barbosa AR, et al. Estudo de coorte EpiFloripa Idoso 3a onda (2017-2019) relatório técnico-científico. Florianópolis: Universidade Federal de Santa Catarina; 2020 [citado 30 mar 2021]. Disponível em: https://repositorio.ufsc.br/handle/123456789/219631

Confortin SC, Schneider IJC, Antes DL, Cembranel F, Ono LM, Marques LP, et al. Condições de vida e saúde de idosos: resultados do estudo de coorte EpiFloripa Idoso. Epidemiol Serv Saúde.2017 Apr;26(2):305-17. https://doi.org/10.5123/S1679-49742017000200008

Goldberg DW, Swift JN, Wilson JP. Geocoding best practices: reference data, input data, and feature matching. Los Angeles: University of Southern California; 2008.

Yun HY. Environmental factors associated with older adult’s walking behaviors: a systematic review of quantitative studies. Sustainability (Basel). 2019;11(12):3253. https://doi.org/10.3390/su11123253

Weber D. Differences in physical aging measured by walking speed: evidence from the English Longitudinal Study of Ageing [Internet]. BMC Geriatr. 2016 Jan;16(1):31. https://doi.org/10.1186/s12877-016-0201-x

Instituto Brasileiro de Geografia e Estatística. Censo demográfico. Brasília, DF: Instituto Brasileiro de Geografia e Estatística; 2010.

Malta DC, Iser BP, Santos MA, Andrade SS, Stopa SR, Bernal RT, et al. Estilos de vida nas capitais Brasileiras segundo a pesquisa nacional de saúde e o sistema de vigilância de fatores de risco e proteção para doenças crônicas não transmissíveis por inquérito telefônico (Vigitel), 2013. Rev Bras Epidemiol. 2015;18 suppl 2:68-82. https://doi.org/10.1590/1980-5497201500060007

Saboya RT, Reis AF, Bueno AP. Continuidades e descontinuidades urbanas à beira-mar: uma leitura morfológica e configuracional da área conurbada de Florianópolis. Oculum Ensaios. 2016;13(1):129. https://doi.org/10.24220/2318-0919v13n1a2756

Published

2023-11-13

Issue

Section

Original Articles

How to Cite

Salvador, C. C., Lopes, A. A. dos S., Resendes, D., Demarco, F. F., Justina, M. D. D., Saboya, R. T. de, Rech, C. R., & d’Orsi, E. (2023). Geocoding processes in cohort studies: methods applied in the EpiFloripa Aging. Revista De Saúde Pública, 57(1), 88. https://doi.org/10.11606/s1518-8787.2023057004976