Surveillance of hemorrhagic fever and/or neuroinvasive disease: challenges of diagnosis

Authors

DOI:

https://doi.org/10.11606/s1518-8787.2021055003068

Keywords:

Autopsy, Hemorrhagic fevers, viral,etiology, Arbovirus infections, mortality

Abstract

 

OBJECTIVE To evaluate the performance of post mortem laboratory analysis in identifying the causes of hemorrhagic fever and/or neuroinvasive disease in deaths by arbovirus infection. METHODS Retrospective cross-sectional study based on the differential analysis and final outcome obtained in patients whose samples underwent laboratory testing for arboviruses at the Pathology Center of the Adolfo Lutz Institute, in São Paulo, Brazil. RESULTS Of the 1355 adults clinically diagnosed with hemorrhagic fever and/or neuroinvasive disease, the most commonly attributed cause of death and the most common final outcome was dengue fever. Almost half of the samples tested negative on all laboratory tests conducted. CONCLUSION The failure to identify the causative agent in a great number of cases highlights a gap in the diagnosis of deaths of unknown etiology. Additional immunohistochemical and molecular assessments need to be added to the post-mortem protocol if all laboratory evaluations performed fail to identify a causative agent. While part of our findings may be due to technical issues related to sample fixation, better information availability when making the initial diagnosis is crucial. Including molecular approaches might lead to a significant advancement in diagnostic accuracy.

References

Secretaria da Saúde do Estado de São Paulo, Coordenadoria de Controle de Doenças, Grupo Técnico Arborviroses; Grupo Técnico de Vigilância em Saúde, Subgrupo Arboviroses. Diretrizes para prevenção e controle das arboviroses urbanas no Estado de São Paulo. São Paulo: GTA, GTVS; 2017 [cited 2019 Oct 3]. Available from: http://www.cvs.saude.sp.gov.br/up/Diretrizes%20controle%20arboviroses%20ESP%20-%202017.pdf [ Links ]

Vieira MACS, Costa CHN, Linhares AC, Borba AS, Henriques DF, Silva EVP, et al. Potential role of dengue virus, chikungunya virus and Zika virus in neurological diseases. Mem Inst Oswaldo Cruz. 2018;113(11):e170538. https://doi.org/10.1590/0074-02760170538 [ Links ]

Lima-Camara TN. Emerging arboviruses and public health challenges in Brazil. Rev Saude Publica. 2016;50:36. https://doi.org/10.1590/S1518-8787.2016050006791 [ Links ]

Lopes N, Nozawa C, Linhares REC. Características gerais e epidemiologia dos arbovírus emergentes no Brasil. Rev Pan-Amaz Saude. 2014;5(3):55-64. https://doi.org/10.5123/s2176-62232014000300007 [ Links ]

Bacon J, Carvalho MN, Diniz PC, Duani H, Machado DF, Mello MP, et al. Febres hemorrágicas. Rev Med Minas Gerais. 2008;18 (3 Supl 4):80-4. [ Links ]

Hotta H. [Neurotropic viruses--classification, structure and characteristics]. Nihon Rinsho. 1997;55(4):777-82. Japanese. [ Links ]

Ministério da Saúde (BR), Secretaria de Vigilância em Saúde, Coordenação Geral de Desenvolvimento. Guia de vigilância em saúde. 3. ed. Brasília, DF; 2019 [cited 2020 Jan 10]. Available from: http://portalarquivos2.saude.gov.br/images/pdf/2019/junho/25/guia-vigilancia-saude-volume-unico-3ed.pdf [ Links ]

Johnson BW, Russell BJ, Lanciotti RS. Serotype-specific detection of dengue viruses in a fourplex real-time reverse transcriptase PCR assay. J Clin Microbiol. 2005;43(10):4977-83. https://doi.org/10.1128/JCM.43.10.4977-4983.2005 [ Links ]

Domingo C, Patel P, Yillah J, Weidmann M, Méndez JA, Nakouné ER, et al. Advanced yellow fever virus genome detection in point-of-care facilities and reference laboratories. J Clin Microbiol. 2012;50(12):4054-60. https://doi.org/10.1128/JCM.01799-12 [ Links ]

Lanciotti RS, Kosoy OL, Laven JJ, Panella AJ, Velez JO, Lambert AJ, et al. Chikungunya virus in US travelers returning from India, 2006. Emerg Infect Dis. 2007;13(5):764-7. https://doi.org/10.3201/eid1305.070015 [ Links ]

Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, et al. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis. 2008;14(8):1232-9. https://doi.org/10.3201/eid1408.080287 [ Links ]

Pincelli MP, Barbas CSV, Carvalho CRR, Souza LTM, Figueiredo LTM. Síndrome pulmonar e cardiovascular por hantavírus. J Pneumol. 2003;29(5):309-23. https://doi.org/10.1590/s0102-35862003000500011 [ Links ]

Pereira-Chioccola VL. Diagnóstico molecular das leishmanioses: contribuição ao Programa de Vigilância e Controle da LVA no Estado de São Paulo. Bepa Bol Epidemiol Paulista. 2009 [cited 2019 Oct 3];6(68):4-13. Available from: http://periodicos.ses.sp.bvs.br/pdf/bepa/v6n68/v6n68a01.pdf [ Links ]

Romero EC, Blanco RM, Yasuda PH. Aseptic meningitis caused by Leptospira spp diagnosed by polymerase chain reaction. Mem Inst Oswaldo Cruz. 2010;105(8):988-92. https://doi.org/10.1590/S0074-02762010000800007 [ Links ]

Salgado MM, Gonçalves MG, Fukasawa LO, Higa FT, Paulino JT, Sacchi CT. Evolution of bacterial meningitis diagnosis in São Paulo State-Brazil and future challenges. Arq Neuropsiquiatr. 2013;71(9B):672-6. https://doi.org/10.1590/0004-282X20130148 [ Links ]

Labruna MB, Whitworth T, Horta MC, Bouyer DH, McBride JW, Pinter A, et al. Rickettsia species infecting Amblyomma cooperi ticks from an area in the State of São Paulo, Brazil, where Brazilian spotted fever is endemic. J Clin Microbiol. 2004;42(1):90-8. https://doi.org/10.1128/JCM.42.1.90-98.2004 [ Links ]

Ministério da Saúde (BR), Secretaria de Vigilância em Saúde, Departamento de Vigilância Epidemiológica. Guia de vigilância epidemiológica. 7. ed. Brasília, DF: 2009 [cited 2020 Jan 10]. (Série A. Normas e manuais técnicos). Available from: https://bvsms.saude.gov.br/bvs/publicacoes/guia_vigilancia_epidemiologica_7ed.pdf [ Links ]

Lanciotti RS. Molecular amplification assays for the detection of flaviviruses. Adv Virus Res. 2003;61:67-99. https://doi.org/10.1016/S0065-3527(03)61002-X [ Links ]

Schagat T. Succesfully overcoming the challenges of working with FFPE samples. Madison, WI: Promega Corporation; 2014 [cited 2019 Feb 4]. Available from: https://www.promega.com/-/media/files/promega-worldwide/north-america/promega-us/webinars-and-events/2014/overcoming-challenges-of-working-with-ffpe-samples-nov2014.pdf?la=en [ Links ]

Guerra JM, Monteiro RL, Gonzalez L, Kimura LM, Cirqueira CDS, Araújo LJT. Against all odds: RNA extraction from different protocols adapted to formalin-fixed paraffin-embedded tissue. Appl Immunohistochem Mol Morphol. 2020;28(5):403-10. https://doi.org/10.1097/PAI.0000000000000772 [ Links ]

Ramos-Vara JA, Miller MA. When tissue antigens and antibodies get along: revisiting the technical aspects of immunohistochemistry: the red, brown, and blue technique. Vet Pathol. 2014;51(1):42-87. https://doi.org/10.1177/0300985813505879 [ Links ]

Kokkat TJ, Patel MS, McGarvey D, LiVolsi VA, Baloch ZW. Archived formalin-fixed paraffin-embedded (FFPE) blocks: a valuable underexploited resource for extraction of DNA, RNA, and protein. Biopreserv Biobank. 2013;11(2):101-6. https://doi.org/10.1089/bio.2012.0052 [ Links ]

Araújo LJT, Salas-Gómez D, Kimura LM, Takahashi JFP, Barrel JS, Rollin DC, et al. Culture cell block controls as a tool to the biomolecular diagnosis of infectious diseases. Appl Immunohistochem Mol Morphol. 2020;28(6):484-7. https://doi.org/10.1097/PAI.0000000000000811 [ Links ]

Macedo FC, Nicol AF, Cooper LD, Yearsley M, Pires AR, Nuovo GJ. Histologic, viral, and molecular correlates of dengue fever infection of the liver using highly sensitive immunohistochemistry. Diagn Mol Pathol. 2006;15(4):223-8. https://doi.org/10.1097/01.pdm.0000213462.60645.cd [ Links ]

Bhoopat L, Bhamarapravati N, Attasiri C, YoksarnS, Chaiwun B, Khunamornpong S, et al. Immunohistochemical characterization of a new monoclonal antibody reactive with dengue virus-infected cells in frozen tissue using immunoperoxidase technique. Asian Pac J Allergy Immunol. 1996;14(2):107-13. [ Links ]

Miagostovich MP, Ramos RG, Nicol AF, Nogueira RM, Cuzzi-Maya T, Oliveira AV, et al. Retrospective study on dengue fatal cases. Clin Neuropathol. 1997;16(4)204-8. [ Links ]

Finkbeiner SR, Allred AF, Tarr PI, Klein EJ, Kirkwood CD, Wang D. Metagenomic analysis of human diarrhea: viral detection and discovery. PLoS Pathog. 2008;4(2):e1000011. https://doi.org/10.1371/journal.ppat.1000011 [ Links ]

Ambrose HE, Granerod J, Clewley JP, Davies NWS, Keir G, Cunningham R, et al. Diagnostic strategy used to establish etiologies of encephalitis in a prospective cohort of patients in England. J Clin Microbiol. 2011;49(10):3576-83. https://doi.org/10.1128/JCM.00862-11 [ Links ]

Miller RR, Montoya V, Gardy JL, Patrick DM, Tang P. Metagenomics for pathogen detection in public health. Genome Med. 2013;5(9):81. https://doi.org/10.1186/gm485 [ Links ]

Bhatnagar J, Blau DM, Shieh WJ, Paddock CD, Drew C, Liu L, et al. Molecular detection and typing of dengue viruses from archived tissues of fatal cases by RT-PCR and sequencing: diagnostic and epidemiologic implications. Am J Trop Med Hyg. 2012;86(2):335-40. https://doi.org/10.4269/ajtmh.2012.11-0346 [ Links ]

Guerra JM, Ferreira CSS, Beraldo KRF, Kimura LM, Takahashi JPF, Salas-Gómez D, et al. One-step multiplex real-time RT-PCR for molecular detection and typing of dengue virus infection from paraffin-embedded tissues during the Brazilian 2019 outbreak. Appl Immunohistochem Mol Morphol. 2021;29(2):158-62. https://doi.org/10.1097/PAI.0000000000000870 [ Links ]

Robinson ER, Walker TM, Pallen MJ. Genomics and outbreak investigation: from sequence to consequence. Genome Med. 2013;5(4):36. https://doi.org/10.1186/gm440 [ Links ]

Sardi SI, Somasekar S, Naccache SN, Bandeira AC, Tauro LB, Campos GS, et al. Coinfections of Zika and chikungunya viruses in Bahia, Brazil, identified by metagenomic next-generation sequencing. J Clin Microbiol. 2016;54(9):2348-53. https://doi.org/10.1128/JCM.00877-16 [ Links ]

Schlaberg R, Chiu CY, Miller S, Procop GW, Weinstock G. Validation of metagenomic next-generation sequencing tests for universal pathogen detection. Arch Pathol Lab Med. 2017;141(6):776-86. https://doi.org/10.5858/arpa.2016-0539-RA [ Links ]

Couturier MR, Bard JD. Direct-from-specimen pathogen identification: evolution of syndromic panels. Clin Lab Med. 2019;39(3):433-51. https://doi.org/10.1016/j.cll.2019.05.005 [ Links ]

Hanson KE, Couturier MR. Multiplexed molecular diagnostics for respiratory, gastrointestinal, and central nervous system infections. Clin Infect Dis. 2016;63(10):1361-7. https://doi.org/10.1093/cid/ciw494 [ Links ]

Chen D, Cunningham J, Moore K, Tian J. Spatial and temporal aberration detection methods for disease outbreaks in syndromic surveillance systems. Ann GIS. 2011;17(4):211-20. https://doi.org/10.1080/19475683.2011.625979 [ Links ]

Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281-6. https://doi.org/10.1007/s12098-020-03263-6 [ Links ]

Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. J Clin Invest. 2020;130(5):2202-5. https://doi.org/10.1172/JCI137647 [ Links ]

Downloads

Published

2021-06-23

Issue

Section

Original Articles

How to Cite

Araújo, L. J. T. de ., Gonzalez, L. L. ., Buss, L. F., Guerra, J. M., Gomez, D. S., Ferreira, C. S. da S. ., Cirqueira, C. S., Ghillardi, F., Witkin, S. S. ., & Sabino, E. C. (2021). Surveillance of hemorrhagic fever and/or neuroinvasive disease: challenges of diagnosis. Revista De Saúde Pública, 55, 41. https://doi.org/10.11606/s1518-8787.2021055003068

Funding data