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ABSTRACT: Analysis using Artificial Neural Networks has been described as an approach in the 
decision-making process that, although incipient, has been reported as presenting high potential 
for use in animal and plant breeding. In this study, we introduce the procedure of using the 
expanded data set for training the network. Wealso proposed using statistical parameters to 
estimate the breeding value of genotypes in simulated scenarios, in addition to the mean pheno-
typic value in a feed-forward back propagation multilayer perceptron network. After evaluating 
artificial neural network configurations, our results showed its superiority to estimates based 
on linear models, as well as its applicability in the genetic value prediction process. The results 
further indicated the good generalization performance of the neural network model in several 
additional validation experiments.
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Introduction

Genetic breeding is a science aimed at increasing 
the frequency of alleles and/or obtaining favorable geno-
typic combinations, in order to increase the production 
efficiency of an individual or population. The possibil-
ity of predicting the gain obtained through traditional 
selection methods is one of the major contributions to 
quantitative genetics and biometrics for breeding, since 
this enables more effective guidance for the breeding 
program so as to facilitate predicting the success of the 
selective scheme adopted (Cruz et al., 2012).

With regard to the statistical genetic methods for 
selection, some methodology categories are noteworthy, 
and have been widely used as follows: selection index 
(Verardi et al., 2014), the combined selection method 
(Ribeiro et al., 2013; Verardi et al., 2014) and the REML-
BLUP method (Ferreira et al., 2012). Nonetheless, a new 
paradigm can be employed in genetic breeding for selec-
tion purposes that does not involve stochastic modeling, 
but instead the principles of learning in a computational 
intelligence approach. 

In this context, approaches based on Artificial 
Neural Networks (ANN) have been described as an ad-
ditional tool in the decision making process in various 
fields of science with great potential in animal and plant 
genetics (Gianola et al., 2011; Nascimento et al., 2013; 
Ventura et al., 2012). Still, it is usual to train the ANN 
with a data subset, such as historical information of 
the genotypes, but this presents the disadvantage that 
they are not necessarily contemporaries of the experi-
ment under evaluation. An alternative is to use a virtual 
data set, provided by statistical techniques able to pre-
serve some features of the original experiment such as 
the mean, variances and covariances. This is called the 
expanded data set, and, as such, is a concept to be pre-
sented and discussed. 

We aimed to evaluate the ability of the ANN as an 
alternative method for statistical studies and the predic-

tion of breeding values, using simulated data and other 
relevant statistics as well as the mean phenotypic value. 
A simulation procedure was used to provide information 
on the true genetic values for comparison of the ANN 
technique which may, in practical situations, be suitably 
replaced by historical values. We investigated the per-
formance of several ANN architectures for prediction of 
breeding values, and introduced the process of expanded 
data sets to be used in the ANN training process for sub-
sequent prediction.

Materials and Methods

Data simulation
The neural networks were fitted to data in the 

training set, with connection strengths and biases modi-
fied iteratively. Oftentimes a data subset, such as the his-
torical information of genotypes, is used in such a pro-
cedure. However, some alternatives to this process have 
been presented. One of these is to use the validation data 
itself for the training process, so that the predictive abil-
ity of the network is gauged in parallel with this since 
they are similar in structure

Two scenarios of simulated characteristics were 
considered, with heritabilities of 40 and 70 %. The ex-
periments consisted of a randomized block design with 
100 genotypes and six blocks, assuming mean values 
equal to 100 and a coefficient of variation of 15 %. One 
auxiliary file was obtained through a process known as 
data expansion for the purpose of training the network, 
which preserves the structure of means and covariance 
matrix of the test file. This expansion process was car-
ried out as described below. 

The simulated values were considered a random 
variable Y ~ N (φ, Σ). The data was transformed into 
a random variable Z ~ N (φ, Ι) by means of the linear 
transformation Z = F'Y, where F was obtained by means 
of the spectral decomposition process of Σ, such that Σ–1 
= FF'. The amplification process consists of simulating 
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new values of Y, considering Y ~ N (φ, (F')–1Z). A file of 
amplified data, consisting of 5000 genotypes, was con-
sidered for training of the ANN.  

For simulating a data set, or replicating a known 
data structure or even the expansion of a data set based 
on the structure of the other, it is required to have a data 
set with known distribution, and in principle a mean 
equal to zero and variance equal to V. In order for such 
requirements to be obeyed, the usual procedure is to re-
sort to the Box Muller transform. For data simulation, 
the variables considered are:   
and ; in which RND is a ran-
dom number.

To ensure that the data set X in fact has zero cova-
riance, we recommend using the principal components 
technique. This technique is very useful for breeding 
programs because it permits the simplification of data 
sets to a limited set of components, which present the 
properties to retain as much of the originally available 
variation and remain mutually independent.

The random term Y~ N (φ, Σ) is that which we 
wish to transport into a random variable Z ~ N (φ, Ι). By 
means of the spectral decomposition process, we have 
Σ–1 = FF'–1. Thus, (Σ–1)–1 = (FF')–1 = (F')–1 F–1 = Σ. If Z = 
F'Y, then  E(Z) =E(F'Y) = F'E(Y) = F'φ = φ and V(Z) = 
F'V(Y)F = F'Σ F = F´[(F´)–1F–1] F= I. Considering that 
Z~N(φ, I). If Z = F'Y, then Y = (F')–1Z. Therefore, V(Y) 
= V((F')–1Z) = (F')–1V(Z)[(F)–1]' = (F')–1I F–1 = Σ .

The data expansion process was performed by 
means of the integration module in the computer ap-
plication GENES. The expansion process was performed 
using statistical methods which allowed the preserva-
tion of traits such as the mean, variance and covariance 
among information of the genotypes which were consid-
ered pairs of blocks from the original data.

Artificial neural network construction and evalua-
tion

Feed-forward back propagation multilayer per-
ceptron networks were created by the Matlab software 
using the integration module in the computer applica-
tion GENES. The training algorithm trainlm was used, 
along with network architecture consisting of three 
hidden layers, activation functions tansig or logsig, the 
number of neurons varying from one to seven and the 
maximum number of iterations (or epochs) equal to 
2000. All combinations of neuron numbers and activa-
tion functions in the hidden layers were verified. For 
training and validation of the ANN the desired outputs 
of the true genotype values were used and inputs pre-
sented the following information: x1: mean phenotypic 
value; x2: maximum value of each genotype in b blocks; 
x3: minimum value of each genotype in b blocks; x4: 
standard deviation of each genotype; x5: coefficient of 
variation for each genotype; x6: sum of ranks obtained 
in b blocks for each of the genotypes; x7: statistic val-
ue Pi, adapted from Lin and Binns (1988) for studies 
of adaptability and stability, given by , 

where Xij is the phenotypic value of the i-thgenotype in 
the j-th block; Mj is the maximum response observed in 
all genotypes in block j; and b us the number of blocks 
in the experiment; x8: discrete values, coded 1 to 6, es-
tablished from transformation of the mean phenotypic 
value considering its variation around the average with-
in the limits, lower and upper, considered as one, two 
or three standard deviations.

The architecture of the ANN is exemplified in Fig-
ure 1. To verify the performance of the ANN, replicates 
of the test file were considered as validation files, also 
obtained by means of data simulation generated with 
the same number of blocks and genotypes, preserving 
the means and structure of variance and covariance 
between each pair of blocks. Thus, 120 validation files 
were used, considered as replicates of the simulated ex-
periments. Considered as a criterion of optimization of 
the architecture of the ANN was the number of times 
in which reliability of the genotypic prediction by the 
network was higher than the mean phenotypic value. 

Reliability was given by the square of correlation 
between the response of the ANN and the true genotypic 
value compared with the square of the correlation be-
tween the mean phenotypic and true phenotypic values, 
which expresses the heritability of the trait, applied in 
all combinations of neurons, hidden layers and activa-
tion functions used. Thus, a direct comparison was made 
between the measure of network reliability and herita-
bility of the trait, which is the criterion conventionally 
used for predicting genetic value (maximum likelihood 
estimator – MLE), genetic gain, identification of selective 
units and choosing the selection strategies.

Results and Discussion

To demonstrate that data expansion did not alter 
the structure of the original data set, Table 1 presents 

Figure 1 – Architecture of the ANN. Inputs (x1) to (x8) in the Input layer 
are related to the statistics estimated from data and considered 
as inputs. Three hidden layers consisting of ni nodes (i = 1, 2, … , 
7) were considered, with the activation functions tansig or logsig. 
All combinations were explored. The ANN returns the predicted 
breeding value in the output layer.
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estimates of genetic parameters estimated for sets of 
simulated and amplified data sets, for heritability values 
of 40 and 70 % m = 100, CVe = 15 %. The expansion 
process was effective in replicating genetic information 
from the original dataset, since important features such 
as genotypic variance, coefficient of genetic variation 
and heritability of the trait were preserved.

In conventional statistical procedures used in the 
genetic gain prediction process, only mean genotypic 
values are considered assuming the existence of their 
correlation with the actual genetic values of the geno-
types, denoted by heritability of the trait. The mean is 
the main parameter needed to judge the superiority be-
tween genotypes, and in cases of low heritability, the 
selection process has lower reliability. However, a more 
detailed analysis may be performed by taking into con-
sideration not only the mean genotype, but also other 
relevant statistics and those of high practical aspect, al-
though these make the decision-making process more 
complex for the data analyst. Thus, two genotypes may 
have similar averages but different behaviors in terms 
of variation, ranking, maximum and minimum values 
and others. In the biometrics approach this additional 
information is neglected, but when utilizing the compu-
tational intelligence approach such information is indis-
pensable and make up relevant inputs to be considered 
in the training process of the ANN.

When considering the overall values of diverse 
statistics of each genotype obtained in a determined 
assay, it is observed that more reliable criteria are 
obtained for predicting genotypic superiority than be 
based solely on the mean value obtained for genotype 
assays whose genotypic variability and experimental 
precision can vary tremendously. To verify how the am-
plification process affected the structure of the expand-
ed experiment, a correlation analysis was performed 
between the statistics used in the input layer and the 
actual breeding values (Table 2). The correlations were 
equal, considering a t-test (p = 0.01). Moreover, al-
though the statistics used in the input layer appeared 
to be sufficient to predict the genetic value, additional 
studies are needed to quantify the influence of each in 
the prediction process, as well as evaluate the removal 
or inclusion of statistics.

The same evaluation was performed considering 
the simulated data file and the 120 replicated files used 
in the validation process, where a similar result was ob-
tained (data not show). The reasoning behind this step 
is that the researcher could question the veracity of the 
validation process, since sometimes this can be done 
with the training file or only part of it. The replicated 
files serve to emulate situations in which the ANN cre-
ated is used in contemporary prediction experiments of 
the genotypes evaluated.

Table 1 – Estimates of genetic parameters derived from the analysis of variance of the simulated files and expanded data, for heritability 
scenarios of 40 and 70 %. The data expansion process preserves the structure of the original data file.

Parameter estimates
h2 = 40 % h2 = 70 %

Simulated Expanded Simulated Expanded
µ 100.0000 100.0001 100.0000 99.9999

2
gσ 25.0000 25.0019 87.5000 87.5004
2
eσ 225.0000 225.0051 225.0000 225.0024

h2 40.0000 40.0013 70.0000 69.9998
2
indh 10.0000 10.0005 28.0000 27.9998

CVe (%) 15 15 15 15

CVg (%) 5 5 9 9

m – mean; 2
gσ – genetic variance; 2

eσ – residual variance; h2 – heritability at the level of the genotype mean; 2
indh – heritability at the level of the individual; CVe – 

coefficient of experimental variation; CVg – coefficient of genetic variation.

Table 2 – Correlation between the genetic values (GV) and statistic values estimated for the simulated and expanded data sets.

Square of the Correlation coefficient
h2 = 40 % h2 = 70 %

Simulated Expanded Simulated Expanded
GV × mean 0.4001** 0.4001** 0.7001** 0.7001**
GV × max 0.2928* 0.2253** 0.5512** 0.5253**
GV × min 0.2417* 0.2552** 0.5039** 0.4982**
GV × sd 0.0015ns 0.0000ns 0.0015ns 0.0022ns

GV × CVe 0.0110ns 0.0323ns 0.0570ns 0.0978**

GV × Pi 0.3623** 0.3923** 0.6696** 0.691**
GV × Rank 0.3848** 0.3772** 0.6871** 0.6752**
GV × class 0.4290** 0.3624** 0.6395** 0.641**
GV– Genetic value; max – Maximum value; Min – minimum value; sd – standard deviation; Rank – sum of ranks; class – classification; CVe – coefficient of experimental 
variation; Pi  – Lin and Bins’s statistic value; *Significance at 5 % level; **Significance at 1 % level; ns – Non-significant (p > 0.05).
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The usual procedure for determining the stop 
criterion of the ANN is the mean squared error of pre-
diction. Once the mean squared error of prediction 
reached an optimal level, training stopped and this 
led to the best estimates of the network coefficients 
(Haykin, 1998). This stop criterion is usually applied 
when the validation process of the ANN is obtained 
with one validation file, and has been used by several 
authors (Gianola et al., 2011; Timm et al., 2006; Ven-
tura et al., 2012). Because in this work 120 validation 
files were used, an alternative was adopted in which 
the stop criterion was the maximum number of hits 
obtained by the ANN considering the 120 replicates. 
Herein, we assessed the number of times in which the 
square of the correlation between the response of the 
ANN and the true genotypic value was higher than 
the square of the correlation between the mean phe-
notypic value and the phenotypic value considering 
all combinations of neurons, number of hidden lay-
ers and activation functions used. Thus, a compari-
son between the measure of network reliability and 
heritability of the trait was performed, which is the 
criterion used in the conventional method for predict-
ing gain, identifying the selective units and choosing 
the selection strategies.

Because improving selection efficiency is still a 
challenge shared by both breeders and biometricians, 
selection efficiency was evaluated by means of the 
ability of the ANN to discard a genotype that would 
eventually have a low genetic value and/or select a 
genotype that would have a high genetic value. Our 
results with the ANN are as good as or better than 
those obtained with traditional methodologies, based 

on least squares estimates. However, this comparison 
is unfair since the current paradigm of the selection 
process is based on an estimate of the mean genotype. 
For this reason, subsequent studies on real breeding 
populations are needed to prove the superiority of 
ANN predictions. In both cases, recovery of the genet-
ic value as performed by the ANN was more effective 
than that based on the mean genotypic value, estimat-
ed by maximum likelihood (MLE) in both simulated 
scenarios (Table 1). Estimates of prediction accuracies 
by the ANN, considering the 120 validation experi-
ments, were on average 1 % and 0.5 % higher consid-
ering the heritabilities of 40 and 70 %, respectively.

After prediction and ordering of the genetic val-
ues a variation in classification of the genotypes was 
perceived, which according to Ventura et al. (2012) 
may result in risks if the ANN is used for genetic 
evaluation of the trait. Table 3 presents estimates of 
coincidence in classification of the selected – intensi-
ties of 5 to 10 % – and rejected genotypes – inten-
sity of 10 and 20 % – based on real breeding values 
and genetic values obtained by the ANN and by MLE. 
In all cases, the ANN presented coincidences greater 
than those obtained by the selection process from lin-
ear models, indicating that the predictions allow for 
a better discrimination of genotypes based on their 
genetic value. Despite the low values, coincidences of 
selected genotypes reflect the difficulty in selecting 
genotypes for a quantitative trait, where this effect is 
more pronounced for lower heritability values. In con-
trast, coincidences greater than 69 % when comparing 
the genotypes selected by the ANN and the traditional 
method indicated that, for the most part, the same 
genotypes were selected by both approaches.

Additional procedures may be performed in or-
der to preserve other traits of the original data set, 
however, the traits emphasized and preserved for the 
purposes of this study appeared to be sufficient to test 
the network in its training phase, information that al-
lowed for accurate prediction of genetic values and 
classification of genotypes.

An important question in animal and plant 
breeding is how an estimated “breeding value”, i.e., 
an estimate of the total additive genetic effect of an 
individual, can be arrived at from an ANN output 
(Gianola et al., 2011). Gianola et al. (2011) suggested 
two approaches for modeling such effects. Such prop-
ositions, however, were made considering a model 
based on Bayesian neural networks using informa-
tion of molecular markers – genomic selection. Ap-
plied to our context, although of extreme importance 
to the breeder, it is necessary to understand and use 
information concerning the relationship between the 
individuals, a scenario which, although relevant, was 
not assessed herein. Therefore, it is of great impor-
tance that more studies be conducted to permit the 
development and application of ANN in the field of 
genetic breeding.

Table 3 – Mean percentage of coincidence for selected and rejected 
genotypes by means of prediction via the ANN and linear models, 
and accuracy of prediction.

Coincidence (%)
  h2 = 40 % h2 = 70 %

Selected (5 %)
MLE 30 51
ANN 34 52
MLE-ANN 70 92

Selected (10 %)
MLE 39 58
ANN 40 58
MLE-ANN 81 95

Rejected (20 %)
MLE 51 68
ANN 52 68
MLE-ANN 90 98

Rejected (10 %)
MLE 43 62
ANN 46 63
MLE-ANN 82 97

Accuracy
MLE 63 84
ANN 64 84

MLE – selection by maximum likelihood estimator compared with the true 
genetic value, calculated by the software GENES; ANN – Artificial Neural 
Network selection compared with the true genetic value; MLE-ANN – selection 
by maximum likelihood estimator compared with Artificial Neural Network 
selection.
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Conclusions

The ANN demonstrated superiority over the tradi-
tional method to discriminate genotypes based on their 
real genetic value. The biometrician possesses a range 
of relevant statistical information, but these are under-
used in the decision making process. The ANN adjusted 
model was able to take into account these additional sta-
tistics, with high practical content, in the genetic value 
prediction process. ANN has great potential for use as an 
alternative method to predict genetic values and as a tool 
for genotypic selection.
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