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ABSTRACT: Diameter at breast height (DBH) is the simplest, most common and most important 
tree dimension in forest inventory and is closely correlated with wood volume, height and bio-
mass. In this study, a number of linear and nonlinear models predicting diameter at breast height 
from stump diameter were developed and evaluated for Oriental beech (Fagus orientalis Lipsky) 
stands located in the forest region of Ayancık, in the northeast of Turkey. A set of 1,501 pairs of 
diameter at breast height-stump measurements, originating from 70 sample plots of even-aged 
Oriental beech stands, were used in this study. About 80 % of the otal data (1,160 trees in 55 
sample plots) was used to fit a number of linear and nonlinear model parameters; the remain-
ing 341 trees in 15 sample plots were randomly reserved for model validation and calibration 
response. The power model data set was found to produce the most satisfactory fits with the Ad-
justed Coefficient of Determination, R2

adj (0.990), Root Mean Square Error, RMSE (1.25), Akaike’s 
Information Criterion, AIC (3820.5), Schwarz’s Bayesian Information Criterion, BIC (3837.2), and 
Absolute Bias (1.25). The nonlinear mixed-effect modeling approach for power model with R2

adj    

(0.993), AIC (3598), BIC (3610.1), Absolute Bias (0.73) and RMSE (1.04) provided much better 
fitting and precise predictions for DBH from stump diameter than the conventional nonlinear 
fixed effect model structures for this model. The calibration response including tree DBH and 
stump diameter measurements of the four largest trees in a calibrated sample plot in calibration 
produced the highest Bias, -5.31 %, and RMSE, -6.30 %, the greatest reduction percentage. 
Keywords: DBH, prediction, random parameters, calibration

Introduction

Diameter at breast height (DBH) is the simplest, 
most common and most important tree dimension in for-
est inventory (Vanclay, 1994), since DBH is closely corre-
lated to other dendrometric tree attributes, i. e. the wood 
volume, height and biomass. The diameter cannot be mea-
sured at breast height in certain forest applications, such as 
illegal timber cut studies or unrecorded data from harvest-
ed stands. In these forest applications, the stump diameter, 
which is measured at 0.3 m, remains an indicator of tree 
size (Randall et. al., 1984; Corral-Rivas et. al., 2007). DBH 
is initially predicted from the stump diameters directly 
measured on the logged trees, and then the tree volume 
and other tree attributes can be estimated from the DBH 
predicted (Bylin, 1982; Wharton, 1984; Parresol, 1998). 

The relationship between the DBH and the stump 
diameter measured greatly depends on stand structures, 
where these stand conditions can be differentiated by site 
quality, stand density and stand ages. Accordingly, there 
is a nested structure (stand and plot), which can cause 
a lack of independence among diameter measurements 
with highly correlated data obtained from different sam-
ple plots (West et. al., 1984; Gregoire, 1987). 

In view of the disadvantages of the traditional mod-
eling technique with the violation of assumptions in the 
regression estimation to fit the correlated hierarchical 
data structure (Searle et. al., 1992; Gregoire, 1987; Judge 
et. al., 1988), the linear and nonlinear mixed effect fitting 
technique have generally been accepted as the alternative 

modeling approach to justify these serial correlation prob-
lems among trees (Lappi and Bailey, 1988; Gregoire and 
Schabenberger, 1996; Hall and Clutter, 2004; Temesgen 
et. al., 2008). However, there are few studies that include 
the use of the linear and nonlinear mixed effect fitting 
procedure to fit the relationships between DBH and the 
stump diameter. 

Despite the importance of predicting DBH in for-
estry applications, mixed effect modeling for the rela-
tionship between DBH and stump diameter in forestal 
ecosystems has been poorly understood. Thus, the ob-
jective of the authors in the present study is to (i) de-
velop a number of linear and nonlinear mixed effect 
models for predicting DBH from stump diameter for 
Oriental beech (Fagus orientalis Lipsky) stands located in 
the forest region of Ayancık, northeastern of Turkey, and 
(ii) evaluate a number of calibration strategies including 
different numbers of subsample trees for specifying the 
sampling unit-specific effect incorporated into the DBH 
predictions.

Materials and Methods

Data Description
This study was performed on Oriental beech 

stands located in the Göldağ planning unit, Sinop, in the 
northeast of Turkey (647000-650000 E. 4629000-4632000 
N. UTM ED 50 datum Zone 36 N). The altitudes of the 
study area ranged from 500 m to 970 m, with an average 
of 775 m. The study area was characterized geomorpho-
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logically as being steep terrain land with moderate and 
steep slopes ranging from 10 % to 60 %, with an average 
of 26 %. 

In the stands studied, 70 sample plots were ran-
domly selected so as to guarantee that various stand con-
ditions including variability in site quality, age and stand 
density were found in the Oriental beech stands. The 
Oriental beech stands sampled were naturally regener-
ated and uniformly stocked stands (60-90 % tree layer 
cover), without any evidence of historical damage such 
as fire or storm. In the Oriental beech stands studied, 
the Regional Forest Directory used moderate thinning 
regime and patch cutting procedures to guarantee the 
stand presence of the Oriental beech trees. 

The size of circular plots ranged from 0.04 to 0.08 
ha, which were dependent on the stand crown closure 
in order to achieve a minimum of 30-40 trees in sample 
plots. In each sample plot, the diameter at breast height 
(DBH) and stump diameter at 0.3 m stump height were 
measured to within a precision limit of 0.1 cm with cal-
ipers for every living tree with a DBH greater than 4 
cm. Thus, in total 1501 DBH/stump diameter pairs were 
used to develop the statistical models. Of special impor-
tance was the  random splitting into two data sets as fol-
lows: the model fitting data and the validation data set. 

About 80 % of total data (1,160 trees in 55 sample 
plots) was used to develop DBH-stump diameter models. 
The remaining 341 trees in 15 sample plots (20 % of total 
data) were randomly reserved to evaluate calibration re-
sponses of the nonlinear mixed effect model which was 
selected as the best predictive model. The mean, stan-
dard deviations, minimum, maximum for model fitting 
and validation data set are presented in Table 1. 

Analyzed Models 
In this study, the allometric models used to de-

velop statistical models for predicting DBH from stump 
diameter were both linear (simple, M1, and quadratic, 
M2, model) and nonlinear models (power, M3 and com-

pound, M4, model). Model structures analyzed in this 
study are shown in Table 2. 

The linear regression models, M1-M2, were fitted 
by ordinary least squares using PROC REG procedure 
and the nonlinear models, M3-M4, were fitted by the 
non-linear regression analysis with the Marquadt algo-
rithm using the PROC NLIN procedure of the SAS/ETS 
V9 software (SAS Institute Inc, 2004).

Model Selection and Evaluation 
The linear and nonlinear models predicting DBH 

from stump diameter were evaluated as to their accuracy 
and precision by using the following five statistical criteria: 
Akaike’s Information Criterion (AIC), Schwarz’s Bayesian 
Information Criterion (BIC), the Root Mean Square Error 
(RMSE), the Absolute Bias, and the Adjusted Coefficient of 
Determination (R2

adj) using the following equations:

AIC = –2logL + 2q 				    (1)

BIC = 2log(L) + qlog(N)	  (2)

	  	           (3)

	  (4)

Adjusted coefficient of determination (R2
adj)

 	  (5)

where: L is the maximum value of the log likelihood 
function, q is the number of variance components, N 

Table 1 − Summary statistics for sample trees and sample plots originated from fitting, validation and all data.
Variables Min. Mean Max. Std. Deviation

Diameter at Breast Height 
Fitting 4.50 19.44 68.00 11.96

Validation 5.70 23.27 61.40 13.27
All 4.50 20.31 68.00 12.37

Stump Diameter
Fitting 5.10 22.33 77.00 13.45

Validation 6.40 26.59 68.80 15.13
All 5.10 23.29 77.00 13.96

Site Index
Fitting 11.8 24.5 32.8 5.2

Validation 10.9 20.6 33.7 4.8
All 10.9 22.6 33.7 4.9

Fitting 32 65 124 15.8
Stand Age Validation 28 58 114 12.8

All 28 65 112 14.9
Fitting 0.25 0.44 1.15 0.10

Density Index Validation 0.20 0.50 1.22 0.12
All 0.20 0.48 1.22 0.13
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is the number of sample plots, ni is the number of trees 
in the ith plot, dbhij and d  are the jth observed and 
estimated DBH in ith sample plot, respectively, and   
is the mean DBH in the ith sample plot. Smaller values 
of AIC, BIC, RMSE and the Absolute Bias indicate bet-
ter model fit results. Higher values of R2

adj (the adjusted 
coefficient of determination) with 1.0 as the ideal value 
give the predictable proportion of the variance of the 
dependent variable, tree diameter at breast height, and 
from the independent variable, a stump diameter.

The linear and nonlinear mixed effect modeling 
The linear and nonlinear fixed effect models struc-

tures (Table 2) are based on the assumption that εij is 
distributed with variance σ2 as ε ~ N(0 , σ2 ) In ordinary 
least squares and nonlinear least squares regression 
techniques, it is assumed that the parameters, b0,b1  and 
b2, are fixed and stable across sampling units (i.e. site, 
stand and plots) within all populations. These models, 
including only fixed effects, provide the predictions of 
DBH for the mean population, which is common to 
all populations. However, the relationship between the 
DBH and the stump diameter varies from one stand to 
the next, since the stand conditions and structures are 
plot-specific, i. e. in terms of stand density, site and soil 
attributes, with significant variability. 

The hierarchical sample structure resulted in the 
highly correlated observations for DBH and stump di-
ameter data, which were measured in the same sampled 
plots. To fix this problem, the prediction systems based 
on the mixed effect modeling procedure including simul-
taneously both fixed and random parameters in model 
structure, were used to fit the DBH – stump diameter 
model selected as the best predictive model.

In this study, the predictions for variance com-
ponents and fixed parameters of the model selected as 
best predictive were obtained by PROC NLMIXED and 
PROC MIXED procedures of the SAS/ETS V9 software 
(SAS Institute Inc, 2004). In nonlinear mixed effect re-
gression, SAS PROC NLMIXED uses the maximum 
likelihood estimation (ML) procedure. The adaptive 
Gaussian quadrature was used to solve numerically the 
integral over the random effects in SAS NLMIXED pro-

cedure, of which the detailed information was explained 
by Pinheiro and Bates (2000). 

Calibration Response Evaluation 
To calibrate the nonlinear mixed DBH models for 

specific sample plots, random parameters, ui and vi, for 
this plot were predicted by the best linear unbiased pre-
dictors, BLUPs (Vonesh and Chinchilli, 1997);

	  (6)

where:  represents the estimated random parameters 
for the localized plot,  is the 2x2 variance-covariance 
matrix for the among-plot variability (common for all 
plots),  is the estimated kxk variance-covariance ma-
trix for the within-plot variability,  is the kxq matrix 
of partial derivatives of the function with respect to ran-
dom parameters , êij is the residual value, which was 
calculated as the difference between the observed DBH 
value and the one predicted by using the DBH model 
including merely the fixed parameters in subsamples 
(Gregoire, 1987; Yang et. al., 2009). In particular, the 
comprehensive formula and explanations for the BLUP 
equation can be obtained from the studies of Calama 
and Montero (2004) and Castedo Dorado et. al. (2006).

When the calibration procedure for the mixed ef-
fect modeling approach was applied to predictions, the 
calibration responses of the DBH model were evaluated 
by using a number of sampling scenarios, which were 
based on subsample tree selections from the validation 
data set, 341 trees for Oriental beech in 15 sample plots 
- about 20% of the total data. 

The estimation of random parameters, , was ar-
rived at by using different sampling scenarios to obtain 
the DBH predictions. These sampling alternatives for 
calibration responses included the selection of previous 
trees based on certain stand size categories, i. e. largest, 
smallest and medium trees in the sample plots (Calama 
and Montero, 2004; Yang et. al., 2009). The sampling 
scenarios evaluated were as follows:

 
1) DBH and stump diameter of 3-5 randomly selected 
trees in the plot.

Table 2 − Equation structure of linear and nonlinear models analyzed in this study.

Model Name Linear and Nonlinear Model Structure (Fixed effects model)

Linear Models

Model 1 Simple dbh = b0 + b1dsd + eij

Model 2 Quadratic dbh = b0 + b1dsd + b2d
2  
sd  + eij + ej

Nonlinear Models

Model 3 Power dbh = b0 + b0dsd
b1 + eij

Model 4 Compound dbh = b0 + b0(b1
dsd) + eij

dbh: diameter at breast height outside bark (1.3 m above ground, cm); dsd: stump diameter (0.3 m above ground cm). 
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and the best predictive results were arrived at by the non-
linear mixed effect model structure when  two random 
parameters, b0 and b1  were included. Thus, the general 
expression of the nonlinear mixed effect M3 including b0 
and b1 as random parameters is the following:

dbhij = (b0 + ui)dsdij
(b1+vi)  + eij   		                (7)

with  ~N(0, D) eij~N[0, Ri]		    	 (8)

where: b0 and b1  are fixed parameters, common to each 
sample plots, and ui and vi are the random parameters, 
specific to sample plots. 

The parameter estimates and variance component 
estimates using the goodness-of-fit statistics, R2

adj, AIC, 
BIC, Absolute bias and RMSE, in the nonlinear mixed 
effect M3 model are presented in Table 5. The param-
eters of estimates with variance components of this M3 
nonlinear mixed effect model were significant at a prob-
ability level of 0.05 (p < 0.05). 

Figure 1 shows the plot of the standardized re-
siduals versus the predicted DBH from the M3 nonlin-
ear mixed effect model. The residuals of this M3 model 
indicate the random outlines of a residual around zero 
and no obvious significant trend. There is no serious 
breakdown of homoscedasticity that is the assumption 
of constant variance. Therefore, any weighting factor 
including alternative transformations for the DBH mod-
el developed is not required to remove the heterosce-
dastic variance error; since the nonlinear mixed effect 
M3 model provided the assumption of homoscedastic-
ity with homogeneous prediction variances. Similarly, 
the results of the F-test (Figure 2) with the confidence 
intervals for the model’s parameters showed that there 
was no reason to reject the null-hypothesis of intercept 
= 0 and slope = 1, which means that there were no 
systematic over nor underestimates in the DBH non-
linear mixed effect M3 model (F value = 104352.3, p 
< 0.01). These desirable characteristic of the residual 
pattern underlined the statistical acceptability for these 
models as statistical regression models with no bias 
prediction results.

2) DBH and stump diameter of 3-5 largest trees in the 
plot. 

3) DBH and stump diameter of 3-5 medium-size trees, 
considered as closest to the quadratic mean diameter at 
breast height in the plot. 

4) DBH and stump diameter of 3-5 smallest trees in the 
plot. 

As calibration responses, these sampling scenarios, 
including the selection of the previously subsampled trees, 
were evaluated by a number of statistical criteria and previ-
ously defined statistics: ABSOLUTE BIAS and RMSE.

Results

Model selection and nonlinear mixed effect modeling
The parameter estimates with standard error, t-

value and probability levels for the linear and nonlinear 
models that included only the fixed parameters in the 
model structure are presented in Table 3. All the param-
eters of estimates for these models were significant (p < 
0.05). Additionally, Table 3 shows the values of goodness-
of-fit statistics, i. e. AIC, BIC, RMSE, Absolute Bias and 
R2

adj, for these linear and nonlinear models studied. These 
goodness-of-fit statistics proposed that the M3 model, the 
power model, has better predictive ability in terms of R2

adj 

(0.990), RMSE (1.25 cm), AIC (3820.5), BIC (3837.2), Ab-
solute bias (1.25) than other models. Therefore, the base 
model for M3 was chosen as the best DBH-stump diam-
eter relationship model and used for the nonlinear mixed 
effect modeling analysis that simultaneously included 
both fixed and random parameters in the model structure.

When the mixed effect modeling approach is adopt-
ed, the important issue is to determine if the parameter is 
to be fixed or random in the model structure. In this eval-
uation, the AIC and BIC statistics of the M3, including 
any random parameter alternatives, i.e. none whatsoever 
in this case, (all parameters being fixed-effect parameters), 
one (b0 or b1 random parameter) and two random param-
eters (both b0 and b1 random parameters), are presented in 
Table 4. These alternatives result in, the greatest reduc-
tions in AIC and BIC values, namely, 6.17 % and 5.92 %; 

Table 3 − Parameter estimations with their standard errors and probability levels for linear and nonlinear models studied.

Model  Estimate Std. Error t value p > t R2
adj AIC BIC Absolute 

Bias
Root Mean Square 

Error RMSE

Model 1
b0 -0.3021 0.0712 -4.24 < 0.0001

0.989 3828.8 3848.1 0.88 1.25b1 0.8842 0.0027 323.54 < 0.0001

Model 2
b0 -0.3647 0.1284 -2.84 < 0.005

0.989 3822.1 3840.7 0.89 1.26b1 0.890 0.0102 86.90 < 0.0001
b2 -0.0001 0.00017 -0.59 < 0.005

Model 3
b0 0.8345 0.01028 81.2 < 0.0001

0.990 3820.5 3837.2 0.88 1.25b1 1.013 0.00344 294.41 < 0.0001

Model 4
b0 4.222 0.01071 394.34 < 0.0001

0.831 5952.5 5967.7 2.97 4.92
b1 -25.616 0.3085 -83.05 < 0.0001
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 Calibration Response Evaluation
Table 6 presents the absolute bias, RMSE and their 

% reduction values in these values as compared with 
predictions including only the fixed effect parameters 
of the M3 model for different sub-sample alternatives. 
The alternative based on the fixed-effect model structure 
without any random parameters resulted in the highest 
values of Absolute Bias and RMSE (0.95 and 1.30). How-
ever, the best predictive results with the lowest Absolute 
Bias and RMSE, 0.89922 cm and 1.22123 cm respective-
ly, with the highest reduction percentage, - 5.31 % and - 
6.30 %, were achieved by the sampling alternative based 
on the selection of the four largest trees in the calibrated 
sample plot. 

The second-best predictive performance with - 
5.22 % and - 5.77 % reduction values for Absolute Bias 
and RMSE were obtained with the sampling alterna-
tive based on the three largest subsampled trees in the 
plots. The sampling alternatives based on the selection 
of randomly selected sub-sample trees produced -1.29 
% to -2.70 % reduction values in absolute bias and -2.72 
% to -5.22 % reduction values in RMSE as moderately 
predictive results. The predictive ability of sampling al-
ternatives based on the selection of the medium and the 
smallest subsample trees produced the worst predictive 

Table 4 − AIC and BIC values for M3 model structures including different random parameter alternatives for mixed modeling approach.

Random Parameters
Akaike’s Information 

Criterion 
(smaller is better)

Akaike’s Information 
Criterion AIC 
Reduction %

Schwarz’s Bayesian Information 
Criterion

(smaller is better)

Schwarz’s Bayesian 
Information Criterion 

Reduction %

None (all parameters as fixed effects) 3820 - 3837.2 -
u 3700 3.14 3742 2.48
v 3650 4.45 3688 3.89
u and v 3598 6.17 3610.1 5.92

Table 5 − Fixed parameter and variance component prediction with their standard errors and probability levels for M3 nonlinear mixed effect 
model.

Estimate Std. Error t value p > t
Fixed parameters
b0 0.8485 0.01343 63.18 < 0.0001
b1 1.0089 0.00453 222.7 < 0.0001
variance components

0.00461 0.000134 34.51 < 0.0001
0.00051 0.0000057 89.20 < 0.0001
-0.00144 0.000017 -82.6 < 0.0001
1.1372 0.04921 23.11 < 0.0001

Goodness-of-fit statistics
R2

adj 0.993 Absolute Bias 0.73
Akaike’s Information Criterion 3598.0 Root Mean Square Error 1.04
Schwarz’s Bayesian Information Criterion 3610.1

Figure 1 − Plot of studentized residuals against predicted values of 
diameter at breast height for Model 3.

Figure 2 − Predicted dbh values against observed dbh for Model 3 
with the confidence intervals for parameter shown in parenthesis.

s2
u

sv
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results, which ranged from – 0.34 % to – 0.82 % for 
Absolute Bias and from - 0.79 % to – 1.58 % for RMSE 
(Table 6).

Discussion

In this study, certain linear and nonlinear regres-
sion models, M1-M4, were developed to predict Diameter 
at Breast Height from the stump diameter. Among these 
four models, the nonlinear power model that accounted 
for 99 % of the total variance in DBH-stump diameter re-
lationships in the stands studied showed the best predic-
tive ability based on the statistics fit. In addition, the non-
linear mixed effect modeling procedure was used and the 
power model was fitted by including simultaneously both 
fixed and random effects on the DBH model structure. 

The best predictive and fitting performance with the 
nonlinear mixed effect model structure of power model 
(M3) could be obtained by using the inclusion of random 
effects to account for the hierarchical and nested variance 
structure as distinct from other traditional regression fit-
ting techniques. The nonlinear mixed effect model exhib-
ited the homogeneous error variance for DBH predictions. 
It may be the inclusion of random parameters in models 
using the nonlinear mixed effect and data structure which 
could be obtained from the stands studied. However, West-
fall (2010) stated the heteroscedastic errors for the DBH-
stump diameter relations, used different model structure 
and data origin to relate DBH-stump diameter. 

We used the nonlinear mixed effect modeling 
procedure with the adaptive Gaussian quadrature to es-
timate parameters of nonlinear mixed models. Yang and 
Huang (2011) compared linearization through a first-
order Taylor series expansion around random effects 
using the first-order (FO) approximation of Sheiner and 
Beal (1980) and the first-order conditional expectation 
(FOCE) approximation of Lindstrom and Bates (1990) to 

estimate dominant height-age relationships. These pre-
diction techniques, FO and FOCE, for the parameters of 
the model may be a better choice especially, since it may 
be that more advanced and complicated modeling tech-
nique accounting for DBH variations may be required 
for effective and more predictive DBH estimations. 

The calibration response based on the selection of 
the four largest trees in the sample plots resulted in less 
biased predictions, the highest reduction percentage for 
bias and RMSE, about 5-6 %. The second best predictive 
performance for calibration response was obtained from 
the sampling scheme with the largest three subsample 
trees in plots. When the nonlinear mixed M2 model 
was calibrated in un-sampled stands located in differ-
ent forest areas, the use of DBH and stump diameter of 
subsampled trees selected from the largest three or four 
trees in plots differed from other sampling alternatives 
for selecting subsampling trees. 

Some attributes that have a fixed effect on sample 
plots did not give much more additional information and 
could not achieve successful predictive performance re-
sults in calibration response (Castedo-Dorado et al., 
2006). In the present study, the DBH and stump diam-
eter of medium-size and the smallest subsampled trees 
showed the fixed effect between plots in forest areas and 
species studied. Thus, the prediction results for these 
tree characteristics were found to be much worse than 
the ones achieved by other tree attributes, e.g. DBH and 
stump diameter of the largest sub-sample trees having a 
mixed effect on the DBH-stump modeling. 

The similar calibration response results for the non-
linear mixed effect models were obtained by a number of 
studies, e.g. Krumland and Wensel (1988), and Calama and 
Montero (2004). However other studies, e.g. Castedo-Dora-
do et. al. (2006), Crecente-Campo et al. (2010) and Paulo et. 
al. (2011), found that the best predictive consequences for 
calibration response were acquired by selecting the small-

Table 6 − Comparisons of nonlinear mixed effect on M3 model’s predictive performance for different sub-sample size alternatives in calibration 
response.

The sampling Alternatives Absolute 
Bias

% Abs. Bias 
Reduction

Root Mean Square 
Error

% Root Mean Square 
Error Reduction

Fixed Effect Model 0.94961 ------- 1.30338 -------
Mixed Effect Model with no calibration 0.94327 -0.67 1.28594 -1.34
Mixed Effect Model with calibration based on three randomly selected trees in plot 0.93732 -1.29 1.26412 -3.01
Mixed Effect Model with calibration based on four randomly selected trees in plot 0.92395 -2.70 1.26788 -2.72
Mixed Effect Model with calibration based on five randomly selected trees in plot 0.92883 -2.19 1.23529 -5.22
Mixed Effect Model with calibration based on three largest tree in sample plot 0.90037 -5.19 1.22812 -5.77
Mixed Effect Model with calibration based on four largest trees in sample plot 0.89922 -5.31 1.22123 -6.30
Mixed Effect Model with calibration based on five largest trees in sample plot 0.90004 -5.22 1.28272 -1.58
Mixed Effect Model with calibration based on three medium-size trees in sample plot 0.94181 -0.82 1.29314 -0.79
Mixed Effect Model with calibration based on four medium-size trees in sample plot 0.94638 -0.34 1.28908 -1.10
Mixed Effect Model with calibration based on five medium-size trees in sample plot 0.94450 -0.54 1.28272 -1.58
Mixed Effect Model with calibration based on three smallest trees in sample plot 0.94181 -0.82 1.29314 -0.79
Mixed Effect Model with calibration based on four smallest trees in sample plot 0.94638 -0.34 1.28908 -1.10
Mixed Effect Model with calibration based on five smallest trees in sample plot 0.94450 -0.54 1.28594 -1.34
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est trees in the sample plots. The calibration responses for 
any mixed-effect model depend on the model structures 
and the characteristics of species growing in different re-
gional and under local forest conditions. Thus, some sam-
pling scenarios with different subsample selections, e.g. the 
largest or the smallest tree, can present more additive in-
formation for calibration than other sampling alternatives. 

The decisive issues and crucial evaluation process 
for mixed-effect models are to judge some sampling al-
ternatives, including the different selections of subsam-
ple trees, so as to obtain the best predictive performance 
with these models. In this evaluation of the mixed-effect 
model, the most important issue is to decide on was the 
number of trees, e.g. three or four trees or other tree 
quantities, that should be chosen for subsampling. 

Conclusions

The model developed for the DBH and stump di-
ameter relationships are limited to different applications 
for stump height, because stump diameters were mea-
sured at a stump height of 0.3 m. The nonlinear mixed 
effect modeling procedure improved predictive results 
in DBH-stump diameter relationships as compared with 
fixed effect models. Also, the local calibration including 
the prediction of random parameters that used the sub-
sampled tree measurements obtained from any sample 
plots, can be recommended for obtaining more effective 
and predictive results. 
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