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ABSTRACT: Studies of soil porosity through image analysis are important to an understanding of 
how the soil functions. However, the lack of a simplified methodology for the quantification of the 
shape, number, and size of soil pores has limited the use of information extracted from images. 
The present work proposes a software program for the quantification and characterization of 
soil porosity from data derived from 2-D images. The user-friendly software was developed in 
C++ and allows for the classification of pores in terms of size, shape, and combinations of size 
and shape. Using raw data generated by image analysis systems, the software calculates the 
following parameters for the characterization of soil porosity: total area of pore (Tap), number 
of pores, pore shape, pore shape and pore area, and pore shape and equivalent pore diameter 
(EqDiam). In this paper, the input file with the raw soil porosity data was generated using the 
Noesis Visilog 5.4 image analysis system; however other image analysis programs can be used, 
in which case, the input file requires a standard format to permit processing by this software. 
The software also shows the descriptive statistics (mean, standard deviation, variance, and the 
coefficient of variation) of the parameters considering the total number of images evaluated. The 
results show that the software is a complementary tool to any analysis of soil porosity, allowing 
for a precise and quick analysis.
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Introduction

Soil micromorphology is becoming widely used 
for the characterization of soil porosity with the aid of 
digital techniques for the processing and analyzing of 
images. Analysis in two dimensions (2-D) are frequently 
employed to investigate soil porosity, due to their low 
cost and easy access (Pires et al., 2008, 2009; Passoni et 
al., 2014).

The analysis of soil images has been considered 
an efficient technique for evaluating soil structure and 
soil porosity by using soil thin sections and blocks of 
soil (Deeks et al., 1999; Cooper et al., 2010). The direct 
observation of soil porosity is important to an under-
standing of how management practices affect the physi-
cal quality of soil (Clemente et al., 2005; Bagheri et al., 
2012; Rasa et al., 2012). 

The main applications of soil micromorphology 
and soil image analysis can be found in studies of soil 
structure changes due to different processes such as use, 
cultivation and management systems (Miedema, 1997). 
In the literature, there are studies addressing soil com-
paction (Murphy et al., 1977a; Curmi et al., 1994; Cle-
mente et al., 2005; Bagheri et al., 2012), cultivation and 
management systems (Pagliai et al.,1983; Pagliai et al., 
1984; Pagliai et al., 2003; Soares et al., 2005; Juhász et 
al., 2007; Rasa et al., 2012), effect of wetting and dry-
ing cycles on the structure of tropical soil (Pires et al., 
2008), soil structure regeneration with and without self-
mulching (Pillai-McGarry and Collis-George, 1990a and 

1990b), application of fertilizers, manures, and organic 
materials (Pulleman et al., 2005; Zanuzzi et al., 2009), 
surface crusting (Castilho et al., 2015) and soil fauna 
activity (Castellanos-Navarrete et al., 2012; Piron et al., 
2012). 

Image processing software allows for the construc-
tion of custom applications to extract specific data from 
an image. In the case of soil images, the target may be 
quantitative data extracted from the pore system. The 
Noesis Visilog software was used for evaluating the pore 
system of weathered soils when they are subjected to 
wetting and drying cycles (Pires et al., 2009). The open-
source software ImageJ was successfully used to quan-
tify the total porosity (%), total number of pores and 
pore size distribution for two Brazilian soils by using soil 
samples impregnated with resin (Passoni et al., 2014). 

The lack of a simple methodology for the quick 
quantification of the shape, number, and size distribu-
tion of the pores has hampered the use of image-based 
micromorphological studies of soils. The aim of this 
study is to present and describe a software program that 
provides a quick and easy analysis of soil porosity from 
data extracted from 2-D images. 

Materials and Methods

A software program, named SPIA (Soil Pore 
Image Analysis), was developed to classify soil porosity 
according to size, shape or the combination of size 
and shape from raw data obtained by image analysis 

image analysis

Note
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processes using the Noesis Visilog 5.4. software which 
was written in C++, using orientation to objects and 
the Qt 5 framework. This structure allows for the 
development of software that can be applied to different 
operational machines/systems (multi-platforms) with 
little or no alteration in the source code. 

Input data to SPIA
The input data for SPIA were obtained from soil 

blocks which were first dried and then impregnated with 
a solution containing polyester resin, styrene monomer, 
catalyst, and a fluorescent pigment, following the pro-
cedures described by Murphy (1986) and Castro et al. 
(2003). The soil blocks (undisturbed samples) were col-
lected using cardboard boxes with dimensions of 0.07 m 
× 0.12 m × 0.06 m.

For the quantification of porosity, soil blocks were 
illuminated with ultraviolet light and photographed 
with a digital camera featuring a charge-coupled device 
(CCD) image sensor, coupled to a binocular microscope. 
A large number of photomicrographs of 12 mm × 15 mm 
(180 mm2) were randomly obtained from each soil block. 
We digitalized these images with a spatial resolution of 
1024 × 768 pixels, each pixel corresponding to an area of 
156.25 µm2, a spectral resolution of 256 shades of grey, 
using a 10× optical lens. Each image was subjected to 
void segmentation by grayscale thresholding. Subse-
quently, the images were converted to binary form and 
labeled by the image analysis program, Noesis Visilog 
5.4. The labeling operation allowed for recognition and 
individualization of voids in each binary image using a 
connection factor. 

Next, the Noesis Visilog 5.4 quantified both the 
basic and derived variables. The first refers to the image 
void space (assumed to be pores) and includes the area, 
number of objects, and for each object, its perimeter, 
horizontal and vertical Feret diameters, as well as its 
horizontal and vertical projections. The derived variables 
are a combination of two or more basic variables which 
allow for a complete characterization of the soil pores 
(Murphy et al., 1977a). These variables are then used to 
classify the void spaces, according to a combination of 
shapes and sizes. SPIA was developed to optimize this 
procedure. Alternative image analysis software can be 
used to generate the input file although SPIA requires a 

standard format for the input file. Figure 1 presents an 
example with five observations of the variables required 
and the sequence that needs to be followed to prepare 
the input file for SPIA. 

Image analysis is only able to provide quantifi-
cation of macro and mesopores. Smaller pores are not 
quantified because their sizes are beyond the resolving 
power of the optical microscope (Bullock et al., 1985). 
According to Bullock et al. (1985), mesopores have di-
ameters between 50 and 500 µm while the diameters of 
macropores fall in the range of 500 to 5000 µm. Thus, in 
the text the total area of pores are related to pore diam-
eters between 50 and 5000 µm. 

The input files were generated using Noesis Visi-
log. However, other software can be used provided the 
data file is in a standard format.

Data calculated by SPIA
SPIA classifies the pore space based on a combina-

tion of their shape and size with the equivalent diameter 
(EqDiam) classes. The output of SPIA comprises the total 
number of pores and the percentage of the total area of 
pores occupied for each combination case. The software 
also presents descriptive statistics (mean, 1st quartile, 
median, 3rd quartile, minimum and maximum values, 
standard deviation, variance and the coefficient of varia-
tion) of the output parameters for the total number of 
images evaluated. 

The shapes are defined according to Cooper et al. 
(2010). The authors classified the pores into three groups: 
rounded (channels and isolated vughs), elongated (pla-
nar voids) and complex (packing voids and chambers). 

Two indices are used to establish the void shape. 
The first index, I1, is used to distinguish rounded from 
elongated voids (Equation 1). A value of 1 for I1 defines 
a perfectly circular pore, values greater than 1 indicate 
that the shape of the pore deviates from the circular 
(Bouma et al., 1977).

I
P
A1 4

=
π

	  (1)

P, perimeter of pore area (μm); A, pore area (μm2).
The second index, I2 (Equation 2), used in conjunc-

tion with I1, allows for greater accuracy in the assign-
ment of a pore to a specific shape group.

Figure 1 − Illustration of the standard format required as input file for SPIA. Index = object (pore) identification; FirstPointX and FirstPointY = 
Object (pore) coordinates in the image; Area μm2 = pore area in μm2; Shape_AP = pore shape index I1 (refer to Equation 1 in this paper); CP 
= Crofton Perimeter; EqDiam = Equivalent Diameter; FD = Feret Diameter at a given angle (numbers following FD represent the angles of FD 
measurement); Intercept = number of intercepts measured on a pore at a given angle (numbers following Intercept represent the angles of 
measurement); Orientation = angle of orientation of the pore.
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where NI represents number of intercepts of an object 
in the direction i (i = 0°, 45°, 90°, and 135°); DF, Feret 
diameter of an object in the direction j (j = 0° and 90°); 
m, number of i directionsand n, number of j directions.

Table 1 presents the rule used for the classification 
of the pores according to shape, using the I1 and I2 indi-
ces. Pores with I1 ≤ 5 are classified as rounded. For pores 
where 5 < I1 ≤ 25, an inspection of the second index I2 is 
required to determine whether the pore should be clas-
sified as elongated or complex. All pores with I1 > 25 are 
classified as complex, regardless of the value of I2.

The pores of each shape group were divided into 
three different size classes (Table 2). 

Next, SPIA calculates the number of pores in 
each class and the percentage of the total area of pores 
corresponding to these pore classes (Ptsize) (Equation 
3). The total area of pores (Tap) was calculated as the 
ratio of the area of all pores to the total area of the 
image (Hallaire and Cointepas, 1993). The Tap value is 
a function of the resolution of the image and the area 
corresponding to a single pixel. 

Pt
ASS

AT
Tapsize = ×∑			    (3)

where ASS represents areas of the pores of a specified 
shape and size (μm2); AT, total area (μm2) and Tap, total 
area of pores (%).

SPIA then classifies pores according to shape 
types and equivalent diameter (EqDiam). Noesis Visi-
log returns equivalent diameter values, which are used 
for rounded and complex shaped pores. In the case of 
elongated pores, the equivalent diameter (WidthElong) 
is calculated by Equation 4. We defined eight equivalent 
diameter classes: 20-50 μm, 50-100 μm, 100-200 μm, 
200-300 μm, 300-400 μm, 400-500 μm, 500-1000 μm, 

Table 1 − Classification of soil pores according to shape types.

Pore Shape Type
Shape indexes

I1 I2
Rounded (R) I1 ≤ 5
Elongated (Elong) 5 < I1 ≤ 25 I2 ≤ 2.2

Complex (Comp) 5 <I1 ≤ 25 OR I1 > 25 I2 > 2.2

Table 2 − Classification of soil pores according to shape types and size classes.

Size Class Area (pixel) Area (mm2)
Class by size and shape

Rounded Elongated Complex
Small (s) 1 to 100 0.000156 - 0.0156 Rs Elongs Comps

Medium (m) 100 to 1000 0.0156 - 0.156 Rm Elongm Compm

Large (l) >1000 >0.156 Rl Elongl Compl

>1000 μm. The shape types are the same as those pre-
sented in Table 1. 

WidthElong = 0.25 × [CP – (CP2 – 16 × Area)0.5] 	  (4)

where CP represents Crofton perimeter (calculated by 
the image analysis software). The Crofton perimeter 
counts the intercept numbers along major directions and 
corrects for non-square pixels.

Once the individual pores have been classified, the 
software calculates the number of pores for each com-
bination of shape and equivalent diameter and the per-
centage of the total area of pores corresponding to these 
pores (PtEqDiam) (Equation 5).

Pt
ASEq

AT
TapEqDiam = ×∑ 	  (5)

where ASEq represents area of the pores of a speci-
fied shape and equivalent diameter and AT, total area.

Finally, SPIA presents minimum and maximum 
values for pore area and equivalent diameter over the 
range of pores in an image.

Results and Discussion

Figure 2 presents the user interface of SPIA. Fields 
are provided for the width and height of the images, 
which represent the image resolution, and for Pixel 
width and Pixel height, which define the size of a pixel. 
The button Add file opens a new window through which 
the user can select the input file to be added to the list of 
files for processing. Figure 2 as an example, five loaded 
input files (e.g. D:\Spia_Input /input1.txt). The user can 
remove a file from the list by selecting it and clicking 
on the button Remove File. Processing of the data in the 
input files is initiated by clicking on the button Process 
files.

SPIA generates four main output files, containing 
the results of the calculations and analysis performed. 

The files count-summary-type_size and ptsize-sum-
mary-type_size present the results for the characteriza-
tion of pores according to their shape and size. The 
count-summary-type_size presents the number of pores 
according to shape and size (NPore) (Figure 3). The pt-
size-summary-type_size presents the percentage of Tap (Pt-

size) corresponding to that shape and size of pore (Figure 
4). The last file columns of both files display the sum-
mary statistics of the processed images. The summary 
columns contain means and totals of Ptsize (MeanPtsize, To-
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talPtsize) and the number of pores (MeanNPore and TotalN-
Pore), followed by minimum, first quartile, median, third 
quartile, maximum, standard deviation (StdDev), vari-
ance (Var) and coefficient of variation for the Ptsize (CV%). 

The files count-summary-type_class and ptsize-sum-
mary-type class present the results obtained when the 
pores were classified by shape and equivalent diameter. 
The rows correspond to different combinations of shape 
and equivalent diameter, as indicated by the class labels 
in column A. The count-summary-type_class presents the 
number of pores according to shape and equivalent di-
ameter (NPore) (Figure 5). The ptsize-summary-type_class 
presents the percentage of Tap (Ptsize) corresponding to 
shape and equivalent diameter (Figure 6). The subse-

quent columns contain the same sequence as the file 
count-summary-type_size and ptsize-summary-type_size, 
described previously.

The file summary-minimax presents the minimum 
and maximum values for the area of a single pore in µm2 
and mm2, for the equivalent diameter (EqDiam), and for 
the WidthElong (Figure 7). The values are given for each 
input file; global maximum and minimum values can be 
found under the column “General” for all the loaded files.

Finally, SPIA generates a file called results which 
contains the names of the files loaded (File) the total area 
of pores (Tap_μm2) and the number of pores (Npore) for 
each file (Figure 8). The number of errors found during 
the loading of each file is also reported (ErrorsFound). 
This is followed by the sum of the Tap (μm2) and the sum 
of the number of pores (NTotalPore) for the loaded files. 

Conclusions

We developed a user-friendly software (SPIA) for 
the analysis of soil porosity that uses data extracted from 
2-D images. SPIA was shown to be a complementary 
tool in the analysis of soil porosity by digital image 
analysis. One of the advantages is that SPIA produces 
quick and precise quantifications and summaries of soil 
porosity, through a combination of pore classification by 
shape and size. The proposed software can be used for 
different applications in soil studies that need to quantify 
and qualify the pore space. SPIA is made available free 
of charge for non-commercial purposes and it can be 
acquired through contact with the authors of this paper. 

Figure 2 − User interface for the software created for the analysis 
of soil porosity from images previously processed by Noesis 
Visilog 5.4. D:\Spia_Input /input1.txt, D:\Spia_Input /input2.txt, D:\
Spia_Input /input3.txt, D:\Spia_Input /input4.txt and D:\Spia_Input 
/input5.txt are output files from Visilog.

Figure 3 − Sample output, file count-summary-type_size, from the analysis of five images pre-processed by Noesis Visilog; the pores were 
classified by shape and size according to Table 1.

Figure 4 − Sample output, file ptsize-summary-type_size, from the analysis of five images pre-processed by Noesis Visilog; the pores were 
classified by type and size of pore (Ptsize).
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Figure 5 − Sample output, file count-summary-type_class, from the analysis of five images pre-processed by Noesis Visilog; the pores were 
classified by shape and equivalent diameter.

Figure 7 − Sample output, file summary-minimax, from the analysis 
of five images pre-processed by Noesis Visilog. This file contains 
minimum and maximum values for the area of a single pore (in µm2 
and mm2), for the equivalent diameter (EqDiam in µm), and for the 
width of the elongated pores (WidthElong, in µm).

Figure 8 − File example of the result output file from the analysis of 
five images pre-processed by Visilog. This file contains the total 
porosity; the total number of pores and the number of errors found 
during the processing of the data.

Figure 6 − Sample output, file ptsize-summary-type_class, from the analysis of five images pre-processed by Noesis Visilog; the pores were 
classified by shape and equivalent diameter.

Future developments include the creation of graphs 
by the software. We hope that SPIA contributes to 
popularizing the application of soil micromorphometric 
studies through image analysis. 
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