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ABSTRACT: Vegetation indices are widely used to monitor crop development and generally used 
as input data in models to forecast yield. The first step of this study consisted of using monthly 
Maximum Value Composites to create correlation maps using Enhanced Vegetation Index (EVI) 
from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor mounted on Terra satellite 
and historical yield during the soybean crop cycle in Paraná State, Brazil, from 2000/2001 to 
2010/2011. We compared the ability of forecasting crop yield based on correlation maps and 
crop specific masks. We ran a preliminary regression model to test its ability on yield estimation 
for four municipalities during the soybean growing season. A regression model was developed 
for both methodologies to forecast soybean crop yield using leave-one-out cross validation. 
The Root Mean Squared Error (RMSE) values in the implementation of the model ranged from 
0.037 t ha−1 to 0.19 t ha−1 using correlation maps, while for crop specific masks, it varied from 
0.21 t ha−1 to 0.35 t ha−1. The model was able to explain 96 % to 98 % of the variance in esti-
mated yield from correlation maps, while it was able to explain only 2 % to 67 % for crop specific 
mask approach. The results showed that the correlation maps could be used to predict crop 
yield more effectively than crop specific masks. In addition, this method can provide an indication 
of soybean yield prior to harvesting.
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Introduction

Monitoring agricultural crops during the growing 
season is important to forecast yield prior to harvesting 
(González-Sanpedro et al., 2008). Several techniques 
have been developed to achieve accurate yield estimates, 
namely the linear regression analysis based on remote 
sensing data (Wall et al., 2008). This approach is based 
on estimating photosynthetic capacity from vegetation 
indices related to yield (Becker-Reshef et al., 2010). 

The Moderate Resolution Imaging 
Spectroradiometer (MODIS) data have great potential 
to monitor biophysical parameters (Huete et al., 2002) 
and improve accuracy in crop yield assessment (Ren 
et al., 2008; Funk and Budde, 2009). The coarse spatial 
resolution is a limiting factor to the use of MODIS data, 
which results in mixed pixels that may not be suitable 
for crop yield models (Shao et al., 2015).

Several approaches have been tried to address 
this problem. Genovese et al. (2001) applied weighted 
Normalized Vegetation Index (NDVI), called CORINE-
NDVI (CNDVI) to extract indicators for crop yield 
monitoring in Spain. The authors found that indicators 
based on CNDVI were more closely related to crop 
yield than those based on NDVI. Becker-Reshef et al. 
(2010) used a regression model to estimate wheat yield 
in Kansas, the United States, based on a percentage map 
using the pure pixels that allowed reliable yield estimates 
prior to harvesting. 

Maselli and Rembold (2001) found that 
improvement in estimates of yield capacity depends on 
the crop and the values of vegetation index considered 
in the area. The authors estimated yield in North 

African countries by correlating NDVI and yield. They 
reported that areas with low NDVI values could present 
high correlation due to the presence of grasses with a 
similar phenology, such as cereals. Combining both the 
percentage map and the correlation between NDVI and 
yield, Kastens et al. (2005) created the "yield-correlation 
masking" approach to estimate cereal yield in the United 
States. The authors found that vegetation in a region can 
integrate the growing conditions, which could be more 
indicative of crop potential.

Several studies in Brazil have achieved reliable 
results using the regression analysis to estimate yield 
(e.g. Gusso et al., 2013; Picoli et al., 2014), however, the 
crop mask of these methods does not always represent 
the reality of the area. Therefore, this study investigates 
the potential of using correlation maps to estimate 
soybean yield based on the regression analysis and find 
the suitable period to estimate yield in Brazil.

Materials and Methods

The study was conducted in four municipalities 
in Paraná State: Cascavel (24° 57' 21" S, 53° 27' 19" W 
and 781 meters above sea) and Toledo (24° 42' 49" S, 
53° 44' 35" W and 560 meters above sea), located in 
the western region and Castro (24° 47' 28" S, 50° 00' 
43" W and 999 meters above sea) and Ponta Grossa (25° 
05' 42" S, 50° 09' 43" W and 969 meters above sea), 
located in the eastern region (Figure 1). In the period 
of 1990-2012, Paraná State ranked second in soybean 
production (15,850.6 million tons in 2013) in relation to 
other states in Brazil and it ranked first in the southern 
region (CONAB, 2013). 
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According to the Köppen's climate classification 
map for Brazil (Alvarez et al., 2013), the climate in 
Paraná state is Cfa type (i.e., subtropical mesothermal 
climate) and Cfb type (i.e., temperate mesothermal cli-
mate). The average annual temperatures is 19 °C, with 
the hottest month averaging above 22 °C and the coldest 
below 18 °C.

Agricultural statistics for the soybean growing sea-
son were collected from the Department of Agriculture 
and Supply of Paraná (SEAB) database and the Brazilian 
Institute of Geography and Statistics (IBGE). Both SEAB 
and IBGE obtain data through agricultural surveys with 
growers and cooperatives. These data were used to cre-
ate a time series of soybean area and total production for 
the period between 2000/2001 and 2010/2011 growing 
seasons. Table 1 shows statistics for the soybean area and 
yield time series used in this study.

Enhanced Vegetation Index (EVI) images were ob-
tained from Moderate Resolution Imaging Spectroradi-
ometer (MODIS) mounted on Terra satellite that is part 
of Earth Observing System (EOS) program. MODIS/Terra 
views the entire Earth's surface every one to two days. 
It has sun-synchronous orbit at 705 km and crosses the 
equator line at 10:30 a.m. descending node. The MODIS 
data provide high radiometric sensitivity (12 bits) in 36 
spectral bands ranging at wavelength from 0.4 µm to 14.4 
µm (Nasa, 2013a). 

The images were obtained from Brazilian State 
Base, a dataset held by the Brazilian Agricultural Research 
Corporation, Agricultural Informatics (Embrapa Infor-
mática Agropecuária), which provides images derived 
from MOD13Q1 product (Embrapa, 2011). MOD13Q1 
data are provided by the LPDAAC/EOS (Land Processes 
Distributed Active Archive Center/NASAs Earth Observ-
ing System) every 16 days at 250-meter spatial resolution 
as a gridded level-3 product in the Sinusoidal projection 
(Nasa, 2013b).

Soybean crop is cultivated during the summer 
season in Brazil. For the study region, the planting date 
occurs approximately between October and December, 
which corresponds to the period of high rainfall, while 
the harvesting period occurs from February to April (Ta-

Table 1 − Planted area and historical yield for the study area from 2000/2001 to 2010/2011 crop seasons. 

Crop Season
Soybean area 

(ha)
Yield 

(t ha−1)
Soybean area 

(ha)
Yield 

(t ha−1) 
Soybean area 

(ha)
Yield 

(t ha−1)
Soybean area 

(ha)
Yield 

(t ha−1)
Cascavel Toledo Castro Ponta Grossa

2000/2001 72100 2.50 64000 2.85 47000 3.00 41000 2.95
2001/2002 67652 3.18 62900 3.46 46000 3.20 40000 3.20
2002/2003 74689 2.89 66100 3.23 60000 3.15 48000 3.10
2003/2004 78200 3.31 67150 3.47 64000 3.40 55000 3.38
2004/2005 83000 2.73 68850 2.40 65200 3.10 57050 3.30
2005/2006 87700 2.36 69300 2.72 70000 3.15 65000 3.15
2006/2007 83700 2.68 66900 2.22 65000 3.00 59000 2.76
2007/2008 84000 2.84 66100 3.12 67000 3.30 60100 3.20
2008/2009 82850 3.24 65300 3.16 72300 3.13 63000 3.20
2009/2010 84000 2.55 64100 2.26 79000 2.58 65350 2.70
2010/2011 89800 3.32 67802 3.40 79800 3.25 68300 3.20
Mean 81149.25 2.92 66208.50 2.97 66316.67 3.15 57675.00 3.14
SD 6362.87 0.35 1861.91 0.45 10908.01 0.22 9628.29 0.22
CV 0.08 0.12 0.03 0.15 0.16 0.07 0.17 0.07
Trend 72673.12 2.73 65588.92 3.00 50016.67 3.13 43413.46 3.11
Area (km²) 2,100,831 1,196,999 2,531,503 2,067,547
*SD = Standard deviation, CV = Coefficient of Variation, Trend = trend over the studied period Area = municipality area. Source: IBGE.

Figure 1 – Paraná State and location of the studied municipalities.
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ble 2). Figure 2 shows the average soybean crop cycle for 
the study region. Acquisition of cloud-free images was al-
most impossible, therefore, the monthly Maximum Value 
Composite (MVC) imagery was used.

Correlation Maps 
There are many methodologies to establish a rela-

tionship between vegetation indices and final yield. The 
methods are often based on monthly vegetation indices 
values (Maselli and Rembold, 2001) or on accumulation 
over determined periods of the crop phenological stage 
(Tucker et al., 1980; Rasmussen, 1992; Genovese et al., 
2001; Kastens et al., 2005; Ren et al., 2008). 

To examine variation in correlation with crop de-
velopment, this study was based on the first approach in 
which the monthly EVI values were regressed with the 
historical soybean yield values at the pixel level. The first 
step examined each month separately, for example, the 11 
images from October were arranged and regressed with 
the annual yield values. This process was repeated for ev-

ery month of the growing season. Thus, the correlation 
maps were built based on the crop cycle of each munici-
pality. 

Regression model
The correlation maps were used to build masks 

with different correlation ranges to assess the ability of 
each range to estimate yield. Kastens et al. (2005) used a 
similar approach by applying masks with different sizes 
to test its capacity to forecast yield. 

In this study, the ranges were separated as the 
correlation increased. Therefore, the first mask corre-
sponds to the range 0-10 % of correlation, the second 
11-20 %, and this process was repeated until a correla-
tion of 100 %.

For comparison purposes, we used crop specific 
masks to estimate yield and compared it with the meth-
odology proposed here. For these crop specific masks, 
we followed the methodology described by Araújo et al. 
(2011), where multi-temporal color composites were cre-
ated in RGB channels. The color composites were based 
on the soybean crop cycle in which the Red channel 
corresponds to the vegetative peak, and the Green and 
Blue channels correspond to the beginning of the crop 
cycle, thus, only the soybean crop was highlighted in the 
composite. This process was repeated until the end of 
the phenological cycle due to differences in the planting 
dates in the state. A color composite was generated for 
each 16-day period.

In order to create a soybean specific crop layer, pix-
els from the composites described above were selected 
with gray level values above 200 on the Red channel and 
below 200 on the Green and Blue channels. This resulted 
in a binary classification of the soybean areas. To gener-
ate the final annual soybean classification, the 16-day soy-
bean masks were overlapped for the entire study area. 

Table 2 − Monthly percentage of planting and harvesting soybean 
crop season in Paraná State*.

Planting period Harvesting period
Crop Season Oct Nov Dec Jan Feb Mar Apr May

---------------------------------------------------------- % ----------------------------------------------------------
2004/2005 20 73 6 - 16 50 27 7 
2005/2006 37 58 5 1 8 55 31 5 
2006/2007 23 66 11 - 13 54 29 4 
2007/2008 23 63 14 - 11 45 34 10 
2008/2009 24 58 18 - 1 50 41 8 
2009/2010 50 47 3 1 16 58 21 4 
2010/2011 47 51 2 - 5 80 13 2 
*Data from 2000/2001 until 2003/2004 was not provided. Source: SEAB/
Deral (2013).

Figure 2 – Average of eleven years of soybean crop cycle for the four municipalities.
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This process was applied to generate a soybean crop mask 
for each year of study. Figure 3 illustrates the main steps 
of the study. 

An automated process was applied to extract pixels 
from the time-series data based on the masks. We used 
the system developed by Esquerdo et al. (2011). This sys-
tem requires the time-series and the coordinate location 
of the fields (extracted from the masks), which results in 
the EVI values corresponding to the masks. Then, these 
pixels were used as input data to estimate yield. A similar 
approach was used by (Fernandes et al., 2011).

For each of the correlation masks and approaches 
of crop specific masks to quantify yield, a linear regres-
sion model (equation 1) was developed to calculate the 
estimated yield:

Y = a + b × EVI	  (1)

where Y is the estimated soybean yield; EVI is from the 

monthly MVC composite; a and b are the regression equa-
tion parameters.

The residual analysis was applied to verify ho-
moscedasticity, normality and independence of residuals 
(Breusch and Pagan, 1979; Shapiro and Wilk, 1965). In ad-
dition, the absence of autocorrelation in the data was veri-
fied. As a final test, we developed regression models using 
a “leave-one-out” cross validation to validate the estimat-
ed yield. All error values were calculated by comparing 
the observed and estimated yield. The fraction of soybean 
yield variation, which was explained by the progressive 
addition of EVI in the linear regression analysis, was 
quantified by means of the coefficient of determination 
(R²). The Root Mean Squared Error (RMSE) was used to 
measure the model performance and the Mean Absolute 
Error (MAE) was used to measure the model accuracy. 
Furthermore, the Willmott index of agreement (d) (Will-
mott, 1981) was used to measure the degree of accuracy 
between estimated and observed values.

Figure 3 – Flowchart of the main steps adopted in the study. EVI = Enhanced Vegetation Index; IDL = Interactive Data Language; Y= yield; LOOCV 
= Leave-one-out cross validation.
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Results and Discussion

Correlation Maps
Figure 4 shows which period had the strongest 

correlation between EVI and historical yield. The low 
correlation for Oct and Nov indicated that EVI during 
this period did not result in a good correlation with yield 
data. This period corresponded to the beginning of the 
crop cycle, thus, pixels consist of a spectral mixture of 
both plant and soil.

In Cascavel and Toledo, the highest correlation 
between EVI and yield occured in Dec, Jan and Feb, while 
in Ponta Grossa, Dec and Jan showed the highest values. 
This can be explained because this period corresponds to 
the vegetative peak of the crop cycle and, consequently, 
high EVI values. Correlation maps for Castro were not 
able to detect periods with high correlation, since this 
municipality does not consist of large soybean crops, as 
observed in the other regions. 

Table 3 presents the coefficient of determination 
(R²) for the linear regression analyses using the ranges 
from the correlation masks. As the correlation range in-
creases, R² becomes stronger and, thus, the significance 
level is improved. Analyzing the crop growth, we confirm 
that the highest values of R² occurred during Dec, with 
Oct and Nov having the lowest predictive capacity for 
annual yield estimates. December, Jan and Feb approxi-
mately corresponded to the flowering and filling seed phe-
nological stages in Cascavel and Toledo. In Ponta Grossa, 
Feb presented the highest correlations (R² < 0.5).

Evaluating each range of correlation mask, we 
found that a good coefficient of determination was 
reached at 0.60 for the western region. On the other 
hand, for the eastern region, ranges between 0.50 and 
0.40 for Castro and Ponta Grossa, respectively, pre-
sented good results and for both regions, R² improved 
as the range increased achieving the highest values at 
1.00. This is linked to soil and climate differences of 
both regions, where the western region is located in 
the humid subtropical climate with an annual average 
rainfall between 1800 mm and 2000 mm, Oxisol soil 
type and elevation between 600-750 m. The eastern 
region has temperate climate, annual average rainfall 
between 1600 mm and 1800 mm, inceptsol soils and 
elevation between 900-1100 meters (IAPAR, 2013; 
USDA, 2005).

Maselli and Rembold (2001) and Kastens et al. 
(2005) reported that the correlation map could perform 
well in regions of sparse crop distribution, such as in 
the eastern region of our study area, once it can express 
information on the fractional land cover in a pixel. Our 
analysis supports the general findings of these previous 
studies.

Estimated yield: correlation maps versus crop spe-
cific masks

The performance of all correlation masks and crop 
specific mask is shown in Figure 5. The approach of crop 
specific mask for the four municipalities studied showed 
low performance, however, it was lower in municipali-

Figure 4 – Monthly correlation maps: A = Cascavel; B = Toledo; C = Castro; D = Ponta Grossa.
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Table 3 − Coefficients of determination (R²) for linear regression analysis using ranges from correlation masks for the four study regions. 
R² at 
10 % p-value R² at 

30 % p-value R² at 
30 % p-value R² at 

40 % p-value R² at 
50 % p-value R² at 

60 % p-value R² at 
70 % p-value R² at 

80 % p-value R² at 
90 % p-value R² at 

100 % p-value

Cascavel

October 0.13 0.28 0.00 0.85 0.03 0.60 0.08 0.40 0.15 0.25 0.24 0.12 0.37 0.05* 0.42 0.03* 0.60 0.01* 0.08 0.39

November 0.01 0.81 0.12 0.30 0.21 0.15 0.30 0.08 0.42 0.03* 0.50 0.01* 0.59 0.01* 0.61 0.00* 0.60 0.01* 0.68 0.00*

December 0.00 0.87 0.06 0.46 0.14 0.25 0.25 0.12 0.38 0.04* 0.50 0.01* 0.63 0.00* 0.69 0.00* 0.77 0.00* 0.74 0.00*

January 0.03 0.62 0.06 0.45 0.15 0.24 0.27 0.10 0.34 0.06 0.44 0.03* 0.52 0.01* 0.59 0.01* 0.64 0.00* 0.75 0.00*

February 0.31 0.08 0.00 0.91 0.04 0.56 0.08 0.40 0.18 0.20 0.24 0.13 0.30 0.08 0.36 0.05* 0.40 0.04* 0.47 0.02*

Toledo

October 0.12 0.30 0.02 0.65 0.07 0.42 0.16 0.22 0.25 0.11 0.41 0.03* 0.47 0.02* 0.66 0.00* 0.04 0.55 0.07 0.43

November 0.02 0.72 0.08 0.39 0.17 0.21 0.29 0.09 0.41 0.03* 0.56 0.01* 0.64 0.00* 0.72 0.00* 0.01 0.79 0.01 0.77

December 0.00 0.96 0.08 0.41 0.16 0.22 0.27 0.10 0.39 0.04* 0.51 0.01* 0.63 0.00* 0.76 0.00* 0.87 0.00* 0.93 0.00*

January 0.07 0.44 0.35 0.06 0.46 0.02* 0.55 0.01* 0.60 0.01* 0.67 0.00* 0.74 0.00* 0.82 0.00* 0.92 0.00* 0.88 0.00*

February 0.12 0.30 0.05 0.53 0.13 0.27 0.22 0.15 0.33 0.06 0.46 0.02* 0.56 0.01* 0.64 0.00* 0.70 0.00* 0.74 0.00*

Castro

November 0.11 0.33 0.20 0.17 0.51 0.01* 0.64 0.00* 0.74 0.00* 0.83 0.00* 0.88 0.00* 0.92 0.00* 0.95 0.00* 0.92 0.00*

December 0.27 0.10 0.18 0.20 0.39 0.04* 0.06 0.45 0.73 0.00* 0.84 0.00* 0.87 0.00* 0.93 0.00* 0.92 0.00* 0.97 0.00*

January 0.17 0.21 0.14 0.26 0.33 0.06 0.50 0.02* 0.65 0.00* 0.76 0.00* 0.84 0.00* 0.89 0.00* 0.94 0.00* 0.97 0.00*

February 0.14 0.25 0.10 0.34 0.27 0.10 0.47 0.02* 0.63 0.00* 0.78 0.00* 0.82 0.00* 0.89 0.00* 0.75 0.00* 0.50 0.01*

March 0.21 0.15 0.09 0.38 0.23 0.14 0.39 0.04* 0.50 0.01* 0.61 0.00* 0.71 0.00* 0.77 0.00* 0.82 0.00* 0.78 0.00*

Ponta Grossa

November 0.50 0.02* 0.18 0.19 0.42 0.03* 0.66 0.00* 0.81 0.00* 0.90 0.00* 0.94 0.00* 0.95 0.00* 0.94 0.00* 0.11 0.31

December 0.12 0.30 0.25 0.12 0.53 0.01* 0.74 0.00* 0.85 0.00* 0.92 0.00* 0.95 0.00* 0.97 0.00* 0.98 0.00* 0.99 0.00*

January 0.13 0.28 0.22 0.15 0.45 0.02* 0.63 0.00* 0.73 0.00* 0.84 0.00* 0.91 0.00* 0.95 0.00* 0.98 0.00* 0.98 0.00*

February 0.50 0.01* 0.23 0.13 0.48 0.02* 0.68 0.00* 0.82 0.00* 0.86 0.00* 0.94 0.00* 0.96 0.00* 0.93 0.00* 0.13 0.28

March 0.54 0.01* 0.17 0.21 0.40 0.04* 0.66 0.00* 0.76 0.00* 0.84 0.00* 0.87 0.00* 0.88 0.00* 0.88 0.00* 0.16 0.22

*Correlation is significant at the 0.05 level.

ties in the eastern region (Castro and Ponta Grossa). This 
may be explained due to regional characteristics, such as 
irregular terrain and, consequently, smaller cropland ar-
eas compared to the western region. Kastens et al. (2005) 
pointed out that the correlation approach would be bet-
ter applied in these types of areas since there are many 
difficulties in building crop specific masks with coarse 
resolution in areas with low production or where crop-
land areas are interspersed with non-cropland.

To compare the effectiveness of the proposed 
method, masks from 91 to 100 % correlation were 
compared with crop specific masks. The overall model 
performance is shown in Table 4, which demonstrates a 
higher precision and accuracy for the model generated for 
the correlation masks approach in terms of performance 
of the crop specific mask approach. 

The RMSE for all municipalities using correlation 
masks was below 0.19 t ha−1, while using the crop specific 
mask, it varied between 0.21 and 0.35 t ha−1. These val-
ues are in agreement with Kastens et al. (2005) that used 
a yield-correlation mask to estimate soybean yield in Iowa 
and Illinois (USA) and obtained an RMSE 0.15 t ha−1 and 
0.16 t ha−1, respectively. In contrast, using the crop spe-
cific mask approach, Ren et al. (2008) obtained RMSE = 

0.21 t ha−1, Mkhabela et al. (2011) reported RMSE values 
below 0.65 t ha−1 to predict cereal grain in Canada. MAE 
values showed that the correlation masks approach had 
magnitude error lower (0.14 t ha−1 to 0.02 t ha−1) than the 
crop specific mask (0.3 t ha−1 to 0.18 t ha−1). It showed 
that models using correlation masks were more accurate 
than the crop specific mask. The index of agreement (d) 
for the correlation masks approach was higher than 0.9 
for all municipalities and for crop specific mask was 0.64, 
0.85, 0.01, and 0.58 in Cascavel, Toledo, Castro, and Pon-
ta Grossa, respectively, that is, lower than expected.

Table 4 – Statistical analysis of model adequacy for the correlation 
masks (CM) and crop specific mask (CSM) models for each 
municipality. Models were tested using the “leave-one-year-out” 
approach.

 
Cascavel Toledo Castro Ponta Grossa

CM CSM CM CSM CM CSM CM CSM
R² 0.983 0.511 0.961 0.672 0.981 0.023 0.978 0.367
RMSE 0.195 0.307 0.197 0.354 0.054 0.288 0.037 0.213
MAE 0.123 0.249 0.14 0.30 0.047 0.215 0.028 0.183
d 0.903 0.648 0.958 0.851 0.988 0.016 0.993 0.586
R² = Coefficient of determination; RMSE = Root Mean Squared Error; MAE = 
Mean Absolute Error; d = index of agreement.
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Figure 5 – Model performance for the four studied municipalities. RMSE = Root Mean Squared Error; MAE = Mean Absolute Error; d = index of 
agreement.

The identification of pixels well correlated with his-
torical yield is a significant step in the context of forecast-
ing operational yield. This is clearly shown here since the 
non-significant results of the crop specific mask approach 
are primarily due to the fact that EVI is representative of 
all crops in the area (pixel), thus, it is highly influenced by 
dominant crops, becoming less related to non-dominant 
crops that can often be the crop of interest (Bolton and 
Friedl, 2013; Kastens et al., 2005; Maselli and Rembold, 
2001). However, this does not occur for the correlation 
masks approach because the focus is on highly correlated 
areas (pixels) with yield. This is similar to the results ob-
tained by Huang et al. (2014), who reported an improve-
ment in estimated grain yield in China using areas with a 
strong relationship between NDVI and crop yield.

A comparison of estimated yield with official data 
is given in Figure 6, where the coefficient of determi-
nation (R2) ranged from 0.96 to 0.98 for the correlation 
masks approach; however, for the crop specific mask ap-
proach, it only ranged between 0.02 and 0.67 (Table 4). 
The poor linear relationship between the estimated and 
official yield data is likely due to the EVI being influ-
enced by other targets resulting in spectral mixture is-
sues, especially when using low spatial resolution imag-
es. This point was highlighted by Genovese et al. (2001), 
who showed improved estimates of yield values when 
the weighted NDVI eliminated noise. With the same ob-

jective, Maselli and Rembold (2001) and Kastens et al. 
(2005) applied the correlation maps in their study areas, 
since the aim was to use areas of a good relationship 
with yield data. 

Kastens et al. (2005) reported that this technique is 
successfully employed in areas with sparse production. 
The eastern region in Paraná State has this characteristic, 
where municipalities have uneven relief, with the 
correlation masks approach estimating yield values 
close to the official data. This also helps to explain the 
significant errors generated by the model for this region 
using the crop specific mask.

Conclusions

 A linear model to predict soybean yield was 
developed using correlation maps based on spectral 
data and historical yield. The correlation maps showed 
an increased performance of the yield model in all 
municipalities in relation to a more traditional crop 
specific approach. They provided results similar to 
the official yield reports. Our results showed that this 
approach improved the estimated yield, especially 
in areas with sparse production, as in the case of the 
municipality of Castro, where validation estimates using 
correlation maps obtained R² = 0.98 while crop specific 
masks obtained R² = 0.02.
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This study also showed the limitations of crop 
specific masks to estimate yield especially with low 
spatial resolution images. The correlation maps proved 
to be more efficient at predicting yield since it is based 
on the relationship of EVI with crop yield, eliminating 
factors that could influence the results. 
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