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ABSTRACT: Experiments where the response is a categorical variable are usually carried out in 
many fields such as agriculture. In addition, in some situations this response has three or more 
levels without an order between them characterizing a multinomial (nominal) response. Statisti-
cal models for scenarios where the observations of a nominal response can be considered 
independent have an extensive literature, such as the baseline-category logit models. However, 
situations where this assumption is violated (as in longitudinal studies) require specific models 
that take into consideration the dependence between observations. In this paper, a fairly new 
extension of the generalized estimating equations is applied to analyze an experiment carried 
out to investigate the type of vegetation observed in an elephant grass pasture, according to 
some management conditions over time. This extension uses local odds ratios to explain the de-
pendence among the categories of the outcome over the repeated measurements. Two different 
structures were compared to describe this dependence, and the Wald test was used to select 
the significant variables. Further, we built confidence intervals for the predicted probabilities of 
occurrence of each category and assessed the results comparing observed/predicted values 
and using the diagnostic analysis. The results allowed to conclude that there are various signifi-
cant effects for treatments and for time. The structure of local odds ratio also proved as a good 
way to describe the dependence between categorical responses over time.
Keywords: type of vegetation, longitudinal multinomial data, generalized estimating equations, 
local odds ratio
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Introduction

Understanding forage plant growth and coloni-
zation abilities (horizontal and vertical distribution of 
plant organs and parts) is important to provide a sound 
basis for planning and idealizing grazing management 
practices that ensure pasture productivity and persis-
tence. For tall-tufted tussock forming species like ele-
phant grass (Pennisetum purpureum Schum. cv. Napier), 
horizontal distribution is especially important because 
it is related to efficiency of carbon (energy) uptake 
(Ryel et al., 1994), competitive ability and stability of 
plant population and pasture productivity (Pereira et 
al., 2015a,b). 

In many research fields, the analysis of categori-
cal data is present, including agriculture. A categorical 
variable has its measurement scale formed by a set of 
categories (Agresti, 2007), for example, the type of veg-
etation present on an area. This type of variable can be 
classified as binary (2 categories) or polytomous (3 or 
more) and as ordinal and nominal. An ordinal categori-
cal variable means that its categories have a natural or-
der, while the nominal category has no order between 
the levels. This paper focuses on the nominal case for 
polytomous variables and the generalized linear mod-
els framework is commonly used to analyze these data. 
However, in some cases, the studies are carried out in 
such a way that several measurements are taken from 
the same subject (or sample unit). When measurements 
are taken over time, these studies generate data sets 

known as longitudinal data and it is necessary to con-
sider some correlation measure (Diggle et al., 2002).

Among the several available approaches in the lit-
erature (Diggle et al., 2002; Pinheiro and Bates, 2000; 
Verbeke and Molenberghs, 2000), the generalized esti-
mating equations (GEE) consist in a useful methodol-
ogy for longitudinal data to consider the dependence 
between the observations (Liang and Zeger, 1986). 
However, when the response variable is multinomial, 
the original GEE approach does not apply and Lipsitz 
et al. (1994) and Touloumis et al. (2013) have devel-
oped some extensions. The objective of this paper was 
to describe some aspects of the GEE methodology and 
show an application in agriculture, where, in general, 
this methodology is not usual. Confidence intervals are 
not commonly used in this type of model thus, as a 
contribution, in this paper they are obtained for each of 
the response categories. Finally, the appendix presents 
the R code used in the analysis.

Materials and Methods

The data used in this work are results from an ex-
periment carried out in Piracicaba, São Paulo State, Bra-
zil, on an elephant grass pasture (Pennisetum purpureum 
Schum. cv. Napier) grazed by dairy cows (Pereira et al., 
2015a,b). It is a complete randomized block design with 
the treatments allocated according to a 2 × 2 factorial 
arrangement, where treatments are the combinations of 
two pre-grazing conditions (95 % and maximum (98 %) 
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Table 1 − Seasons when the experiment was carried out.
Year Months Season
2011 Jan – Mar Summer 1
2011 Apr – June Autumn
2011 July – Sept Winter
2011 Oct – mid-Nov Early spring
2011 mid-Nov – Dec Late spring
2012 Jan – Apr Summer 2

canopy light interception during regrowth) and two post-
grazing heights (35 and 45 cm). The experiment was car-
ried out from Jan 2011 until Apr 2012, period classified 
into six seasons presented in Table 1.

The response analyzed in the study is the type of 
vegetation observed in the field, which can be tussocks, 
bare ground and weeds. Forty (40) points were observed 
in each one of the four paddocks in each block (Figure 
1). Since there are always 40 points observed in each 
paddock, we can analyze the proportions of each type 
of vegetation under the total, characterizing a multino-
mial outcome with three levels. There are 40 × 16 = 640 
points per season, but in the early spring, one of the pad-
docks was affected by climate conditions and thus the 
total number of observations was N = 640 ×  6 × 40 = 
3800. Furthermore, there might be a spatial correlation 
between the observations, but it is not the main focus of 
this paper and the spatial coordinates of the points were 
not available.

Logit models
For independent observations of a multinomial out-

come, the baseline logit models (also known as baseline-
category logit models) are a well-known theory in the 
literature. These models are an extension of logistic re-
gression models used to model binary outcomes (Agresti, 
2002; Agresti, 2007; Dobson, 2008). Denoting the catego-
ries by (k = 1, ..., K), the model pairs each category with 
a baseline one and is defined as

ln
π
π

η βk
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k kx k K
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where: ηk denotes the linear predictor, x is the design ma-
trix and β is a vector of covariates, according to the gener-
alized linear models (GLM) theory (Nelder and Wedder-
burn, 1972). The index k in the linear predictor indicates 
that each one of the (k – 1) ogits has separate parameters. 
Clearly, when k = 2, the model reduces to an ordinary 
logistic regression for binary outcomes. However, as this 
model is part of the GLM theory, it is suitable only when 
observations are independent from each other, requiring 
modifications to handle the temporal dependence.

Generalized estimating equations using a local odds 
ratios approach

A very important extension of GLMs for longitu-
dinal data, the generalized estimating equations (GEE) 
briefly consist of an approach where the regression and 
within-subject correlation are modelled separately, i.e., 
besides the regression parameters β, we need to specify 
a “working” correlation matrix Ri(α) consider the depen-
dence between the repeated measurements, reducing the 
standard errors of the parameter estimates. The param-
eter estimation methods are based in quasi-likelihood 
methods, no more in full-likelihood methods, as in GLM 
(Liang and Zeger, 1986; Zeger and Liang, 1992).

Even though this original approach can be used 
for discrete and continuous outcomes, it does not apply 
for the multinomial case (only for the binary) and Lipsitz 
et al. (1994) extended it to handle this type of data. This 
extension seems to be a very useful tool, but it is imple-
mented in statistical software only for the ordinal case. 
Thus, as the focus of this paper is the nominal scenario, 
no more details will be discussed here and the referred 
reference can be used.

Another extension of the original GEE approach 
that deals with nominal and ordinal responses, in some 
aspects very similar to Lipsitz et al. (1994), was proposed 
by Touloumis et al. (2013). This approach uses local odds 
ratios to describe the association between the response 
categories across the repeated measurements. It is imple-
mented in the R package multgee and further details will 
be discussed later.

Introducing notes used by Lipsitz et al. (1994) and 
Touloumis et al. (2013), Y is the categorized response with 
K levels (k = 1, ..., K), K > 2. K defines indicator variables  
Yitk = I(Yit = k) showing if the i-th subject presented cat-
egory k at time t (t = 1, ..., Ti). These indicator variables 
can be converted into a (K – 1) × 1 vector of responses Yit 
= [Yit1, Yit2, ..., Yit(K–1)]’ and Yi = [Yi1, Yi2, ..., YiTi]’. The mar-
ginal distribution of Yit is multinomial

f y xit it
k

K

itk
yitk| ,β π( ) =

=
∏

1

,

where: πitk is the probability of occurrence of category k at 
time t and x x xi i iTi= … 1

, ,, ,  denotes the Ti(K – 1) × p matrix 
of covariate values for subject i. The probabilities of inter-
est πitk are also converted into a vector πit = [πit1, ... πit(K – 1)]’. 
The marginal expected vector, E[Yitxi] = πit, is modelled 
byFigure 1 − Sketch of the experiment carried out.
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Table 2 − Statistical models proposed to the data analyzed.

Model Linear predictor structure
1 Block + pre*post*season

2 Block + pre + post + season + pre × post + pre × season + post 
× season

3 Block + pre + post + season + pre × post
4 Block + pre + post + season + pre × post + post × season
5 Block + pre + post + season + pre × post + pre × season
6 Block + pre + post + season + pre × season
7 Block + pre + season + pre × season

g (E [Yitxi]) = g(πit) = xit’β,

where: the choice of link vector g is the baseline-category 
logit model for the multinomial case. 

Briefly, the association structure is described by 
the vector of local odds ratios α = [ψ1121, ..., ψ112(K – 1), 
..., ψ (T – 1)1T1, ... , ψ(T – 1)(K – 1)T(K – 1)]’.  These local odds ratios 
ψtkt’k’ are taken at the cutpoints (k, k’) at the marginalized 
contingency table for the time pair (t, t’). A generalized 
version of the rows and columns (RC) model (Becker and 
Clogg, 1989; Goodman, 1985) is fitted and, under this 
model, the local odds ratios satisfy
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where: the sets of parameters g and w are called intrinsic 
and score parameters, respectively. All these odds ratios 
may be presented as a matrix of dimensions T(K – 1) × 
T(K – 1):
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Each block has dimension (K – 1) × (K – 1) and each 
element (k, k’) is the local odds ratio estimate ˆ ’ ’ψtkt k . This 
matrix can assume two different types representing the 
two association structures available for the multinomial 
case (Touloumis et al., 2013): i) Time exchangeable: under 
this simpler structure the local odds ratios are simplified to 
ln (ψtkt’k’) = γ(ωk – ωk + 1) (ωk’ – ωk’ + 1), which does not assume 
any time dependency and implies that the matrix blocks 
are equal. ii) RC structure allows different odds ratios be-
tween the time pairs, i.e., there is time dependency. In 
this case, we have ln ψ γ ω ω ω ωtkt k tt k
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As described by Touloumis et al. (2013), cases when 
the intrinsic parameters have a large variability should 
be analyzed with the RC structure; otherwise, if this vari-
ability is small, one should choose the time exchangeable 
structure.

The significance of effects of covariates can be as-
sessed by the Wald statistical test described in Touloumis 
(2013). Two nested models can be tested and the rejection 
of the null hypothesis of the Wald test suggests that the 
model with fewer parameters is more appropriate.

Overall, the procedure for parameters estimation is 
very similar to the original GEE approach from Liang and 
Zeger (1986), more details can be seen in Touloumis et 
al. (2013) and a description of the functions available in 
multgee package is available in Touloumis (2015).

Statistical model and procedures for selection 
Here we present the methods used to select the sta-

tistical model. The procedure can be understood as two 
steps where the first is the choice of the association struc-

ture and the second one is the way that the covariates en-
ter the linear predictor. This is done in this order because 
the parameter estimates depend on the selected associa-
tion structure, according to Touloumis (2013).

The range of intrinsic parameter estimates under 
the RC structure can be assessed to select the association 
structure: if these estimates do not differ much, we select 
the time exchangeable structure; otherwise, we use the 
RC one. 

Once the association structure is selected, we pro-
ceed to the second step and selection of the linear predic-
tor. Here, as previously described, we can use the Wald 
test to compare several nested models, available in the 
multgee package. As the experiment analyzed here is a 
factorial in a complete randomized block design, we pro-
posed the models presented in Table 2, where the pre and 
post-grazing factors were abbreviated as pre and post re-
spectively. These models allow to test the effects of inter-
actions and main effects of the covariates and the selected 
model will be presented later. Note: the first model con-
siders all the interactions between pre, post and seasons.

Let pitk the probability of i-th point (i = 1, ..., 640) 
be classified in the k-th category in season t. The model is 
given by two logits
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The types of vegetation were ordered as tussock, 
weeds and bare ground in the model fitting (k = 1, 2, 3). 
Hence, the first logit relates tussocks and bare ground 
and the second logit is the relationship between weeds 
and bare ground. Furthermore, as an example for the 
first point (i = 1), Yi is given by Yi = [(1,0,0)’, (1,0,0)’, 
(0,0,1)’, (1,0,0)’, (0,1,0)’, (0,0,1)’]’ because the first point 
was observed as tussock, tussock, bare ground, tussock, 
weed and bare ground in each of the six seasons (t = 1, 
2, ..., 6).

Confidence intervals for the predicted probabilities 
can be obtained as described in Agresti (2002), as this 
model is an extension of a baseline logit model. The dif-
ference is that here, we use the robust standard errors to 
build the intervals instead of the naive ones. The assess-
ment of the goodness-of-fit of the model is done with plots 
of residuals and comparisons between observed and pre-
dicted proportions.
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Results and Discussion

Descriptive analysis
First, we present a description of the data. Figure 

2 shows the proportions of each type of vegetation ob-
served according to treatments and seasons. Tussocks 
are predominant over the other two types of vegetation, 
but when light interception is maximum, there are 
more places with bare ground and fewer with tussocks. 
Both the pre and post-grazing factors seem to influence 
the type of vegetation. Also, analyzing this graph, we 
can see a possible interaction between the pre-grazing 
factor and the seasons. For 95 % of light interception, 
the behavior of the trajectories of tussocks and bare 
ground is quite different for trajectories at maximum 
interception. 
Statistical model

As the first step of the model building, the range 
of the estimates of intrinsic parameters (γ) varies from 
-0.0833 to 0.8438 indicating that the RC structure may 
be more appropriate in this case, as these estimates are 
not so close and cover positive and negative values.

Now we fit the models presented in Table 2 under 
the RC structure and compare them using the Wald test 
described above. According to Table 3, which displays 
the results of these comparisons, model 6 is selected to 
describe the data and considers the following effects: 
blocks, pre and post-grazing, season, and the interaction 
between pre-grazing and season already remarked in the 
descriptive analysis (Figure 1).

Therefore, the model can be written using dummy 
variables (first level as reference) as:

ln
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where: i = 1, ..., 640 is the measurement point in the 
field, t is the season and k = 1, 2. Table 4 displays the 
parameters estimates with the standard errors shown 
between parentheses, and significant parameters at 5 % 
of significance are followed by the * symbol.

Figure 3 presents a very satisfactory plot of ob-
served and predicted values. In Figure 4, the ordinary 
residuals of the model are displayed confirming a good 
fit (there are no outliers or patterns in residuals, which 
have their means close to 0 – red line). Confidence in-
tervals for the predicted probabilities are presented in 
Figure 5.

Table 3 − Results of comparisons in the Wald test between the 
nested models proposed.

Comparison Degrees of freedom difference p-value
Model 1 × model 2 10 0.7107
Model 2 × model 3 20 0.0157
Model 2 × model 4 10 0.0160
Model 2 × model 5 10 0.1623
Model 5 × model 6 2 0.1602
Model 6 × model 7 2 0.0212

Figure 2 − Average proportions of each type of vegetation according to treatments and seasons.
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Table 4 − Estimates for the regression parameters of the fitted 
GEE model using local odds ratios to describe the association 
structure.

Parameter Logit 1 (k = 1)
Tussocks vs bare ground

Logit 2 (k = 2)
Weeds vs bare ground

Intercept β0k
0.265 (0.137) -0.764* (0.220)

Block 2 β1k
0.174 (0.092) 0.137 (0.176)

Block 3 β2k
0.050 (0.089) -1.195* (0.233)

Block 4 β3k
0.118 (0.096) -0.442* (0.191)

Pre (maximum) β4k
0.095 (0.170) -0.282 (0.294)

Post (45 cm) β5k
0.052 (0.066) -0.329* (0.142)

Autumn β6k
0.259 (0.174) 0.220 (0.275)

Winter β7k
0.193 (0.170) -0.314 (0.301)

Early spring β8k
0.366* (0.176) -0.851* (0.349)

Late spring β9k
0.165 (0.181) -0.469 (0.301)

Summer 2 β10,k
0.235 (0.167) -0.042 (0.272)

Pre : autumn β11,k
-0.361 (0.246) -0.601 (0.428)

Pre : winter β12,k
-0.335 (0.240) -0.422 (0.460)

Pre : early spring β13,k
-0.597* (0.252) 0.075 (0.516)

Pre : late spring β14,k
-0.576* (0.246) 0.194 (0.444)

Pre : summer 2 β15,k
-0.766* (0.238) -0.990* (0.468)

*Significant parameters at 5 % level.
Figure 4 − Residuals of the fitted GEE model with their means 

represented by the red line.

Figure 3 − Comparison between predicted values by the fitted GEE model and observed data.

Interpretations about the parameter estimates in 
baseline logit models are usually done by odds ratios. 
Among several interpretation that can be done (between 
blocks, seasons, pre and post-grazing), here the focus is 
only on the pre and post-grazing conditions, as they are 
of practical interest and are the main covariates. Table 
5 summarizes the odds ratios and respective confidence 
intervals (CI) comparing places with maximum light in-
terception versus 95 % (pre-grazing). Further, because of 
the interaction between these factors with seasons, there 
are different odds ratios for each season. 

As an illustration, according to Table 5, the esti-
mated odds of tussock is around 60 % of the odds of 
bare ground, for places where there is maximum light 
interception against those where there is 95 % in the 
early spring season: 
	
exp

exp
exp

ˆ ˆ ˆ ˆ

ˆ ˆ
ˆ ˆ,

,

β β β β

β β
β β

01 41 81 13 1

01 81

41 13 1

+ + +( )
+( ) = +( ) == −( ) =exp 0 095 0 597 0 61. . .

Also, the estimated odds of tussock is 1.85 times 
greater than the odds of weeds, for places where there 
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Figure 5 − Confidence intervals (95 %) for the predicted probabilities by the GEE model.

Table 5 − Odds ratios estimates by the GEE model comparing pre-grazing levels.
Pre-grazing (maximum × 95 %)

Season
Tussock × bare ground Weed × bare ground Tussock × weed

Estimate CI (95 %) Estimate CI (95 %) Estimate CI (95 %)
Summer 1 1.10 (0.79; 1.53) 0.75 (0.42; 1.34) 1.46 (0.84; 2.53)
Autumn 0.77 (0.55; 1.07) 0.41 (0.22; 0.76) 1.85 (1.03; 3.34)
Winter 0.79 (0.57; 1.09) 0.49 (0.24; 1.00) 1.59 (0.80; 3.18)
Early spring 0.61 (0.43; 0.85) 0.81 (0.36; 1.84) 0.74 (0.33; 1.66)
Late spring 0.62 (0.45; 0.86) 0.92 (0.48; 1.73) 0.68 (0.36; 1.27)
Summer 2 0.51 (0.37; 0.71) 0.28 (0.14; 0.56) 1.83 (0.92; 3.63)
CI = confidence intervals.

is maximum light interception against those with 95 %, 
in the autumn: 

exp ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
, ,β β β β β β β β01 02 41 42 81 82 111 11 2−( ) + −( ) + −( ) + −( )


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


=                  ++( ) + − +( )  = ( ) =0 282 0 361 0 601 0 617 1 85. . . . .exp

Similar interpretations are done for the rest of the 
table, remarking that confidence intervals containing the 
value 1 do not indicate significant differences.

Table 6 presents the estimated odds ratios estimates 
and respective 95 % confidence intervals comparing the lev-
els of post-grazing (45 cm versus 35 cm). These results are 
simpler those in Table 5 because there is no interaction with 
seasons. As an example of interpretation, the estimated odds 
of weed are around 70 % of the odds of bare ground for plac-
es with height of 45 cm for 35 cm. Moreover, the estimated 
odds of tussocks is 1.46 times greater than the odds of weeds 
for places with height of 45 cm against 35 cm.

With less relevance to the model, we have the 
local odds ratios estimating related to the association 

structure (these parameters are treated as nuisance, i.e., 
of secondary interest), displayed in the following matrix:

The bold highlighted block is interpreted as: i) the 
estimated odds of a point that was a tussock in the win-
ter becomes a weed instead of a tussock in early spring 
is 2.6 times the corresponding odds for a point that was 
a weed in the winter; ii) the estimated odds of a point 
that was a tussock in the winter becomes bare ground 
instead of a weed in early spring is 30 % of the corre-
sponding odds for a point that was a weed in the winter; 
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iii) the estimated odds of a point that was a weed in the 
winter becomes bare ground instead of a weed in early 
spring is 4 times the corresponding odds for a point that 
was bare ground in the winter. We notice that many of 
the local odds ratios in the matrix are close to 1, which 
suggests that the association between the correlated mea-
surements is not so strong as expected. Comparing the na-
ive and robust standard errors of the parameter estimates 
(i.e., a model that does not consider the dependence com-
pared to the proposed model here) the difference between 
them is quite small.

Lastly, as a practical brief of Table 5 and Table 6 
(the main results of the model), if the objective is to stim-
ulate the occurrence of tussocks instead of weeds, it is 
advisable to choose maximum light interception (only in 
the autumn) and/or 45 cm height (for any season). These 
management options either stimulate the occurrence of 
bare ground instead of weeds (for any season consider-
ing the post-grazing and in the autumn and the second 
summer for pre-grazing). If the objective is the occurrence 
of tussocks, instead of bare ground, the suggestion is to 
choose 95 % of light interception in the spring and the 
second summer. 

Conclusions

This paper presented an application of a recent 
methodology for multinomial correlated responses. This 
methodology is an extension of the well-known general-
ized estimating equations (GEE) approach that consists in 
describing the dependence structure among correlated 
measurements in a way that makes sense for categorized 
(nominal) responses, using local odds ratios for that.

In the experiment, the purpose was to investigate 
how the management conditions affect the type of vegeta-
tion observed in the field. We conclude that both pre and 
post-grazing conditions affect the proportion of tussocks, 
weeds and places with bare ground, and there is also an 
effect of the season. The statistical model allows to choose 
a management procedure according to the type of vegeta-
tion of interest for any season. Further, with the association 
structure, we can understand how one place with some 
type of vegetation can change to another type in the other 
seasons. The confidence intervals obtained are certainly 
more correct than if we had used a model that did not con-
sider the dependence between the repeated measurements.

Other possible approaches to analyze this experi-
ment are in the context of random effects models (gener-
alized linear mixed models) or transition models, but in 
these cases, the interpretations are different and cannot 

be compared to the results showed in this study. Briefly, 
in a generalized linear mixed model, the interpretations 
are made in a subject-specific level while in a model-like, 
as presented in this paper, are done for the population 
average. Other aspects that should be taken in account 
are the presence of missing values, if there are different 
numbers of observations per subject, equal/unequal time 
spacing. Therefore, as the results found here were satis-
factory and answer the objectives of the study, these other 
approaches were not applied. Future studies can investi-
gate them and be done to improve the residual analysis 
to check the goodness-of-fit obtained, whose tools for cat-
egorical data are still limited.

References

Agresti, A. 2002. Categorical Data Analysis. 2ed. John Wiley, 
Hoboken, NJ, USA.

Agresti, A. 2007. An Introduction to Categorical Data Analysis. 
2ed. John Wiley, Hoboken, NJ, USA.

Diggle, P.J.; Heagerty, P.J.; Liang, K.Y.; Zeger, S.L. 2002. Analysis 
of Longitudinal Data. Oxford University Press, New York, NY, 
USA.

Dobson, A.J. 2008. An Introduction to Generalized Linear Models. 
2ed. Chapman and Hall, New York, NY, USA.

Goodman, L.A. 1985. The analysis of cross-classified data having 
ordered and or unordered categories: association models, 
correlation models, and asymmetry models for contingency 
tables with or without missing entries. Annals of Statistics 13: 
10-69.

Liang, K.Y.; Zeger, S.L. 1986. Longitudinal data analysis using 
generalized linear models. Biometrika 73: 13-22.

Lipsitz, S.R.; Kim, K.; Zhao, L.P. 1994. Analysis of repeated 
categorical data using generalized estimating equations. Statistics 
in Medicine 13: 1149-1163.

Nelder, J.A.; Wedderburn, R.W.M. 1972. Generalized linear models. 
Journal of the Royal Statistical Society Series A 135: 370-384.

Pereira, L.E.T.; Paiva, A.J.; Geremia, E.V.; Silva, S.C. 2015a. Grazing 
management and tussock distribution in elephant grass. Grass 
and Forage Science 70: 406-417.

Pereira, L.E.T.; Paiva, A.J.; Geremia, E.V.; Silva, S.C. 2015b. 
Regrowth patterns of elephant grass (Pennisetum purpureum 
Schum) subjected to strategies of intermittent stocking 
management. Grass and Forage Science 70: 195-204.

Pinheiro, J.C.; Bates, D.M. 2000. Mixed-Effects Models in S and 
S-PLUS. Springer, New York, NY, USA.

Ryel, R.J.; Beyschlag, W.; Caldwel, L.M.M. 1994. Light field 
heterogeneity among tussock grasses: theoretical considerations 
of light harvesting and seedling establishment in tussocks and 
uniform tiller distributions. Oecologia 98: 241-246.

Touloumis, A.; Agresti, A.; Kateri, M. 2013. GEE for multinomial 
responses using a local odds ratios parameterization. Biometrics 
69: 633-640.

Verbeke, G.; Molenberghs, G. 2000. Linear Mixed Models for 
Longitudinal Data. Springer, New York, NY, USA.

Zeger, S.L.; Liang, K.Y. 1992. An overview of methods for the 
analysis of longitudinal data. Statistics in Medicine 11: 1825-
1839.

Table 6 − Odds ratios estimates by GEE model comparing post-
grazing levels.

Post-grazing (45 cm × 35 cm)
Tussock × bare ground Weed × bare ground Tussock × weed
Estimate CI (95 %) Estimate CI (95 %) Estimate CI (95 %)
1.05 (0.93; 1.20) 0.72 (0.54; 0.95) 1.46 (1.12; 1.91)
CI = confidence intervals.
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Appendix
Library (multgee)

# Step 1) Load data:
data = read.table('Experiment.txt',header=TRUE,dec=',',sep=
'\t')
data$season = factor(data$season, levels=c('Summer 
1','Autumn','Winter','Early spring','Late spring','Summer 2'))
data$type = factor(data$type, levels=c('Weed','Bare 
ground','Tussock'))
data$pre = as.factor(data$pre) # pre-grazing
data$post = as.factor(data$post) # post-grazing
data$block = as.factor(data$block) # each one of the 4 blocks
str(data)

# Other variables:
# cod_type: codification of each type of vegetation (k = 1, 2, 3)
# cod_season: codification of each season (t = 1, ..., 6)
# point_experiment: index of each one of the 640 points (i = 1, 
..., 640)

# Step 2) GEE model --> package MULTGEE:
# 2.1) Association structure choice based on intrinsic parameters:
newdata = with(data,data.frame(y=cod_type, id=point_experi-
ment, repeated=cod_season))
intrinsic.pars(y=y, data=newdata, id=id, repeated=repeated, 
rscale='nominal') 
# there is a considerable variability between the intrinsic param-
eters --> choose the RC structure

# 2.2) Linear predictor choice based on several nested models:
mod_gee1 = nomLORgee(cod_type ~ block + pre*post*cod_sea-
son, data=data, id=point_experiment, repeated=cod_season, 
LORstr = 'RC')

mod_gee2 = update(mod_gee1, formula = ~. - pre:post:cod_sea-
son)
waldts(mod_gee1,mod_gee2)

mod_gee3 = update(mod_gee2, formula = ~. - pre:cod_season - 
post:cod_season)
waldts(mod_gee3,mod_gee2)

mod_gee4 = update(mod_gee2, formula = ~. - pre:cod_season)
waldts(mod_gee4,mod_gee2)

mod_gee5 = update(mod_gee2, formula = ~. - post:cod_season)
waldts(mod_gee5,mod_gee2)

mod_gee6 = update(mod_gee5, formula = ~. - pre:post)
waldts(mod_gee5,mod_gee6)

mod_gee7 = update(mod_gee6, formula = ~. - post)
waldts(mod_gee6,mod_gee7)

mod_gee_final = mod_gee6

summary(mod_gee_final) # 16 parameters in each logit		

# Comparison between naive and robust standard errors:
se_gee = cbind(as.data.frame(sqrt(diag(mod_gee_final$naive.
variance))),as.data.frame(sqrt(diag(mod_gee_final$robust.variance))))
colnames(se_gee) = c('naive','robust')
se_gee$difference = se_gee[,2] - se_gee[,1]

# 2.3) Predicted values:
predicted = as.data.frame(mod_gee_final$fitted.values)
names(predicted) = c('p_tussock','p_weed','p_bare')

# 2.4) Residuals:
residuals = as.data.frame(mod_gee_final$residuals)
str(residuals)

names(residuals)[1] = 'logit1'
names(residuals)[2] = 'logit2'

mean_res1 = with(residuals, mean(logit1))
mean_res2 = with(residuals, mean(logit2))

# 2.5) Confidence intervals:
vcov_gee = mod_gee_final$robust.variance # variance-covari-
ance matrix
vcov_1.1 = vcov_gee[1:16,1:16] # matrix of logit 1
vcov_2.1 = vcov_gee[17:32,17:32] # matrix of logit 2

# Fitting a "second" model setting tussock as reference (by doing 
this we can get the standard errors of estimates related to cat-
egory 'bare ground'):
mod_gee_final2 = nomLORgee(cod_type2 ~ block + pre + post 
+ cod_season + pre:cod_season, data=data, id=point_experi-
ment, repeated=cod_season, LORstr = 'RC')
summary(mod_gee_final2)

vcov_gee2 = mod_gee_final2$robust.variance # variance-covari-
ance matrix
vcov_1.2 = vcov_gee2[1:16,1:16] # matrix of logit 1, but of the 
"second" model
vcov_2.2 = vcov_gee2[17:32,17:32] # matrix of logit 2, but of the 
"second" model

# This file contains several vectors of values 0 and 1 arranged as 
a matrix (dimmension 16 × 95) that will be useful to obtain the 
confidence intervals:
coef_aux = read.table('Auxiliary_cofficients.txt',header=TRUE,d
ec=',',sep='\t')

betas_1.1 = as.matrix(coef(mod_gee_final)[1:16]) # parameters 
estimates of logit 1
betas_2.1 = as.matrix(coef(mod_gee_final)[17:32]) # parameters 
estimates of logit 2
betas_1.2 = as.matrix(coef(mod_gee_final2)[1:16]) # parameters 
estimates of logit 1 of "second" model (bare ground vs tussock)
betas_2.2 = as.matrix(coef(mod_gee_final2)[17:32]) # parameters 
estimates of logit 2 of "second" model (weed vs tussock)

crit = qnorm(1-0.05/2)
ic = c()
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for (i in 2:96){
x = coef_aux[,i];x

l1.1 = t(x) %*% betas_1.1 # logit 1 value
l2.1 = t(x) %*% betas_2.1 # logit 2 value
l1.2 = t(x) %*% betas_1.2 # logit 1 value, model 2
l2.2 = t(x) %*% betas_2.2 # logit 2 value, model 2

se_l1.1 = sqrt(t(x) %*% vcov_1.1 %*% x) # logit 1 standard error
se_l2.1 = sqrt(t(x) %*% vcov_2.1 %*% x) # logit 2 standard error
se_l1.2 = sqrt(t(x) %*% vcov_1.2 %*% x) # logit 1 standard error, 
model 2
se_l2.2 = sqrt(t(x) %*% vcov_2.2 %*% x) # logit 2 standard error, 
model 2

ll_l1.1 = l1.1 - crit*se_l1.1 # lower limit of logit 1
ul_l1.1 = l1.1 + crit*se_l1.1 # upper limit of logit 1
ll_l2.1 = l2.1 - crit*se_l2.1 # lower limit of logit 2
ul_l2.1 = l2.1 + crit*se_l2.1 # upper limit of logit 2

ll_l1.2 = l1.2 - crit*se_l1.2 # lower limit of logit 1, model 2
ul_l1.2 = l1.2 + crit*se_l1.2 # upper limit of logit 1, model 2
ll_l2.2 = l2.2 - crit*se_l2.2 # lower limit of logit 1, model 2
ul_l2.2 = l2.2 + crit*se_l2.2 # upper limit of logit 1, model 2

ll_p_tuss = exp(ll_l1.1)/(1 + exp(ll_l1.1) + exp(ll_l2.1)) # lower 
limit of tussock probability
ul_p_tuss = exp(ul_l1.1)/(1 + exp(ul_l1.1) + exp(ul_l2.1)) # upper 
limit of tussock probability

ll_p_weed = exp(ll_l2.1)/(1 + exp(ll_l1.1) + exp(ll_l2.1)) # lower 
limit of weed probability
ul_p_weed = exp(ul_l2.1)/(1 + exp(ul_l1.1) + exp(ul_l2.1)) # up-
per limit of weed probability

ll_p_bare = exp(ll_l1.2)/(1 + exp(ll_l1.2) + exp(ll_l2.2)) # lower 
limit of bare ground probability
ul_p_bare = exp(ul_l1.2)/(1 + exp(ul_l1.2) + exp(ul_l2.2)) # upper 
limit of bare ground probability

ic = rbind(ic,cbind(ll_p_tuss,ul_p_tuss,ll_p_weed,ul_p_
weed,ll_p_bare,ul_p_bare))}
ic = as.data.frame(ic)
names(ic) = c('p_tussock_ll','p_tussock_ul','p_weed_ll','p_weed_
ul','p_bare_ll','p_bare_ul')

# 2.6) Odds ratios (comparing pre and post-grazing levels):
# Post-grazing (45 × 35 cm): --> no interaction, regardless of the 
season
# Tussock × bare ground (logit 1):
(ratio_est = exp(betas_1.1[6]))
(se = sqrt(vcov_1.1[6,6]))
(ratio_ll = exp(betas_1.1[6] - crit*se)) # lower limit
(ratio_ul = exp(betas_1.1[6] + crit*se)) # upper limit

# Weed × bare ground (logit 2):
(ratio_est = exp(betas_2.1[6]))
(se = sqrt(vcov_2.1[6,6]))

(ratio_ll = exp(betas_2.1[6] - crit*se)) # lower limit
(ratio_ul = exp(betas_2.1[6] + crit*se)) # upper limit

# Tussock × weed (logit 2 of model 2, multiplied by (-1)):
(ratio_est = exp((-1)*betas_2.2[6]))
(se = sqrt(vcov_2.2[6,6]))
(ratio_ll = exp((-1)*betas_2.2[6] - crit*se)) # lower limit
(ratio_ul = exp((-1)*betas_2.2[6] + crit*se)) # upper limit

# Pre-grazing (maximum × 95 %) --> depends on the season be-
cause of the interaction. A little bit more complicated because of 
the covariance that needs to be considered:
# Tussock × bare ground (logit 1):
# Summer 1:
(ratio_est = exp(betas_1.1[5]))
(se = sqrt(vcov_1.1[5,5]))
(ratio_ll = exp(betas_1.1[5] - crit*se))
(ratio_ul = exp(betas_1.1[5] + crit*se))

# Autumn:
(ratio_est = exp(betas_1.1[5] + betas_1.1[12]))
(se = sqrt(vcov_1.1[5,5] + vcov_1.1[12,12] + 2*vcov_1.1[5,12]))
(ratio_ll = exp(betas_1.1[5] + betas_1.1[12] - crit*se))
(ratio_ul = exp(betas_1.1[5] + betas_1.1[12] + crit*se))

# Winter:
(ratio_est = exp(betas_1.1[5] + betas_1.1[13]))
(se = sqrt(vcov_1.1[5,5] + vcov_1.1[13,13] + 2*vcov_1.1[5,13]))
(ratio_ll = exp(betas_1.1[5] + betas_1.1[13] - crit*se))
(ratio_ul = exp(betas_1.1[5] + betas_1.1[13] + crit*se))

# Early spring:
(ratio_est = exp(betas_1.1[5] + betas_1.1[14]))
(se = sqrt(vcov_1.1[5,5] + vcov_1.1[14,14] + 2*vcov_1.1[5,14]))
(ratio_ll = exp(betas_1.1[5] + betas_1.1[14] - crit*se))
(ratio_ul = exp(betas_1.1[5] + betas_1.1[14] + crit*se))

# Late spring:
(ratio_est = exp(betas_1.1[5] + betas_1.1[15]))
(se = sqrt(vcov_1.1[5,5] + vcov_1.1[15,15] + 2*vcov_1.1[5,15]))
(ratio_ll = exp(betas_1.1[5] + betas_1.1[15] - crit*se))
(ratio_ul = exp(betas_1.1[5] + betas_1.1[15] + crit*se))

# Summer 2:
(ratio_est = exp(betas_1.1[5] + betas_1.1[16]))
(se = sqrt(vcov_1.1[5,5] + vcov_1.1[16,16] + 2*vcov_1.1[5,16]))
(ratio_ll = exp(betas_1.1[5] + betas_1.1[16] - crit*se))
(ratio_ul = exp(betas_1.1[5] + betas_1.1[16] + crit*se))

# Weed × bare ground (logit 2):
# Summer 1:
(ratio_est = exp(betas_2.1[5]))
(se = sqrt(vcov_2.1[5,5]))
(ratio_ll = exp(betas_2.1[5] - crit*se))
(ratio_ul = exp(betas_2.1[5] + crit*se))

# Autumn:
(ratio_est = exp(betas_2.1[5] + betas_2.1[12]))
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(se = sqrt(vcov_2.1[5,5] + vcov_2.1[12,12] + 2*vcov_2.1[5,12]))
(ratio_ll = exp(betas_2.1[5] + betas_2.1[12] - crit*se))
(ratio_ul = exp(betas_2.1[5] + betas_2.1[12] + crit*se))

# Winter:
(ratio_est = exp(betas_2.1[5] + betas_2.1[13]))
(se = sqrt(vcov_2.1[5,5] + vcov_2.1[13,13] + 2*vcov_2.1[5,13]))
(ratio_ll = exp(betas_2.1[5] + betas_2.1[13] - crit*se))
(ratio_ul = exp(betas_2.1[5] + betas_2.1[13] + crit*se))

# Early spring:
(ratio_est = exp(betas_2.1[5] + betas_2.1[14]))
(se = sqrt(vcov_2.1[5,5] + vcov_2.1[14,14] + 2*vcov_2.1[5,14]))
(ratio_ll = exp(betas_2.1[5] + betas_2.1[14] - crit*se))
(ratio_ul = exp(betas_2.1[5] + betas_2.1[14] + crit*se))

# Late spring:
(ratio_est = exp(betas_2.1[5] + betas_2.1[15]))
(se = sqrt(vcov_2.1[5,5] + vcov_2.1[15,15] + 2*vcov_2.1[5,15]))
(ratio_ll = exp(betas_2.1[5] + betas_2.1[15] - crit*se))
(ratio_ul = exp(betas_2.1[5] + betas_2.1[15] + crit*se))

# Summer 2:
(ratio_est = exp(betas_2.1[5] + betas_2.1[16]))
(se = sqrt(vcov_2.1[5,5] + vcov_2.1[16,16] + 2*vcov_2.1[5,16]))
(ratio_ll = exp(betas_2.1[5] + betas_2.1[16] - crit*se))
(ratio_ul = exp(betas_2.1[5] + betas_2.1[16] + crit*se))

# Tussock × weed (logit 2 of model 2, with inverted coefficient 
signs):
# Summer 1:
(ratio_est = exp((-1)*betas_2.2[5]))
(se = sqrt(vcov_2.2[5,5]))
(ratio_ll = exp((-1)*betas_2.2[5] - crit*se))
(ratio_ul = exp((-1)*betas_2.2[5] + crit*se))

# Autumn:
(ratio_est = exp((-1)*betas_2.2[5] + (-1)*betas_2.2[12]))
(se = sqrt(vcov_2.2[5,5] + vcov_2.2[12,12] + 2*vcov_2.2[5,12]))
(ratio_ll = exp((-1)*betas_2.2[5] + (-1)*betas_2.2[12] - crit*se))
(ratio_ul = exp((-1)*betas_2.2[5] + (-1)*betas_2.2[12] + crit*se))

# Winter:
(ratio_est = exp((-1)*betas_2.2[5] + (-1)*betas_2.2[13]))
(se = sqrt(vcov_2.2[5,5] + vcov_2.2[13,13] + 2*vcov_2.2[5,13]))
(ratio_ll = exp((-1)*betas_2.2[5] + (-1)*betas_2.2[13] - crit*se))
(ratio_ul = exp((-1)*betas_2.2[5] + (-1)*betas_2.2[13] + crit*se))

# Early spring:
(ratio_est = exp((-1)*betas_2.2[5] + (-1)*betas_2.2[14]))
(se = sqrt(vcov_2.2[5,5] + vcov_2.2[14,14] + 2*vcov_2.2[5,14]))
(ratio_ll = exp((-1)*betas_2.2[5] + (-1)*betas_2.2[14] - crit*se))
(ratio_ul = exp((-1)*betas_2.2[5] + (-1)*betas_2.2[14] + crit*se))

# Late spring:
(ratio_est = exp((-1)*betas_2.2[5] + (-1)*betas_2.2[15]))
(se = sqrt(vcov_2.2[5,5] + vcov_2.2[15,15] + 2*vcov_2.2[5,15]))
(ratio_ll = exp((-1)*betas_2.2[5] + (-1)*betas_2.2[15] - crit*se))
(ratio_ul = exp((-1)*betas_2.2[5] + (-1)*betas_2.2[15] + crit*se))

# Summer 2:
(ratio_est = exp((-1)*betas_2.2[5] + (-1)*betas_2.2[16]))
(se = sqrt(vcov_2.2[5,5] + vcov_2.2[16,16] + 2*vcov_2.2[5,16]))
(ratio_ll = exp((-1)*betas_2.2[5] + (-1)*betas_2.2[16] - crit*se))
(ratio_ul = exp((-1)*betas_2.2[5] + (-1)*betas_2.2[16] + crit*se))


