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ABSTRACT: Computer models have been used to assess soil organic carbon (SOC) stock 
change. Commonly, models require to determine soil bulk density (Db), a variable that is often 
lacking in soil data bases. To partly overcome this problem, pedotransfer functions (PTFs) are 
developed to estimate Db from other easily available soil properties. However, only a few studies 
have determined the accuracy of these functions and quantified their effects on the final quality 
of the spatial variability maps. In this context, the objectives of this study were: i) to develop 
one PTF to estimate Db in soils of the Brazilian Central Amazon region; ii) to compare the per-
formance of PTFs generated with three other models generally used to estimate Db in soils of 
the Amazon region; and iii) to quantify the effect of applying these PTFs on the spatial variability 
maps of SOC stock. Using data from 96 soil profiles in the Urucu river basin in Brazil, a multiple 
linear regression model was generated to estimate Db using SOC, pH, sum of basic cations, 
aluminum (Al+3), and clay content. This model outperformed the three other PTFs published in 
the literature. The average estimation error of SOC stock using our model was 0.03 Mg C ha−1, 
which is markedly lower than the other PTFs (1.06 and 1.23 Mg C ha−1, or 15 % and 17 %, 
respectively). Thus, the application of a non-validated PTF to estimate Db can introduce an error 
that is large enough to skew the significant difference in soil carbon stock change.
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Introduction

Pedotransfer functions (PTFs) are predictive mod-
els of certain soil properties using data from soil surveys 
(Bouma, 1989). These functions fill the gap between the 
available soil data and the properties that are more use-
ful or required for a particular model or quality assess-
ment.  In this work, PTFs are used as physical-mathe-
matical models that allow the estimation of Db from soil 
data, which are needed to convert carbon contents from 
percentage of dry weight to carbon mass per unit of area 
(Howard et al., 1995; Benites et al., 2007). 

The lack of Db data is a limiting factor in regions 
such as the Brazilian Amazon. With a few exceptions, the 
lack of detailed maps along the region is partly due to: a) 
accessibility (often only possible by boat or airplane), b) a 
vast territory extension is covered by the Tropical Amazon 
Forest, and c) lack of more detailed ancillary maps, 
including topographic, geologic, and geomorphologic maps. 
Bernoux et al. (1998) and Tomasella and Hodnett (1998) 
provided the first baseline to predict Db from databases. 
These authors used data from the RADAMBRASIL 
project (RADAMBRASIL, 1978). More recently, Benites 
et al. (2007) used data from the Soil Archives of Embrapa 
(Brazilian Corporation of Agriculture Research) to develop 
a PTF to estimate Db for most Brazilian biomes. These 
three PTFs are frequently applied to predict Db of soils in 
Brazil (Bernoux et al., 2002).

Typically, PTF-estimated attributes are used di-
rectly in numerical modeling, although the accuracy 
of the attribute estimates and their effect on modeling 

results are not often investigated or they are simply ig-
nored (Deng et al., 2009). Despite the importance of 
these SOC stock estimations for Brazilian soils in the 
Amazon region, it is important to highlight that most 
studies that have applied the PTFs above to estimate Db 

do not present quantitative information about the error 
caused by the application of these PTFs. Bernoux et 
al. (1998), reported that Db estimation using their PTF 
could lead to an error of ≤ 10 % in the final calculation 
of carbon stock (CS) in 323 horizons used in the study. 

In this context, the purpose of this study was to 
predict Db from readily available soil properties of Içá 
Formation in the Brazilian Amazon region, considering 
the minor effort and uncertainty principles. We have 
also compared the performance of the models gener-
ated in this study with those in the literature (Bernoux 
et al., 1998; Tomasella and Hodnett, 1998; Benites et 
al., 2007). Finally, we quantified the error due the ap-
plication of different PTFs to estimate Db in the spatial 
variability of soil carbon stock.

Materials and Methods

Study site, soils, and the database
The study site is located in the central region of 

the Amazon State near the Urucu River in the munici-
pality of Coari, Brazil, more specifically between the 
geographic coordinates 4º 45’S and 65º 25’W and the 
average elevation is 60 m above the sea level (Figure 
1). The region is located about 640 km from the state 
capital Manaus, and it can only be accessed by boat 

Amazon region
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or airplane. The climate is equatorial (Af-Köppen Cli-
mate Classification) where the temperature in the cold-
est month is higher than 20 °C, with no pronounced dry 
period and a mean annual precipitation of 2500 mm. 

The sampled area covers about 80 km2, spanning 
longitudinally across the Içá Geologic Formation, which 
is part of the Solimões Geologic Domain. The soils of the 
study site were formed from sediments of Içá Geologic 
Formation (RADAMBRASIL, 1978). The Içá Formation 
consists of fine to medium sandstone and siltstone with 
clay conglomerates and yellow-red. The Holocene allu-
vium of the Quaternary Period deposits is related to the 
current Amazonian drainage networks. The sediments 
of Içá Formation cover an area of 563,264 km2 (36 % of 
the Amazon State) and were deposited in the Tertiary-
Quaternary Period. 

A soil survey was conducted in the Oil Province of 
Urucu River (named Geólogo Pedro de Moura) between 
the years of 2008 and 2009. This work resulted in the 
generation of a soil map along with its respective report 
(Ceddia et al., 2015), which covers an area of 79.665 km2 
(Figure 1). Throughout the soil survey, 96 soil profiles 

were described and sampled by horizon, totaling 483 
horizons/samples. Due to the limitations imposed by 
the native vegetation, the 315 field observations were 
restricted to the vicinity of access roads and only data 
from 96 soil profiles were used for this study.

The soils were classified based on the Brazilian 
Soil Classification System (Embrapa, 1999). The soil-
mapping units of the study site as well as the number 
of profiles and area of occurrence are shown in Table 1. 

In each horizon of the 96 soil profiles, disturbed 
soil samples were taken for the following soil chemical 
attributes: pH (water), Ca+2, Mg+2, K+, Na+, Al3+, H+, 
P, CEC, SB (sum of basic cations), V value (base satura-
tion) and Al3+ saturation. The soil chemical analysis was 
performed according to Embrapa (1997). SOC was mea-
sured by wet combustion (Walkley and Black, 1932). Soil 
physical data consisted of particle size measurements, 
comprising sand (2.00-0.05 mm), silt (0.05-0.002 mm) 
and clay (< 0.002 mm) by the Pipette method.

Undisturbed soil sampling for Db was done by the 
core method using standard steel cylinders of 53 cm3 
volume (h = 42 mm, d = 40 mm). In each of the 96 soil 
profiles, the steel cylinders were inserted into the cen-
ter of each soil horizon (perpendicular to the surface). 
The soil-filled cylinder was carefully removed from the 
ring holder and the soil extending beyond both cylinder 
ends was trimmed flush using a sharp knife. Protective 
plastic covers were used to prevent samples from drying 
out. The samples were transported to the laboratory and 
were oven dried (105 °C) until constant weight (24-48 h).

Development of the pedotransfer function
The first step in the PTFs generation was the selec-

tion of the model development (training) and validation 
of the dataset. The 96 soil profiles were randomly split 
(80/20) into training and validation sets. Thus, the data-
set used for training consisted of 77 soil profiles (adding 
up to 378 horizons), while the dataset used for validation 
consisted of 19 soil profiles (adding up to 105 horizons). 
The spatial distribution of the training and validation soil 
profiles along the study area are presented in Figure 1.

The stepwise multiple regression routine was used 
for explanatory analysis relating Db to soils attributes. 
The Akaike Information Criterion (AIC) with a p-value 
of 0.05 was used to include or exclude variables. All 
linear model assumptions were checked (multicollinear-

Table 1 − Distribution of soil class in the data set.
Order 
(Embrapa, 1999)

FAO-WRB 
(FAO, 1998) Number of soil profiles Total

%
Argissolos Acrisols, Lixisols 53 55
Cambissolos Cambisols 39 41
Espodossolo Spodosol 1 1
Neossolos Arenosols, Fluvisols 2 2
Planossolo Planosol 1 1
Total 96 100

Figure 1 − The location of the study site in the Central Amazon 
(Brazil) and the spatial distribution of the soil profiles used for 
training and validation of the pedotransfer function.
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ity, homoscedasticity and the normality of regression 
residues). Multicollinearity was minimized by removing 
variables with variance inflation factors > 4. To veri-
fy the premise of homoscedasticity was performed the 
Breusch-Pagan test and regression normality residues 
was performed by the Kolmogorov-Smirnov (KS). The 
stepwise regression was performed by the R software (R 
Development Core Team, version 3.1.1). 

The explanatory analysis was conducted consid-
ering two possibilities: a) construction of a unique re-
gression model to estimate soil bulk density for all soil 
depths, and b) construction of two regression models, 
one for surface horizons (A and AB) and another for 
subsurface horizons (BA, B, BC, C). The final choice of 
the model to be used was based on the evaluation of 
the indices AIC, R2 and standard error (SE) of the step-
wise regression. Therefore, the best model presented the 
highest R2 and the lowest SE and AIC.

The evaluation of the pedotransfer function perfor-
mance

This study compares the applicability of the 
proposed multiple regression model with three existing 
models in the literature (Bernoux et al., 1998; Tomasella 
and Hodnett, 1998; Benites et al., 2007), which are 
presented in Table 2. 

We simulated a situation where the database of the 
study area lacked Db data. Thus, to estimate the carbon 
stock, it would be necessary to use a pedotransfer function 
available in the literature. Commonly, when Db data are not 
available in soils of the Amazon region, researchers choose 
one of these three PTFs, although the criteria to choose 
a specific PTF is subjective and not clearly explained. 
Bernoux et al. (1998) and Tomasella and Hodnett (1998) 
generated the first two PTFs to predict Db data from 
properties for soil across the Amazon basin and both used 
the soil data set generated by the RADAMBRASIL project 
(RADAMBRASIL, 1978). More recently, Benites et al. (2007) 
generated a model to predict Db from readily available soil 
properties of Brazilian soils found in most biomes. The 
latter study constructed a database from the Soil Archives 
of Embrapa Solos in Rio de Janeiro, Brazil.

The predicted values (yi) of Db, using different 
PTFs were compared with the 104 observed values (ŷi) 
in the validation dataset. The differences between the 
104 predicted and observed values (ŷi – yi) were used to 

calculate the following error measurements: the mean 
prediction error (MPE), Eq. (1); the root mean squared 
prediction error (RMSPE), Eq. (2); the mean absolute 
error (MAE), Eq. (3); and the prediction coefficient 
of determination (R2), Eq. (4). The results were also 
evaluated graphically by the ratio 1:1 of the observed vs 
predicted values.
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where: ŷi is observed Db of ith soil sample; yi is predicted 
Db of ith soil sample, and n is total number of observations. 

The MPE (accuracy error) enables the evaluation of 
an average tendency for overestimation (positive values) 
or underestimation (negative values). The closer to zero 
MPE is, the greater the model accuracy. MAE is an accu-
racy indicator, but it does not reveal the trend to over- or 
underestimation. This is because it uses an absolute value 
because of the difference between the observed and pre-
dicted data. The RMSPE should be zero, when a perfect 
fit between the observed and predicted data is achieved.

Spatial variability map of soil organic carbon stock 
using measured and estimated values of Db by PTFs

For each of the 96 soil profiles, the calculation of the 
SOC stock was performed at 0-100 cm depth. The clas-
sical way of calculating SOC stock (C mass per area) for 
a given depth consists of summing C stocks by horizon, 
determined as a product of Db, SOC content, and horizon 
thickness (Eq.5), according to Bernoux et al. (2002):

SOC stock = (SOC × Db × T)			   (5)

where: SOC stock is soil organic carbon stock (kg C m−2); 
SOC is soil organic carbon (g kg−1); Db is the soil bulk 
density (Mg m−3) and, T is the horizon thickness (m).

Table 2 − Soil bulk density estimate models from the literature (Benites et al., 2007).
Regression models
(Region) Nsp Nh

Data density
sp/km2 Equations

Bernoux et al. (1998)
(B.L.A.- 5,020,000 km2) 690 323 0.00014 Db = 1.524 – 0.0038 (% clay) – 0.050 (%SOC) – 0.045 (pHH2O) + 0,001 (% sand)

Tomasella and Hodnett (1998)
(B.L.A.- 5,020,000 km2) 1162 396 0.00023 Db = 1.578 – 0.054 (% SOC) – 0.006 (% silt) – 0.004 (% clay)

Benites et al. (2007)
(M.B.B - 8,516,000 km2) 363 1542 0.00007 Db = 1.560 – 0.0005 (g kg−1 clay) – 0.010 (g kg−1 SOC) + 0.0075 (SB)

B.L.A. = Brazilian Legal Amazon Region; M.B.B. = Most Brazilian Biomes (Brazilian Territory); Nsp = number of soil profiles; Nh = number of soil horizons/layers 
with Db data; Data Density (sp/km2) = Number of soil profiles per square kilometers; Db = soil bulk density; SOC = soil organic carbon; SB = sum of basic cations. 
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In the soil survey, the soil profiles were divided into 
horizons (A, B, and C). In most cases, the calculations 
concerned two horizons where the first horizon was 
typically entirely above 100 cm, and the second one 
crossed this 100 cm depth. When a horizon crossed the 
100 cm boundary, only the horizon portion above that 
depth was used to calculate its SOC stock.

Considering the measured data, as well as the 
four estimates of Db (model generated in this work 
and three other published in the literature (Bernoux et 
al., 1998; Tomasella and Hodnett, 1998; Benites et al., 
2007), a total of five dataset of SOC stocks at the layers 
0-100 cm depth were generated. For each of the five 
dataset of SOC stocks, experimental semivariograms 
were calculated for spatial dependence evaluation 
and a theoretical model that best represented the data 
variability was set. The experimental semivariogram, 
g(h), of n spatial observations Z(xi), i = 1, ... n, was 
calculated using equation 6:

g ( )
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where: N(h) = the number of observations separated 
by distance h; Zxi = the soil attribute value measured at 
a specific point (x1) of the grid; Zxi+h= the soil attribute 
value measured at a specific neighbor point apart by 
distance h (xi+h).

The theoretical model was validated by the 
Jack-knife tool (self-validation or cross-validation). 
Thereafter, five spatial variability maps of SOC stocks 
were generated by the ordinary kriging (OK) method. 
OK only uses primary data such as SOC stocks 
measured at sampled locations u to estimate SOC 
stocks at unsampled locations (Wackernagel, 2003). 
For the study site, SOC stock is the primary variable 
Zi (u), measured at sampled locations u to estimate 
SOC stocks at unsampled locations (Z uOK

* ( )). The 
stationarity of the mean is assumed only within a local 
neighborhood W(u), centered at the location u being 
estimated. Here, the mean is deemed to be a constant 
but unknown value, i.e., m(u´)=constant but unknown, 
∀u´∈ W(u). The OK estimator (Eq. 7) is written as a 
linear combination of the n(u) data Zi(u) with a single 
unbiasedness constraint (Eq. 8), as below: 
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The unknown local mean m(u) is filtered from the 
linear estimator by forcing the kriging weights (l) to sum 
to 1 (Eq. 8). The weights l are chosen so that the estimate 
Z uOK

* ( )  is unbiased, and that the estimation variance 
σOK u( )0

2 (Eq. 9) is less than any other linear combination of 
the observed values. The minimum variance of Z uOK

* ( )  is 
given by:
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where: g(ui, uj) = the semivariance of z between the sam-
pling points ui and uj; g(u1, u0) = the semivariance of z 
between the sampling point ui and the unvisited point 
u0; Both quantities g(ui, uj) and g(u1, u0) are obtained from 
the theoretical model fitted to the experimental semivar-
iogram; μ = the Langrange multiplier required for the 
minimization.

The semivariogram calculation, Jack-knife and 
ordinary kriging procedures were conducted using the 
software Geoestat (Vieira at al., 1983). The kriged files 
were exported to software ArcGIS (ESRI, version 9.3), 
where the spatial variability maps of SOC were made.

The evaluation of the spatial variability error of 
SOC stock from measured and estimated values of 
Db by PTFs

In order to compare the maps generated from dif-
ferent data of Db, spatial analysis through map algebra 
(ArcGIS Raster Calculator Function) was performed. 
The spatial variability map of carbon stocks generated 
from the measured data (96 SOC stock values using mea-
sured values of carbon content and Db) was considered 
the most appropriate map (reference map). Then, we 
calculated how much of each PTF used to estimate the 
Db would over- or underestimate the soil carbon stock. 
This procedure allowed determining the carbon stock 
residual (up to 1 m) from the use of each PTF. The re-
siduals were calculated subtracting (pixel by pixel) the 
carbon stock values in the reference map, in relation to 
the others generated from the application of PTFs. For 
this study, each pixel has an area of 1 ha (resolution of 
100 by 100 m).

Results and Discussion

Descriptive statistics and the correlation between 
Db and other soil attributes

Descriptive statistics of soil properties are shown 
in Table 3. The 483 soil horizons covered a wide range 
of soil textural classes, although sandy and franco silty 
were the most predominant classes. We highlight the 
relatively high silt content (mean value of 339, reaching 
up to 721 g kg−1), since this granulometric fraction is not 
commonly higher than 200 g kg−1 in the main classes 
of Brazilian soils. However, along the Central Amazon 
Region, the soils are formed over sediments of Içá and 
Solimões formations (consisted of fine to medium sand-
stone and siltstone). High values of silt were already re-
ported by Tomasella and Hodnett (1998). The authors 
found silt values in their dataset that reached up to 800 
g kg−1. Considering the chemical attributes, the soils 
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Içá Formation, as well as the type and diversity of veg-
etation and consequently the carbon supply to the soil 
(RADAMBRASIL, 1978; Ceddia et al., 2015). The coef-
ficient of variation for Db was 16 %, slightly higher than 
that previously reported for the Amazon Basin (Moraes 
et al., 1995; Bernoux et al., 1998). Moraes et al. (1995) 
observed CV values of 7 % for Alfisols and Ultisols and 
13 % for Oxisols, whereas others (Bernoux et al., 1998) 
have reported a CV of 10 % and 11 % for Oxisols and 
Alfisols and Ultisols, respectively. 

The regression model generated and the compari-
son with previously published models 

The results of the stepwise analysis to select the 
regression models and respective predictors for Db for 
all soil depths, as well as for the surface and sub surface 
horizons, are presented in Table 4. All models generated 
showed a normal distribution of the regression residu-
als (Kolmogorov-Smirnov test). With the exception of the 
regression model for soil surface layer, the models (all 
horizons and subsurface) fulfilled the homoscedasticity 
premise as confirmed by the Breusch-Pagan test (Table 4).

The Db varies according to soil depth (Harrison 
and Bocock, 1981; Leonaviciute, 2000) however, our 
results show no improvement in the prediction capac-
ity of the models after doing a separate calibration of 
superficial horizons from the sub-superficial horizons. 
Similarly, De Vos et al. (2005) did not find any significant 
enhancement in the predictive capacity when datasets 
from top and subsoil layers in forest soils of the Flanders 
region (Belgium) were separated. Other authors working 
with different regions in the world, such as Han et al. 
(2012) in China, Sequeira et al. (2014) and Heuscher et 
al. (2005) in the United States, also did not find any im-
provement in the prediction of Db generating separated 
regression model for surface and subsurface soil layers. 
The PTFs published in the literature, which are recom-
mended to be applied to the Amazon region (Bernoux 
et al., 1998; Tomasella and Hodnett, 1998) and to most 
Brazilian biomes (Benites et al., 2007), are used for all 
soil depths. However, more recently the performance of 
models was evaluated in soils of most Brazilian biomes 

presented high acidity and aluminum toxicity and low 
sum of basis (SB). As characteristics of the study site, the 
mean Al+3 content was 4.03 cmolc dm−3 (ranging from 
0.25 to 12.00 cmolc dm−3). All chemical properties, ex-
cept for pH measurements, had a CV > 45 %. The SOC 
contents ranged from 0.10 to 60.30 g kg−1 and a CV of 
74 %. 

The skewness and kurtosis coefficient could be 
used to infer about the normal data distribution (sym-
metric histogram). A zero value for both coefficients 
means that the attribute presents a normal distribution. 
Although there is no clear-cut guidelines, most studies 
consider data to be approximately normal in shape if 
the skewness and the kurtosis values range from -1.0 to 
+1.0 (Huck, 2012). Considering this range for skewness 
and kurtosis, with the exception of H+ and SOC content, 
all soil properties follow within a normal distribution.

The mean Db measured was 1.25 Mg m−3, with 
minimum and maximum values of 0.49 and 1.67 Mg 
m−3, respectively. The lowest Db value is due to the high-
est amount of soil organic matter (SOM) in well drained 
soils (complex CXa1-typic dystrudepets and PVAa-typichap-
ludults) as opposed to poorly drained soils (consociation 
PACd- typicendoaquults) in the Amazon Forest (Ceddia et 
al., 2015). The relief is considered the main factor influ-
encing the variability of soil types and their attributes in 

Table 3 − Descriptive statistics of the soil properties. 
Soil property Mean Min. Max. SD CV Skewness Kurtosis
Db (Mg m−3) 1.25 0.49 1.67 0.20 16 -0.76 0.44
Sand (g kg−1) 393 22 918 173.70 44 0.52 0.002
Silt (g kg−1) 339 26 721 122.58 36 0.11 0.04
Clay (g kg−1) 266 13 640 131.06 49 0.21 -0.65
pHH2O 4.58 3.50 5.70 0.39 8 -0.07 -0.29
SB (cmolc dm−3) 1.65 0.30 4.52 0.87 52 0.70 -0.45
Al3+ (cmolc dm−3) 4.03 0.25 9.50 1.84 45 0.31 -0.25
H+ (cmolc dm−3) 3.64 0.05 21.70 3.41 94 2.15 5.35
SOC (g kg−1) 7.29 0.10 31.68 5.46 74 1.74 3.59
Min. = minimum; Max. = maximum; SD = standard deviation; CV = coefficient 
of variation (%); Db = soil bulk density; SOC = soil organic carbon; SB = sum 
of basic cations.

Table 4 − Candidate models to predict soil bulk density for all soil depth and dividing the dataset into surface and subsurface horizons.
Models (All soil depth) Int. SOC pHH2O SB Al3+ Clay Silt Sand AIC SE  R2 KS (p value) BP (p value)
1 1.171 -0.0237 0.0622 -0.0230 -0.0124 0.0002 -1593.53 0.1205 0.6672 0.6303 0.2566
VIF - 1.75 1.50 1.57 2.57 2.87
Models (Surface) Int. SOC pHH2O SB Silt Sand Clay Al3+ AIC SE R2 KS (p value) BP (p value)
2 0.609 -0.015 0.145 -546.08 0.1427 0.4745 0.7751 0.0238
VIF - 1.05 1.05
Models (Subsurface) Int. SOC Silt Clay Al3+ pHH2O Sand SB SE R2 KS (p value) BP (p value)
3 1.419 -0.029 0.0002 -1049.72 0.1167 0.2474 0.8385 0.0621
VIF - 1.00 1.00
Surface horizons refer to A and AB horizons; Sub-surface horizons refer to BA, B, BC and C horizons; Int. = Intercept; SOC = soil organic carbon; AIC = Akaike 
Information Criterion; SE = Standard error of the estimation; KS (p value) - values higher than 0.05 mean that the regression residues are normally distributed (KS 
= Kolmogorov-Snirnov test); BP (p value) - values higher than 0.05 means that the regression residues are homocedastic (BP = Breusch-Pagan test); SB = sum of 
basic cations; VIF = Variance Inflation Factor; As a reference, when the VIF value of the soil attribute is lower than 4, it means that the respective attribute does not 
present colinearity with any other predictor variable.
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after separation for surface (to 30 cm depth) and sub-
surface (below 30 cm) (Benites et al., 2007). The authors 
did not found any advantage of partitioning the dataset 
into groups of soil depth and soil orders (Benites et al., 
2007). Here, we highlight the model number 1 in Table 4 
(Eq. 11) that could be used for all soil depths. This model 
explained 67 % of the variance and presented the lowest 
value of AIC and the highest value of R2. The SOC was 
the main predicted variable followed by pHH2O, SB, Al+3 
and Clay. 

Db = 1.171 - 0.0237(SOC) + 0.0622(pH) - 0.0230(SB) - 
0.0124(Al+3) + 0.0002(Clay)	  (11)

Consistent with the findings of many authors, 
SOM clearly plays a dominant role (Adams, 1973; De 
Vos et al., 2005; Heuschek et al., 2005; Han et al., 2012) 
because of its much lower density than mineral soil par-
ticles and its aggregation effect on soil structure. The Db 
strongly correlates with SOM content and soil texture 
(Adams, 1973; Manrique and Jones, 1991). Barros and 
Fearnside (2015), working with oxisoils, also in the Cen-
tral Amazon region, found that the clay content accounts 
for about 70 % of the variation in soil bulk density. How-
ever, the importance of each variable depends on the 
study site. For example, De Vos et al. (2005) found that 
the addition of texture as a predictor has a minor effect 
on Db estimation of forest soils. In fact, the authors ob-
served that SOM accounted for 55 to 57 % of the total 
variation in Db, whereas soil texture explained only 20 
to 26 %. 

In the literature, the relationship between Db and 
chemical attributes (such as pH, SB and Al+3) is scarcely 
reported and a direct physical link is not clearly pre-
sented. In most cases, these attributes are inserted into 
the model due to their availability in most datasets, be-
cause chemical attributes are determined at low costs 
(Bernoux et al., 1998). For instance, Bernoux et al. (1998) 
used pH in water and Benites et al. (2007) used SB to 
estimate Db. However, these authors did not provide a 
physical explanation regarding the relationship between 
either pH or SB with Db. In tropical soils, the main clay 
minerals are kaolinite, goethite, hematite and gibbsite, 
which are colloids with variable charges depending on 
the pH. The main clay minerals in the study site are 
kaolinite and goethite, consequently, as the pH is very 
low (4.58 on average) and organic colloids are mainly 
responsible for the CEC of the soil, cation bridges are 
formed between soil particles. Cation flocculants (Al+3, 
Fe+3 and H+) promote the approximation of the colloi-
dal particles, which is the first step for the aggregation 
formation. The next step of aggregate formation is ce-
mentation, where SOC has an important role, acting as 
an agent that cements flocculated particles (Tisdall and 
Oades, 1982). Finally, soil macro-aggregates are formed, 
which improves the soil porosity and consequently re-
duces Db. In uncultivated soils, like most forest soils, the 
OM has a dominant effect over Db (Adams, 1973) and, 

naturally, becomes the main predictor variable (De Vos 
et al., 2005). Considering that the main colloids of the 
study site in charges that depend on the pH, we hypoth-
esize that Al+3 and H+ availability increases as the pH is 
lowered. Therefore, colloids flocculate and increase soil 
porosity and decrease soil bulk density.

Compared to other PTFs, the proposed model 
(Eq.11) presented the best agreement (Figures 2A, B, C 
and D). Considering the MPE index, our proposed mod-
el presented the lowest bias, once it reached the ideal 
value (MPE = 0). The model proposed by Tomasella 
and Hodnett (1998) tended to underestimate Db (MPE 
= -0.03 kg dm−3), whereas the models by Benites et al. 
(2007) and by Bernoux et al. (1998) tended to overesti-
mate Db (0.11 and 0.15kg dm−3, respectively). The MAE 
value ranged between 0.09 and 0.19 kg dm−3, and the 
highest value was observed in the Bernoux et al. (1998) 
model, followed by the Tomasella and Hodnett (1998) 
and the Benites et al. (2007) models. The Bernoux et al. 
(1998) model presented the highest RMSPE value and 
our model the lowest (Table 5). Barros and Fearnside 
(2015) also developed PTFs for Oxisols in the Central 
Amazon region and compared the performance of their 
model with those presented by authors reported in this 
work (Benites et al., 2007; Bernoux et al., 1998; Toma-
sella and Hodnett, 1998). The authors found that the 
application of these three PTFs overestimate soil bulk 
density, which is in agreement with our findings. How-
ever, we highlight that the soil bulk density determined 
by Barros and Fearnside (2015) is significantly lower 
than what we found in the region of the Urucu River 
(average and median values of 0.66 and 0.62, respec-
tively). This can explain why even the model developed 
by Tomasella and Hodnett (1998) also overestimated 
soil bulk density in the Oxisols evaluated by Barros and 
Fearnside (2015).

Therefore, the model developed using local data 
of the study site to predict Db outperformed the three 
others, both in terms of accuracy and precision. These 
results confirm that it is very difficult for one particular 
PTF to be precise and accurate to predict a soil attribute 
in a vast territory. This is particularly true in the Amazon 
region that encompasses different ecosystems within an 
area of 5,020,000 km2. The low performance of the other 
three models is probably a consequence of the low-den-
sity data used to generate the regression models (Table 
2). These models did not capture adequately the high 
variability of the Amazon soils. The better performance 
of the model generated in this study was expected, since 
local models can capture more effectively the specifici-
ties of the relationship among soil attributes. This is also 
why PTFs should not be generalized to wider regions 
that do not follow the assumptions underlying the re-
lationship between the target and predicting variables. 
Considering these aspects, it is important to highlight 
that the PTF generated in this work should only be used 
in regions belonging to the Içá Formation and that are 
covered with forest.
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Applying the measured and predicted values of Db 
to model the spatial variability of SOC stock

As the measurement of Db is essential to predict SOC 
stock, the impact of using PTFs in the spatial variability 
map of SOC stock was evaluated. Thus, at this stage, we 
compared the semivariogram parameters and maps of SOC 
stock performed from the measured data with those gener-
ated when applying the four PTFs. The application of geo-
statistical techniques requires that the spatial dependence 
between the observations of SOC stock be proved. For this, 
the experimental semivariogram should be calculated in 
order to set a theoretical model that best represents data 
variability (Figures 3A, B, C and D).

The SOC stock at 0-100 cm exhibited spatial de-
pendence. In fact, for all experimental semivariograms, 
both the lag distance (h) and semivariance γ (h) increased 
until they reached an approximately constant value 
called sill variance (known as the priori variance of the 
random variable (Table 6)). The same theoretical model 

(spherical) was fitted for all the experimental semivar-
iograms, which differ from each other in the nugget 
parameters (C0), structural variance (C1) and range (a). 
The semivariogram of reference (Figure 3A) is the one 
calculated from the measured data of Db and soil organic 
carbon, as these are the best data we have to evaluate 
the SOC stock variability. In general, the parameters of 
the semivariogram using the pedotranfer generated in 
this study were close to those of the reference semivar-
iogram (Figure 3B). The experimental semivariogram 
calculated using Db estimated from the PTF proposed 
by Tomasella and Hodnett (1998) presented the highest 
range (Figure 3D). The range is the lag distance at which 
the semivariogram reach its sill. This is the spatial de-
pendence and beyond it, the variance bears no relation 
to the separation distance (Webster and Oliver, 1990). 
On the other hand, the experimental semivariogram cal-
culated using Db estimated using the PTF proposed by 
Benites et al. (2007) and Bernoux et al. (1998), presented 

Figure 2 − Plot of predicted vs. observed bulk density (Mg m−3) considering the four pedotransfer functions (PTFs). A) Generated Model for all 
depth; B) Tomasella and Hodnett (1998); C) Bernoux et al. (1998); D) Benites et al. (2007).

Table 5 − Evaluation indices of proposed and existing regression 
models for Db estimation.

Models MPE MAE RMSPE R2

Generated Model (All depth) 0.00 0.09 0.11 0.6878
Beniteset al. (2007) 0.11 0.17 0.24 0.0004
Tomasella and Hodnett (1998) -0.03 0.19 0.22 0.0053
Bernoux et al. (1998) 0.15 0.19 0.27 0.070
Reference values 0 0 0 1
MPE = Mean Prediction Error; MAE = Mean Absolute Error; RMSPE = Root 
Mean Squared Prediction Error.

Table 6 − Models and their parameters fitted for SOC stock’s 
semivariograms.

Models C0 C1 Sill (m) Range (m)
Measured data of Db and SOC 2.87 1.87 4.74 3981
Generated Model (All depth) 2.95 1.10 4.05 2800
Benites et al. (2007) 2.38 3.01 5.39 2180
Tomasella and Hodnett (1998) 3.30 1.58 4.88 8000
Bernoux et al. (1998) 3.09 2.98 6.07 2400
C0 = nugget effect; C1 = contribution; Sill = C0 + C1; SOC = soil organic carbon.
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the lowest ranges (spatial dependence of 2180 and 2400 
m, respectively) (Figures 3C and E).

The semivariogram with the highest nugget effect 
value (3.30) was the one generated from the application 
of the PTF proposed by Tomasella and Hodnett (1998), 
while the lowest nugget effect value (2.38) was the one 
developed by Benites et al. (2007). This implies that the 
SOC stock has a higher initial variability when using the 
model proposed by Tomasella and Hodnett (1998).

The structured variability using ordinary kriging 
allowed the generation of the spatial variability map of 
SOC stocks up to 100 cm of soil depth (Figures 4A, B, C, 
D and E). The SOC stock map generated with measured 
values of Db and SOC (reference map) ranged from 4.89 
up to 9.93 kg C m−2 (Figure 4A). These values are similar 
to those found in the literature for the Amazon region. 
Ceddia et al. (2015), using different results published in 
the literature, compared the average values of SOC stock 
up to the 100 cm soil depth for the same region and 
found that the estimative of SOC stock ranged from 7.32 
to up to 9.01 kg cm−2.

The SOC stock variability maps performed with 
Db estimated by our PTF and the PTFs presented by To-
masella and Hodnett (1998) (Figures 4B and D, respec-

tively) had amplitude values closer to those in the refer-
ence map. The SOC stock variability maps using the Db 

estimated by PTFs proposed by Benites et al. (2007) and 
Bernoux et al. (1998) tended to overestimate these values 
(Figures 4C and E). These maps showed the highest up-
per limit values of SOC stock (13.96 kg cm−2 and 12.81 
kg cm−2, respectively). 

Bernoux et al. (2002) argue about the uncertainty 
sources in estimating SOC stock. The first source related 
to different database information used in the estimates. 
The second source referred to the error associated with 
the estimation of Db by PTFs. However, according to the 
authors, the most important source of uncertainty origi-
nates from the SOC analytical methods. Therefore, they 
reaffirm the need for a more complete documentation 
(metadata) about the database used to generate PTFs. Ac-
cording to the authors, in addition to the statistical data 
information, the database must contain which methods 
were used to obtain the attributes used as predictors. 
The authors refer to (Garten and Wullschleger, 1999) 
as traditional method in soil science and claim that this 
method is not completely accurate and is considerate the 
main source of uncertainty in estimating SOC. We also 
observed in this study that variations in Db through ap-

Figure 3 − Carbon stock semivariograms using measured and estimated data of Db. A) Semivariogram generated with the measured data of 
Db; B) Semivariogram generated applying the Db estimated using the PTF proposed in this work; C) Semivariogram generated applying the Db 
estimated using the PTF proposed by Benites et al. (2007); D) Semivariogram generated applying the Db estimated using the PTF proposed by 
Tomasella and Hodnett (1998); E) Semivariogram generated applying the Db estimated using the PTF proposed by Bernoux et al. (1998). Shp 
= Spherical model (nugget effect, contribution and range values); PTFs = Pedotransfer functions; SOC = soil organic carbon.
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plications of PTFs not suitable to an environment, other 
than the one in which they were developed, could cause 
significant errors in SOC stock measurements.

The residuals caused by applying different PTFs on 
the spatial variability maps of SOC stock 

The spatial variability maps of the residuals as well 
as the statistics of the residuals are shown in Figures 5A, 
B, C and D and Table 7, respectively. The residual class-
es shown in Figures 5A and C confirmed that the PTFs 
generated in this study and those developed by Tomasel-
la and Hodnett (1998) presented the lowest residual and 
tend to underestimate even more the SOC stock, mainly 
when compared to the maps generated by Benites et al. 
(2007) and Bernoux et al. (1998). These results are in ac-
cordance with the values of the MPE index previously 
discussed in item 3.2. We highlight the overestimation of 
SOC stock when applying the PTFs generated by Benites 
et al. (2007) and Bernoux et al. (1998). Using these PTFs, 
the overestimation of SOC stock could reach up to 4.20 
and 2.95 kg cm−2, respectively (Figures 5B and D). The 
mean value of the SOC stock applying the PTF function 
generated in this study is practically the same of that in 
the reference map (7.49 Mg C ha−1). On the other hand, 
applying the PTFs developed by Benites et al. (2007) and 
Bernoux et al. (1998), resulted in mean values of SOC 
stock of 8.56 and 8.73 Mg C ha−1, respectively. When 
applying these PTFs, the mean residual value of SOC 
stock in relation to the reference map is 1.06 and 1.23 
Mg C ha−1, a mean overestimation of 15 and 17 %, re-

Figure 4 − Spatial variability maps of SOC stock using ordinary kriging. A) Map generated with the measured data of Db; B) Map based on the 
Db estimated using the PTF generated in this work; C) Map based on the Db estimated using the PTF generated by Benites et al. (2007); D) 
Map based on the Db estimated using the PTF generated by Tomasella and Hodnett (1998); E) Map based on the Db estimated using the PTF 
generated by Bernoux et al. (1998). SOC = Soil Organic Carbon; PTFs = Pedotransfer functions.

Table 7 − Statistics of the SOC stock maps and the residual caused 
by the application of different PTFs.

Models MinimumMaximum Mean SD
Kriged maps of SOC stocks (Mg C ha−1)
Measured data (RM) 4.89 9.93 7.49 0.95
Generated Model (All depth) 4.13 11.03 7.53 1.18
Benites et al. (2007) 4.78 13.96 8.56 1.46
Tomasella and Hodnett (1998) 4.50 10.56 7.56 1.11
Bernoux et al. (1998) 5.45 12.81 8.73 1.17
Residual maps of SOC stocks (Mg C ha−1)
MG (All depth)-RM -1.78 1.50 0.03 0.58
Benites et al. (2007)-RM -1.13 4.20 1.06 0.83
Tomasella and Hodnett (1998)-RM -1.12 1.84 0.06 0.49
Bernoux et al. (1998)-RM -0.09 2.95 1.23 0.52
RM = Reference map; SD = Standard Deviation; SOC = soil organic 
carbon.

spectively (Table 7). Considering the residuals found in 
this work, the error in the estimation of SOC stocks, us-
ing different PTFs to estimate Db could be higher than 
10 %, as previously reported by Bernoux et al. (1998).

The results here presented can also give support 
to answer a significant and generic problem with the 
estimation of changes in terrestrial biospheric carbon, 
which is the smallest detectable change. The smallest 
difference in SOC stock that could be detected after 5 
years under an herbaceous bioenergy crop was about 1 
Mg C ha−1 in the southeastern United States (Garten and 
Wullschleger, 1999). Considering the average residual 
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of SOC stock caused by applying the PTFs developed 
by Benites et al. (2007) and Bernoux et al. (1998) in the 
study site, it is possible to conclude that the simple appli-
cation of a PTF to estimate Db could introduce an error 
enough to offset the smallest detectable change of the 
SOC stock estimate. 

Conclusions

A linear regression model was generated to esti-
mate Db for soils of the Central Amazon region, Brazil. 
The developed PTF used soil attributes easily found in 
soil survey reports such as SOC, pH in water, sum of ba-
sic cations, Al+3, and clay content as predictor of Db. The 
PTF generated should only be used in regions belonging 
to the Içá Geological Formation and covered with forest.

Compared to the three most used PTFs to estimate 
Db in Amazon soils (Bernoux et al., 1998; Tomasella and 
Hodnett, 1998; Benites et al., 2007), our PTF outper-
formed the other models, showing not only better ac-
curacy, but also the lowest bias.

We also quantified the effect of using PTFs to es-
timate the Db on spatial variability of SOC stock. The 
results showed that the uncertainty caused by the esti-
mative of Db using PTFs could be much higher than the 
values reported in the literature. The PTFs of Benites et 
al. (2007) and Bernoux et al. (1998) caused an overesti-
mation of 1.06 and 1.23 Mg C ha−1 in the SOC stock, 
which represented 15 % and 17 %, respectively. This 

means that the simple application of a PTF to estimate 
Db could introduce an error large enough to skew the 
significant difference in soil carbon stock change.
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