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ABSTRACT: Tetrazolium tests use conventional sampling techniques in which a sample has a 
fixed size. These tests may be improved by sequential sampling, which does not work with fixed-
size samples. When data obtained from an experiment are analyzed sequentially the analysis can 
be terminated when a particular decision has been made, and thus, there is no need to pre-es-
tablish the number of seeds to assess. Bayesian statistics can also help, if we have sufficient 
knowledge about coffee production in the area to construct a prior distribution. Therefore, we 
used the Bayesian sequential approach to estimate the percentage of viable coffee seeds sub-
mitted to tetrazolium testing, and we incorporated priors with information from other analyses 
of crops from previous years. We used the Beta prior distribution and, using data obtained from 
sample lots of Coffea arabica, determined its hyperparameters with a histogram and O’Hagan’s 
methods. To estimate the lowest risk, we computed the Bayes risks, which provided us with a 
basis for deciding whether or not we should continue the sampling process. The results confirm 
that the Bayesian sequential estimation can indeed be used for the tetrazolium test: the average 
percentage of viability obtained with the conventional frequentist method was 88 %, whereas that 
obtained with the Bayesian method with both priors was 89 %. However, the Bayesian method 
required, on average, only 89 samples to reach this value while the traditional estimation method 
needed as many as 200 samples.
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Introduction

The tetrazolium test is a method for quickly assess-
ing seed viability and vigor (Clemente et al., 2011; Rosa et 
al., 2010). A sample for the test must be collected accord-
ing to the guide provided by the International Seed Test-
ing Association (ISTA, 2008). Widely used in agricultural 
research, these sampling rules originated in quality control 
techniques. However, because of the expediency of the 
planting time, seeds need fast decisions so that they can be 
released for cultivation or commercialization. 

Conventional sampling methods are based on a fixed 
number of sampling units. Sequential sampling is a faster, 
reliable and more efficient alternative to the fixed-sample-
size method (Mukhopadhyay and Silva, 2009). In sequen-
tial sampling, the number of sample units varies, which 
can help reduce sampling time with no loss of reliability. 
Further, the sampling units are tested in sequence until the 
data gathered is sufficient for estimating the parameters 
and can be subjected to testing hypotheses (Zacks, 2017; 
Souza et al., 2014). 

Among the various applications of sequential sam-
pling, we highlight the articles of Souza et al. (2014) and 
Ballaris et al. (2014) who used sequential sampling to de-
termine the number of seeds required to accurately verify 
lot infestation. 

Sequential sampling may be improved by using what 
we know about coffee production in the area: for example, 
we might have garnered useful indications from analyses 
of crops from previous years, or information about the gen-

otype of the seeds assessed. Such knowledge can allow the 
use of Bayesian inference for sequential sampling. 

Bayesian statistics draws on previous research 
knowledge to analyze the present data (Morita et al., 2008). 
Several techniques are available for the building of a proba-
bilistic prior distribution for the viability of a lot of seeds. 
The usual technique consists of deciding on a possible 
distribution based on a histogram of the variable. Another 
builds on the prior density function based on probabilistic 
specifications provided, for example, by an expert. Such 
knowledge can be translated into percentages of a prob-
ability distribution by elicitation (Garthwaite et al., 2005). 

Since Bayesian statistics uses prior knowledge, it 
can be more precise than traditional frequentist statistics. 
This enhanced precision, may require fewer seeds when 
applied to the tetrazolium test. Thus, we used the Bayesian 
sequential approach to estimate the percentage of viable 
coffee seeds submitted to the tetrazolium test, incorporat-
ing priors with information from experiments on crops 
from previous years. Next, we compared the results with 
those of the traditional frequentist approach applied to the 
tetrazolium test. Although our method focused on coffee 
seeds, it can also be applied to seeds of other species that 
are analyzed in a similar way.

Materials and Methods

Evaluation of the percentage of viable coffee seeds 
submitted to the tetrazolium test

We conducted the tetrazolium test in 25 lots of 
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Coffea arabica, coming from the 2015/2016 crop in the 
area of Lavras (latitude 21º30’ S, longitude 44º60’ W 
and average elevation of 919 m), south Minas Gerais, 
Brazil, to assess their viability. 

The sample seeds were collected in accordance 
with Normative Instruction no. 9 of the Ministry of Ag-
riculture, Livestock and Supply, June 2, 2005, which ap-
proves rules for the production, commercialization and 
use of seeds in Brazil (MAPA, 2009; Santos et al., 2014). 

To validate the procedure proposed in this work, 
we ran the conventional tetrazolium test for 200 coffee 
seeds (AOSA, 1983), divided into two repetitions with 
100 seeds in each lot. Seeds are soaked in distilled water 
for 48 hours, the embryos were extracted and kept in an 
antioxidant solution of polyvinylpyrrolidone (PVP) until 
they were placed in the tetrazolium solution. At the end 
of the extraction, the embryos were washed in running 
water then sieved and imbibed in 0.5 % tetrazolium so-
lution, in darkness (using dark flasks), at a temperature 
of 30 ºC, for 2 hours. 

We analyzed viability with a stereoscopic magni-
fying glass: based on the location and extension of the 
areas stained by the tetrazolium salt, we rated the em-
bryos as viable or not viable. 

According to the International Seed Analysis As-
sociation, results of a viability test should only be ac-
cepted if the difference between the repetitions with the 
highest and the lowest estimated viability percentage 
does not exceed the tolerance level (Bányai and Barabás, 
2002). 

To check the test reliability, we estimated the 
mean percentage viability for the repetitions, which was 
compared with the tolerance value (table value) at a sig-
nificance level of 5 % (Miles, 1963).

Construction of the prior distribution using 
information from previous experiments

The tetrazolium test gives results that resemble a 
Bernoulli trial, since each rated seed may be character-
ized as either viable or not viable. Thus, each result has 
associated probabilities of success (viable) (p) and failure 
(not viable) (1–p). In accordance with this specification, 
x corresponds to the sum of successful Bernoulli trials, 
that is, the total number of viable seeds in an n-sized 
sample, and is defined by the binomial distribution X 
~ Bin(n,p)

f x p
n

x
p p px n x( | ) =








 −( ) ≤ ≤−1 0 1         	  (1)

where p is the population proportion (or percentage) of 
viable seeds in a lot, and n the sample size. The formula 
(1) represents the probability of drawing a sample of n 
seeds of which x are viable. According to Bányai and 
Barabás (2002), germination data follow the binomial 
distribution.

In the Bayesian context, the proportion p of viable 
seeds is considered random variable P, to which a pri-
or probability distribution π(p) is associated. From the 

experimental information provided by the likelihood 
function f(x|p), we obtain a posterior distribution f(p|x) 
(Pham-Gia, 1998). Consequently, the posterior distri-
bution f(p|x) for parameter p will be f(p|x) ∝ f(x|p).p (x). 
When a prior distribution is defined in the class of con-
jugated distributions, it is possible to obtain a posterior 
distribution which has the same functional form as these 
likelihood functions (Berger, 1985). The use of conjugate 
priors is just a convenient mathematical device.

According to Gelman (2006), the Beta conjugated 
prior distribution P ~ Beta(a,b)

 
is often used to model 

random variables representing proportions and percent-
ages. This distribution has the following form:

 
π α β

α β
α β

α βp p p| ,( ) = +( )
( ) ( )

−( )− −Γ
Γ Γ

1 11 	  (2)

where 0 ≤ p ≤ 1, Γ α α( ) = − −
∞

∫ u e duu1

0
is the Gama func-

tion, and the hyperparameters are α > 0 and β > 0. In 
Bayesian statistics, a hyperparameter is the parameter of 
a prior distribution; the term is used to distinguish hy-
perparameters from parameters of the analyzed model. 
In this work p is a parameter of the Binomial distribu-
tion while α and β are parameters of the prior distribu-
tion (Beta distribution), thus, hyperparameters.

With changing hyperparameters, the Beta distri-
bution shape can change, too. When a > 1 and β > 1, 
the distribution is unimodal and skewed with its single 
mode at

p =
−( )

+ −( )
α

α β
1

2
; 

this mode would be the most frequent proportion of vi-
able seeds in a lot. The expected proportion E(p), the 
proportion’s variability Var(p) and the mode correspond-
ing to the most likely value are, respectively,

E p priori( ) = =
+( )

µ
α

α β
, 

Var p priori( ) = =
( )

+( ) + +( )
σ

αβ

α β α β
2

2 1
 and 

mode =
−

+ −( )
α

α β
1

2
 ,	  (3)

We can use several approaches to determine hy-
perparameters α and β from the prior distribution (2) 
(Paulino et al., 2005). To create a prior distribution, we 
tried the histogram method and then O’Hagan’s elicita-
tion method.

We constructed the first prior Beta distribution 
(αhist, βhist) based on the histogram derived from histori-
cal data obtained by the expert in a traditional tetrazo-
lium test carried out in 2015 with 17 lots of Coffea ara-
bica L., in Lavras, Minas Gerais, Brazil. The histogram 
was built by partitioning the parametric space [0;1] into 
sub-intervals of length where h = 0.2. Afterwards, we 
calculated from the historical data the probability for 
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when b is much greater than α, but the distribution gets 
less skewed and the mode approaches 0.5 as α and b ap-
proach each other (Lau and Lau, 1991). For this reason, 
estimates of mean, median and mode can be different. 
The limit equal to 30 allows for all the possibilities to 
have occurred. 

Stopping Rule and Estimation Criteria for the 
Bayesian Sequential Procedure

At each step of the sequential inspection, we cal-
culated the values of loss function L(p, dn, n), where p is 
the proportion of viable seeds, dn a decision function and 
n, the sample size up to that moment. A loss function 
L is the loss incurred by adopting decision dn when the 
true state of nature is p (Brockwell and Kadane, 2003) 
One of the most used loss functions in decision theory is 
the quadratic loss function L p p= −( )ˆ 2 , where p is the 
viability proportion expected for a lot of seeds while p̂  
is the actual proportion in the sample.

Based on sequential decision theory, we treated 
the cost as constant, but it could also be linear or even 
a quadratic function. Pham-Gia (1998) considered the 
quadratic loss function plus a sampling cost of one unit 
(here, one seed) per observation: 

     	  (6)

where C(n) > 0 is the cost function to use an n-size sam-
ple to estimate proportion p. 

We treated the cost as a constant, so we did not 
estimate it. Thus, we did not update it during the esti-
mation process; instead, we multiplied the cost value by 
the size of the sample.

The risk function of a sequential procedure is the 
expected loss,        ˆ, ,           nR p E L p n E p C n . Our 
aim was to develop such an inspection plan that min-
imizes the risk function. Brockwell and Kadane (2003) 
report that ‘the Bayesian approach to sequential analysis 
is to select a procedure that stops the sampling, allowing 
to minimize the expected value of some loss function 
which reflects the cost associated with a particular out-
come’. However, the value attributed to the cost must 
have an order of magnitude similar to the order of mag-
nitude of p p−( )ˆ 2 , which ensures that the risk function 
is not exclusively dominated by cost. Since the loss is 
the square of a difference between the proportion val-
ues which are between 0 and 1 the results are always 
close to zero and the cost should be close to zero, too 
(Bach, 2015). Consequently, the cost is a factor of minor 
impotance to making a decision of when to interrupt 
sampling. 

Brockwell and Kadane (2003) report that ‘the 
Bayesian approach to sequential analysis is select a pro-
cedure that stops the sampling allowing minimizing of 
the expected value of some loss function which reflects 
the perceived cost associated with a particular outcome’. 
In the Bayesian sequential procedure, we must also cal-
culate the Bayes risk, defined by r(p) = Ep [R(p)] , that is, 

each sub-interval to contain the true parametric value, 
and built the histogram. We then adjusted the Beta dis-
tribution to this histogram by using our R script (R Core 
Team, 2015) and found mean  and variance ŝ2  of this 
distribution. 

Applying the moment method, we estimated α 
and β as

ˆ ˆ
ˆ ˆ
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1
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 (4)

It is impracticable to expect experts unfamiliar 
with Bayesian statistics to understand how hyperpa-
rameters work in a probability distribution. Thus, we 
used an adaptation of the elicitation method proposed 
by O’Hagan (1998), with which we helped the expert 
to elicit all the information obtained from the analyses 
based on crops from previous years. Choosing a candi-
date distribution for the prior distribution is important, 
especially when there is not much information about 
the shape of the target density and, in this case, the 
parametric space or the domain of a function for p is the 
interval [0;1] (Cappé et al., 2008). First, we elicited the 
mode (m), the Lower limit (L) and the Upper Limit (U) 
of the candidate distribution to model the parameter p. 
Afterwards, we calculated probabilities probi associated 
with six different intervals of occurrence of viability of 
parameter p (Moala and Penha, 2016): 

prob L p m1 = < <( )Probability ; 

prob L p
L m

2 2
= < <

+





Probability ;  

prob
U m

p U3 2
=

+
< <






Probability

prob L p
L m

4
3

4
= < <

+





Probability ;

prob
U m

p U5
3

4
=

+
< <






Probability . 	  (5)

Afterwards, we converted probabilities probi into 
six quantiles as follows: q1 = p2; q2 = p4 – p2; q3 = p1 – p4; 
q4 = 1 – p1 – p5; q5 = p5 – p3; and q6 = p3.

Thus, we used several values of α and β to es-
tablish the Beta distribution Beta OHagan OHaganˆ , ˆα β( ) that 
best represents expert opinion about historical data; in 
so doing, we developed an algorithm (see the code in 
Appendix) to find hyperparameters ˆ, ˆα β( ) to minimize 
the sum of squares of the differences between the elic-
ited probabilities and the probabilities of another Beta 
distribution, Beta(a, b)(Garthwaite et al., 2005). We con-
sidered the intervals α ϵ [1;30] and β ϵ [1;30] We chose 
these intervals because when α >1 and b >1, the dis-
tribution is unimodal and skewed with a single mode. 
Furthermore, the distribution is strongly right-skewed 
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the expected risk associated with the estimation proce-
dure of parameter p, given prior π after n observations 
(Berger, 1985). 

Pratt et al. (1964) demonstrated that the posterior 
Bayes risk is the variance of the posterior distribution 
where:

ro(p
n, n) = varpost(n) 	  (7)

Thus, the expected posterior Bayes risk when an-
other observation is made is (Pham-Gia, 1998):

r1(pn, n) = E[varpost(n)] 	  (8)

A risk function governs the stopping rule. The 
general idea in Bayesian sequential analysis is that it is 
necessary to calculate the immediate risk ro(p

n, n) after 
each seed has been observed and make a comparison 
with the expected posterior Bayes risk r1(pn, n), that is, 
the risk for a situation where one more seed is observed 
(Berger, 1985). 

The standard procedure after evaluating the nth 
seed is to compare ro(p

n, n) with r1(pn, n). If ro(p
n, n) > 

r1(pn, n), the sampling continues; if ro(p
n, n) ≤ r1(pn, n), 

the sampling stops. Bayes Sequential Rule may also be 
known as Bayesian learning, because the posterior dis-
tribution calculated at current n will be used to update 
the prior distribution yet to be used at the (n+1)th inspec-
tion (Garthwaite et al., 1995). 

Since we used the squared-error loss, the mean of 
the posterior distribution was Bayes’ estimator of pro-
portion p. Thus, we estimated the proportion of viable 
seeds in the lot using the Beta (α’, β’) distribution (Berg-
er, 1985) mean.

The expected value µpost and variance s2
post of the 

posterior distribution of p are given by the Beta distribu-
tion with parameters as follows: 

µ
α

α βpost
x

x n x
=

+
+ + + −( )

 and

σ
α β

α β α β
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x n x

n n
2

2 1
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.	  (9)

Consequently, the expectancy of variance E[varpost 
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n
n post1
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Thus, according to (7), (8) and (9), the stopping cri-
terion will be

α β

α β α β

α β
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Therefore, according to (6) and (10): 

r n n c
n

n
r n n cn n

0 01
1π

α β
α β

π, ,( ) + ( ) ≤
+ +

+ + +








 ( ) + +( ) .    (11)

Here, (n)c and (n+1)c are the costs of observing n 
and n+1 sample units.

We implemented the above procedure in R. The 
process to build each prior is carried out only once. On 
the other hand, the sequential procedure is performed 
for each lot, that is, we did it 25 times (see the code in 
Appendix). 

Results and Discussion

Construction of prior distributions
According to the above-described procedures, we 

obtained a histogram from the percentages of seed vi-
ability in 17 coffee lots from the analysis carried out for 
crops harvested in 2015; when calculating the hyperpa-
rameters according to equation (4), we found that the 
best distribution was Beta with hyperparameters α = 
9.14 and β = 1.29 (Table 1). 

To build the prior by O’Hagan’s method, we cal-
culated the sum of squares of the differences between 
the probabilities elicited from historical data and the 
probabilities in different Beta distributions, according to 
the quantiles considered in expression (5). We consid-
ered the inspection of values α; β for intervals α ∈ [1;30] 
and b ∈ [1;30] with a gap of length 0.1. We selected the 
pair of hyperparameters, α = 27.2 and β = 2.7, which 
provided the lowest sum of squares of the differences 
(Moala and Penha, 2016).

Implementing O’Hagan’s method, we determined 
the pair of values of (α; β) that minimize the sum of 
squares of the differences between probabilities elicited 
by the historical information and the probabilities of 
Beta distribution (α; β) (Moala and Penha, 2016). The 
smallest sum of squares for α was 27.2 and for β, 2.7 
(Table 1). 

The prior histogram method led to a lower mean 
percentage of viable seeds with greater variability, 
whereas the prior obtained by the adapted O’Hagan’s 
method resulted in a higher but more precise mean. 
Figure 1 visualizes the prior probability functions. They 
indicate that the histogram method presented heavier 
tails; therefore, for smaller proportions, there is evi-
dence that the probabilities estimated by this method 
will be higher. 

For the mode measure, the histogram method is 
equivalent to O’Hagan’s, so either method may be used. 

Table 1 – Estimations of hyperparameters considering the different 
methods to build priors. 

Bayesian Sequential 
Procedure

Beta prior Measures
α β Mode Average Standard deviation

------------------ % --------------------
Histogram 9.14 1.29 96.56 87.63 0.0975
O’Hagan 27.20 2.70 93.91 90.97 0.0520
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Moala and Penha (2016) mention other studies which 
show that, when the sample distribution is slightly 
asymmetric, the estimations of mode, mean and median 
may be imprecise. Hughes and Madden (2002) reviewed 
methods that may be used to adjust the Beta distribution 
to an expert’s opinion. 

Both Bayesian procedures were superior to the 
classic frequentist approach. The difference between 
sample sizes in the Bayesian procedures was close to 
two units, which may be considered insignificant.

Estimation of the percentage of viable coffee seeds 
in the tetrazolium test using traditional sampling 
and Bayesian sequential procedure

To compare the Bayesian and traditional methods, 
we estimated the percentage of viable seeds in each 
of the 25 lots from the 2016 crop using the Bayesian 
approach for each prior built with the information 
gathered from the 2015 crop. From each procedure we 
defined the initial proportion, calculated by the mean 
posterior mpost, and variance s2

post given by (9). For each 
seed assessed, we assigned a dummy variable, with val-
ues coded as 1 and 0, which represent seed results as 
viable seeds (value 1) or inviable seeds (value 0), re-
spectively. For each new seed, we obtained the hyper-
parameters of the posterior distribution (α’ and β’) and 
the corresponding risks. The decision as to whether to 

continue the sampling to stop was based on checking 
whether the expected risk r1 was greater than the im-
mediate risk ro. 

The values calculated for Bayes risk differed only 
in the sixth decimal place. If the cost is too high, the pro-
cedure stops after analyzing a few seeds, thus, we opted 
for a fixed cost value (10−7) for each seed. This is a situ-
ation in which observations are cheap when compared 
to the decision loss (Berger, 1985). Therefore, fixed costs 
had a penalty, but this also ensured that the cost is not 
the only variable to affect the decision-making process. 

For example, we considered 10−7 as the cost per 
observation where αhist=9.14 and βhist=1.29 were the hy-
perparameters of the first prior distribution. Adopting 
Bernoulli’s process as a viable (xi=1) or not viable (xi=0) 
seed, we obtained the result below. 

If the first seed is viable, then x1 = 1, thus and 
(according to the Beta distribution parameters). The im-
mediate risk (7) was 

 
r0

10 14 1 1 29 1 1

10 14 1 29 1 10 14 1 29 1 1
1 102

. .

. . . .

+( ) + −( )
+ +( ) + + +( )

+ ( ) −−( ) =7 0 0069257.

and the expected risk (8) was

r1 1
10 14 1 29 1

10 14 1 29 1 1
0 00692559 2 10 7=

+ +

+ + +
× + −( )






 ( ) (. .

. .
. )) = 0 0064101. . 

Thus, since r0 > r1, we decided to continue the 
sampling, sequentially, until the sampling was inter-
rupted when r0 ≤ r1. The resulting sample size (n), the 
percentage of viable seeds (p), the hyperparameters we 
used (α; β) and the posterior parameters (α’; β’) are de-
scribed in Table 2. 

The three different methods—the conventional 
one and the two Bayes sequential approaches—led to a 
similar percentage of viable seeds for the lots (Table 2). 

The Bayesian sequential method has advantages 
over the traditional method. By treating the parameter 
p as random, the Bayesian inference stems quite natu-
rally from probability theory. This has many advantages 
and means that all inferential issues can be addressed 
as probability statements about p, which derive directly 
from the posterior distribution obtained for each lot and 
offer more information on the percentage of the esti-
mated viability of seeds. Thus, in addition to point esti-
mation and estimates, Bayesian statistics offers interval 
estimators called credibility intervals. Credibility inter-
vals are similar to confidence intervals in frequentist 
statistics. 

For a 95 % credibility level, the limits in the cred-
ibility range correspond to quantiles 0.025 and 0.975 of 
the posterior distribution for the distribution of interest. 
Figure 2 shows the graphical representation of the pos-
terior distribution for one of the lots. 

Compared to frequentist methods, Bayesian meth-
ods are especially helpful when the prior contributes a 
substantial share of the information (Van de Schoot et 
al., 2014; Agresti and Min, 2005; Bayarri, and Berger, 
2004). We can compare the two methods by checking if 

Figure 1 – Comparison of prior densities.
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the credibility intervals contained the frequentist esti-
mate of p. For most lots they did, except for lots 7 and 22 
by the histogram method (Figure 3) and for lots 3, 7, 17 
and 22 by O’Hagan’s prior method (Figure 4). 

Notice that in Figures 3 and 4 the credibility in-
tervals constructed by both methods in each lot were 
nearly identical. For lots 7 and 22, the credibility inter-
vals from both methods did not include the point esti-
mate obtained by the frequentist method. For lots 3 and 
17, the credibility interval constructed by the O’Hagan 
method did not include the frequentist point estimate 
perhaps because in O’Hagan’s method, the prior was ob-
tained from a smaller sample size. Consequently, it was 
less informative, that is, the error was more influenced 
by the data obtained.

According to the tolerance criteria, considering the 
wide range of viability percentages obtained for all 25 
lots (71 % to 96 %), the maximum range between the 
percentages calculated from the repetitions by the fre-
quentist method would be between 8 and 18 percentage 
points. In all cases, the observed range between the tra-
ditional estimates was within this interval. Thus, we can 
consider all the results to be accurate and to have used 
the same criterion to compare the results of the fixed 
sampling with the sequential one. Using this tolerance 

criterion for both priors, we observed that the differ-
ences between estimates obtained from the traditional 
and sequential methods were within the tolerance limit 
according to the tolerance table in Bányai and Barabás 
(2002). If we consider the tolerance criterion adopted 
by the Association of Official Seed Analysts (AOSA), 
100 % of the results were significant. These results are 
evidence of the efficiency of the Bayesian sequential 

Table 2 – Percentage of viable coffee seeds obtained from the 
tetrazolium tests, using traditional sampling and Bayesian 
sequential sampling with different priors. 

Seed 
Lots

Conventional 
n = 200

Sequential procedure
Histogram Beta prior O’Hagan’s Beta prior

% % n α β % n α β

1 89.5 86.82 98 94.14 14.29 87.86 83 98.69 13.64
2 89.5 87.51 96 93.14 13.29 87.86 83 98.69 13.64
3 90.0 91.40 86 88.14 8.29 95.73 56 81.69 3.64
4 91.0 91.40 86 88.14 8.29 92.39 71 92.69 7.64
5 91.5 95.75 67 74.14 3.29 94.86 61 85.69 4.64
6 74.0 73.87 117 94.14 33.29 77.43 102 26.69 2.64
7 85.0 93.88 76 81.14 5.29 93.18 68 90.69 6.64
8 92.0 93.88 76 81.14 5.29 93.96 64 87.69 5.64
9 93.5 95.75 67 74.14 3.29 94.86 61 85.69 4.64
10 92.5 93.88 76 81.14 5.29 93.18 68 90.69 6.64
11 91.0 88.23 94 92.14 12.29 87.86 83 98.69 13.64
12 95.5 93.88 76 81.14 5.29 93.18 68 90.69 6.64
13 91.0 88.97 92 91.14 11.29 88.65 82 98.69 12.64
14 84.5 87.51 96 93.14 13.29 89.35 80 97.69 11.64
15 94.0 93.04 80 84.14 6.29 92.39 71 92.69 7.64
16 89.0 89.75 90 90.14 10.29 90.09 78 96.69 10.64
17 71.0 76.65 115 96.14 29.29 80.50 97 101.69 24.64
18 78.5 80.50 109 96.14 23.29 84.51 91 101.69 18.64
19 85.5 85.38 101 95.14 16.29 86.56 87 100.69 15.64
20 93.0 89.75 90 90.14 10.29 90.09 78 96.69 10.64
21 83.5 83.29 105 96.14 19.29 87.20 85 99.69 14.64
22 79.5 87.51 96 93.14 13.29 87.20 85 99.69 14.64
23 88.5 89.75 90 90.14 10.29 90.09 78 96.69 10.64
24 93.5 97.93 52 61.14 1.29 96.67 50 76.69 2.64
25 90.5 88.23 94 92.14 12.29 88.65 82 98.69 12.64

Figure 2 – Posterior density for the percentage of viable coffee 
seeds in lot 3, obtained with the histogram and O’Hagan methods. 

Figure 3 – Credibility Intervals constructed by Histogram method 
and with the frequentist average (●).
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method, and the Bayesian sequential estimation can be 
used for the tetrazolium test for assessing the viability 
of coffee seeds.

The credibility and confidence intervals were sim-
ilar in 96 % of the cases for the histogram method and in 
92 % for O’Hagan’s method.

The mean percentage of viability estimated with 
the methods studied was 88 % (conventional method), 
89 % (Bayesian sequential procedure with the histogram 
method), and 90 % (Bayesian sequential procedure with 
O’Hagan’s method) (Table 3). These values are very 
close. We also obtained quantiles 0.025 and 0.975 for 
empirical distributions, as described by Hyndman and 
Fan (1996) (Table 3). The results for the lots evidenced 
strong correlation between the obtained estimates as fol-
lows: r = 0.86 (p < 0.001), between estimates obtained 
by the traditional method and the sequential histogram 
method; r = 0.82 (p < 0.001), between the tradition-
al and the O’Hagan prior method; and r = 0.97 (p < 
0.001), between the sequential methods (Figure 5). 

Both methods used to construct priors gave small-
er sample sizes than 200, the fixed sample size for the 
traditional method (Table 3). The histogram method led 
to a 55 % reduction in this sample size while O’Hagan’s 
method, to a 62 % reduction. Sample sizes obtained by 
the two prior constructions were strongly correlated (r 
= 0.94; p < 0.001) (Figure 6). 

	 The mean of posterior distribution built by the 
histogram method was 0.881 with a standard deviation 
of 0.0975, while that constructed by O’Hagan’s method, 
0.899 with a standard deviation of 0.052 (Figure 7). Such 
estimations may be used as prior patterns for future as-
sessments. 

A basic comparison of the process of prior con-
struction is provided by Garthwaite et al. (2005). Both 
methods we used involve choosing hyperparameters 
using conjugate prior families. As noted earlier, a good 

elicitation technique should yield a probability dis-
tribution that accurately reflects an expert’s opinion. 
However, in many cases, it is not possible to assess the 
quality of information given by the expert, nor is it 
possible to convert such information into a probability 
distribution. Elicitation techniques will seldom find the 
true distribution, but—based on the prior knowledge—
they can help find a prior distribution that will be close 
to the true one.

Figure 4 – Credibility Intervals constructed by O’Hagan method and 
with frequentist average (●).

Table 3 – Average sample size and estimations for proportion (p) 
of viable seeds and quantiles of empirical distributions associated 
with average values obtained from 25 lots after the application of 
all three methods. 

Procedure Average Sample 
Size (n)

Average Proportion 
of Viable Seeds (p)

Quantiles
Range

0.025 0.975
Traditional 200 0.879 0.710 0.955 0.245
Histogram 89 0.890 0.739 0.980 0.241
O’Hagan 76 0.898 0.774 0.967 0.192

Figure 5 – Dispersion of adjusted points related to the results 
estimated by different priors.

Figure 6 – Sample sizes in 25 lots assessed by the prior histogram 
method and the adapted O’Hagan method.
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Figure 7 – Comparison of posterior densities.

Conclusions

Both prior construction methods were effective, 
leading to much smaller sample sizes than the traditional 
approach applied in the tetrazolium test. In the histogram 
method, the proportion of viable seeds was more precise 
than the traditional results. On the other hand, O’Hagan’s 
method provided a greater reduction in sample size.

An expert may use the Bayesian sequential proce-
dure to follow yearly crops or to establish the profile in 
the region.

Bayesian sequential procedure may be used to 
comparing and identifying patterns and outliers to year-
ly crops in a region.

The procedure in this study is not restricted to rat-
ing coffee seeds but may be adjusted for any experiment 
in which the variable of interest of the population has a 
binary characteristic (healthy or unhealthy, germinated 
or did not germinate, infested or not).
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Appendix

###### algorithm for elicitation of the Beta prior ####
 dad=c(0.95, 0.86, 0.86, 0.74, 0.96, 0.89, 0.95, 0.95, 0.95, 0.90, 0.93, 
0.92, 0.93, 0.92, 0.75,0.73, 0.63) # estimate the proportion of viable 
coffee seeds of crops from previous years
##### current crop #####
mu=mean(dad)
var=var(dad)
estBetaParams <- function(mu, var) {
  alpha <- ((1 - mu) / var - 1 / mu) * mu ^ 2
  beta <- alpha * (1 / mu - 1)
  return(params = list(alpha = alpha, beta = beta))
}
par=estBetaParams(mu,var)
alfa=par$alpha
beta=par$beta
modo.hist <- function(ht, plotit=TRUE){
  ## ht: um objeto do uso da função hist()
  mcl <- which.max(ht$counts)
  li <- ht$breaks[mcl]

  width <- diff(ht$breaks[mcl+0:1])
  counts <- c(0,ht$counts,0)
  delta <- abs(diff(counts[1+mcl+(-1:1)]))
  modo <- li+width*delta[1]/sum(delta)
  cols <- rep(5, length(ht$counts))
  cols[mcl] <- 3
  if(plotit==TRUE){
    plot(ht, col=cols)
    abline(v=modo)
  }
  return(modo=modo)
}

ht <- hist(dad)
modo= modo.hist(ht)
###Distribution probability adjusted for the previous crop #####
p1=pbeta(modo,alfa,beta) #p(0<x<modo) ###pbeta(accumulated 
probability from zero to point x)
p2=pbeta(0.5*modo,alfa,beta)	         # p(0<x<0.5*modo)
p3=pbeta(1-(0.5+0.5*modo),alfa,beta)  # p((0.5+0.5*modo)<x<1) 
p4=pbeta(0.75*modo,alfa,beta)		     # p(0<x<0.75*modo)
p5=pbeta((0.25+0.75*modo),alfa,beta)	         # 
p(0<x<(0.25+0.75*modo))

per1=p2
per2=p4-p2
per3=p1-p4
per4=1-p1-p5
per5=p5-p3
per6=p3

#### definition: modo=(alfa-1)/(alfa+beta-2)
##### checking parameters ######

li=0
ls=1
x1=(li+modo)/2  
x2=(li+3*modo)/4
x3=modo
x4=(ls+3*modo)/4
x5=(ls+modo)/2
limit=30        #limit of the interval α and β
inter=0.1
tam=(limit/inter)^2
result=matrix(0, tam,3) ;
aux=NULL ;
test=0
for (i in seq(1,limit, by=inter))   # alfatest
{
   alfatest=i	
  for (j in seq(1,limit, by=inter))   # betatest
  {
   betatest=j
percentil1=pbeta(x1,alfatest,betatest)  #### accumulated probabil-
ity to point xi
percentil2=pbeta(x2,alfatest,betatest)-pbeta(x1,alfatest,betatest)
percentil3=pbeta(x3,alfatest,betatest)-pbeta(x2,alfatest,betatest)
percentil4=pbeta(x4,alfatest,betatest)-pbeta(x3,alfatest,betatest)

http://www.ingentaconnect.com/content/ista/sst;jsessionid=woxwur6fk275.alice
http://www.ingentaconnect.com/content/ista/sst;jsessionid=woxwur6fk275.alice
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percentil5=pbeta(x5,alfatest,betatest)-pbeta(x4,alfatest,betatest)
percentil6=1-pbeta(x5,alfatest,betatest)
sqd=(percenti l1-per1)^2+(percenti l2-per2)^2+(percen-
til3-per3)^2+(percentil4-per4)^2+(percentil5-per5)^2+(percen-
til6-per6)^2
test=test+1
result[test,1]= alfatest ;  result[test,2]= betatest  ;   result[test,3]=sqd
}
aux=rbind(result,aux)
}
res= aux[1:test,]
res_min=min(res[,3])
for (k in 1:nrow(res)) if (res_min==res[k,3]) priori=res[k,]
priori

## BAYESIAN SEQUENTIAL PROCEDURE TO ESTIMATE THE 
VIABILITY OF SEEDS ##
                               ### started parameters #####
alfa=1 # Beta prior alfa>0
beta=3  # Beta  priori beta>0
prop=0.1      #parameters of Binomial [0,1]
custo=0.0001       #cost per observation
                                ##### initial procedure ########
sn=0
tam=1
mpriori=alfa/(alfa+beta)
varpriori=(alfa*beta)/(((alfa+beta)^2)*(alfa+beta+1))
x = rbinom(1,1,prop)   ####simulation of seeds
sn <- sn + x

mposteriori=(alfa+sn)/((alfa+sn)+(beta+tam-sn)) 
v a r p o s t e r i o r i = ( ( a l f a + s n ) * ( b e t a + t a m - s n ) ) / ( ( ( ( a l -
fa+sn)+(beta+tam-sn))^2)*((alfa+sn)+(beta+tam-sn)+1))
risco=varposteriori+ (tam*custo)
riscoesperado=varposteriori*((alfa+beta+tam)/(alfa+beta+tam+
1))+((tam+1)*custo)

                                  ######stopping criterion ##########
while((riscoesperado <= risco) && (tam<1000))   # size limit
{
x = rbinom(1,1,prop)
sn <- sn + x
tam=tam+1
mposteriori=(alfa+sn)/((alfa+sn)+(beta+tam-sn)) 
v a r p o s t e r i o r i = ( ( a l f a + s n ) * ( b e t a + ( t a m ) - s n ) ) /
((((alfa+sn)+(beta+(tam)-sn))^2)*((alfa+sn)+(beta+(tam)-sn)+1))
risco=varposteriori + (tam*custo)
riscoesperado=(varposteriori*((alfa+beta+tam)/(alfa+beta+tam+
1)))+((tam+1)*custo)}
cat(“sample size = “, tam, “\n”)
cat(“prior mean = “, mpriori, “\n”)
cat(“prior variance = “, varpriori, “\n”)
cat(“posterior mean = “, mposteriori, “\n”)
cat(“posterior variance = “, varposteriori, “\n”)
cat(“immediate risk = “, varposteriori, “\n”)
cat(“posterior risk = “, riscoesperado, “\n”)

####


