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ABSTRACT: Drought is likely the main abiotic stress that affects wheat yield. The identifica-
tion of drought-tolerant genotypes represents an effective way of dealing with the continuous 
decrease in water resources as well as the increase in world population. The aim of this study 
was to identify single nucleotide polymorphisms (SNP) associated with drought tolerance indices 
in wheat by using a genome-wide association study (GWAS) under fully irrigated and rain-fed 
conditions. The drought tolerance indices (i.e., Stress Susceptibility Index, Stress Tolerance 
Index, Tolerance Index and Yield Stability Index) were calculated based on grain yield, 1,000-ker-
nel weight and kernels per spike. The association panel was genotyped using genotyping-by-
sequencing (GBS). A total of 175 SNPs exhibited statistical evidence of association with at least 
one drought tolerance index, explaining up to 6 % of the phenotypic variation. Forty-five SNPs 
were associated with more than one tolerance index (up to 4 agronomic traits). Most associa-
tions were located on chromosome 4A, supporting the hypothesis that this chromosome has 
a key role in drought tolerance which should be exploited for wheat improvement. In addition, 
statistical analysis detected SNPs associated with tolerance indices in both growing seasons, 
providing information about genetic regions with stable effects under different environmental 
conditions. This GWAS experiment serves as one of the few studies on association mapping for 
drought tolerance indices in wheat, which could increase the efficiency of rain-fed and irrigated 
crop production.
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Introduction

Wheat (Triticum aestivum) is one of the most im-
portant crops in the maintaining of the security of the 
food supply and is the second most consumed cereal 
worldwide (Galetto et al., 2017; Franco et al., 2018; 
Oliveira and Pinto-Maglio, 2017). Drought is one of the 
main constraints affecting wheat production, and is 
found in virtually all climatic regions, providing a huge 
challenge to local farming in many countries worldwide 
(Lobell et al., 2011). However, the challenge posed by 
water deficit is not unbeatable. In fact, the negative ef-
fects of drought could be overcome by the identifica-
tion and use of drought-tolerant varieties (Van Oosten 
et al., 2016). Given this solution, the dissection of mo-
lecular mechanisms that underlie adaptive traits repre-
sents one approach to understanding stress tolerance in 
plants (Budak et al., 2015; Liu et al., 2017; Arriagada 
et al., 2017). For example, Merchuk-Ovnat et al. (2016) 
showed that the introgression of QTLs on chromosomes 
1B and 2B of T. turgidum into T. aestivum can enhance 
drought tolerance in domesticated wheat. On the other 
hand, a number of studies have proposed that chromo-
some 4A has an important role to play in drought toler-
ance (Alexander et al., 2012; Edae et al., 2014; Kumar 
et al., 2012; Nezhad et al., 2012). For instance, Edae et 
al. (2014) found chromosome regions (on 4A) that were 
associated with drought tolerance related traits such as 
the drought susceptibility index, leaf senescence, green 
leaf area and flag leaf traits. Among QTLs detected for 

drought susceptibility index, one QTL was found in the 
same region (on chromosome 4A) for yield-related traits. 
Kumar et al. (2012) detected a QTL (QGyp.ksu-4A, in 
spring wheat) for grain yield under drought stress on 
chromosome 4A, which explained 16 % of the phenotyp-
ic variation. Moreover, Edae et al. (2014) found that the 
chromosomes of spring wheat showed substantial dif-
ferences in the proportion of marker pairs in significant 
linkage disequilibrium (LD) from the maximum 62 % for 
chromosome 4A to the minimum 20 % for chromosome 
5A; an important aspect of association studies. Despite 
the extreme complexity of the wheat genome, the de-
velopment of molecular marker technology has enabled 
the discovery of SNP markers, which have increased 
the chances of identifying genomic regions and explain 
a quantitative trait on complex genomes (Poland et al., 
2012; Sabiel et al., 2017). Additionally, high-density SNP 
arrays have been developed for economically important 
crops (Sim et al., 2012; Ps et al., 2017; Contreras-Soto et 
al., 2017a). Thus, the aim of this study was to identify 
SNP associated with drought tolerance as measured by 
different stress tolerance indices of key agronomic traits 
in wheat.

Materials and Methods

Plant material and field conditions 
Cultivars and advanced lines (N = 382) obtained 

from breeding programs of the Agriculture Research 
Institute of Chile and Uruguay and the International 
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Wheat and Maize Improvement Centre (CIMMYT) were 
evaluated over two growing seasons (2011 and 2012) and 
tested in a Mediterranean and a humid environment in 
Chile: Cauquenes (35°58’ S, 72°17’ W; altitude: 518 m 
above sea level) and Santa Rosa (36°32’ S, 71°55’ W; 
altitude: 508 m above sea level). Cauquenes is a drought-
prone area (rainfed conditions) with annual precipita-
tion varying from 580 mm (2011) to 600 mm (2012), 
corresponding to the Mediterranean climate type (De 
Martonne index 20 ≤ IDM < 24) (Baltas, 2007; Croitoru 
et al., 2013). Santa Rosa exhibits a full irrigation con-
dition with annual precipitation ranging from 736 mm 
(2011) to 806 mm (2012), corresponding to the humid 
climate type (De Martonne index 28 ≤ IDM < 35). The 
trials were arranged using an  alpha-lattice  experimen-
tal  design  with 20 incomplete blocks, each containing 
20 genotypes. Santa Rosa was fully irrigated at the end 
of tillering (Zadoks stage 21, Zadoks et al., 1974), flag 
leaf (Z37), heading (Z50) and middle grain filling (Z70). 
Approximately 936 and 1,006 mm of water (total water 
supply) were applied in Santa Rosa in 2011 and 2012, 
respectively.

SNP genotyping and Linkage disequilibrium (LD)
The Genotyping by Sequencing (GBS) technique 

was employed to construct a library and SNP calling be-
tween samples as described by Poland et al. (2012). Ge-
nomic DNA was extracted using the DNeasy Plant Maxi 
Kit (Qiagen). The first step in constructing the library 
construction required the use of the PstI-MspI GBS pro-
tocol for wheat and barley genomes as described by 
Poland et al. (2012). Sequencing was carried out on an 
Illumina HiSeq 2000. The sequences were processed in 
Galaxy (http://galaxy.psu.edu/) to evaluate their quality 
and distribution in different samples. The Tassel Pipeline 
(http://maizegenetics.net) was used for SNP calling with 
modifications for non-reference SNP calling described 
by Poland et al. (2012). More details about this step are 
provided in Lado et al. (2013). Heterozygote data were 
eliminated from the SNP matrix using the inbreeding 
coefficient in the TASSEL software package (Lado et 
al., 2013; Song et al., 2015). In addition, alleles with a 
minor frequency of 0.01 were eliminated (minor allele 
frequency filter), yielding a total of 2,214 SNP markers.

Genome-wide LD was estimated by calculating r2 
values between all SNP pairs localized on the same chro-
mosome (and genome) using the R package’s LDheat-
map (Shin et al., 2006), and plotted by the R package’s 
corrplot (Wei et al., 2017). The Bonferroni correction 
test was performed to correct for multiple testing.

Phenotypic data analysis
Four drought stress indices of three agronomic 

traits, including grain yield (GY), 1,000-kernel weight 
(TKW) and kernels per spike (KS), were calculated to 
perform genome-wide association mapping. GY was de-
termined by harvesting the entire plot, and TKW and 
KS in 25 spikes were obtained at random. The indices 

calculated for each trait were as follows: Stress Suscepti-
bility Index (SSI), Stress Tolerance Index (STI), Tolerance 
Index (TOL) and Yield Stability Index (YSI). The indices 
were computed according to the following equations:

SSI = [1 – (Ysi / Ypi)]/SI

TOL = Ypi – Ysi

YSI = Ysi / Ypi

STI = [Ysi * Ypi ]/Yp
2

where Ysi is the yield (trait) for each cultivar in stress 
condition; Ypi the yield (trait) for each cultivar in normal 
or productive condition; SI the stress intensity: SI = 1 – 
(Ys /Yp), where Ys is the total yield (trait) mean in stress 
condition and Yp the total yield mean in normal condi-
tion. A general linear model was used to evaluate the 
effect of variety on the indices calculated. The statistical 
model is described as follows:

yijk = m + Gi + Sj + (GS)ij + eijk

where yijk is the index value (SSI, STI, YSI and TOL) of 
the ith genotype in the jth season (2011 or 2012), µ an 
intercept term, Gi the fixed effect of the ith genotype, Sj a 
fixed effect of the jth season, (GS) the effect of genotype 
× site interaction, and eijk the residual effect. Data were 
analyzed using PROC GLM in SAS (Statistical Analysis 
System, v. 9.2). The abbreviations of each index calcu-
lated from agronomic variables are presented in Table 
1. In addition, an analysis of stable carbon isotope dis-
crimination (Δ13C) was carried out to supply evidence of 
the physiological state of cultivars under full irrigation 
and rainfed conditions. Mature kernels were analyzed 
in an elemental analyzer coupled with an isotope ratio 
mass spectrometer.

Association mapping 
Genome-wide association mapping was construct-

ed assuming a structured model. Genetic structure anal-

Table 1 – Summary of abbreviations for each studied trait.
Index Agronomic variable Abbreviation

Stress susceptibility index 
Grain yield GY-SSI

Kernels per spike KS-SSI
1000-kernel weight TKW-SSI

Stress Tolerance Index
Grain yield GY-STI

Kernels per spike KS-STI
1000-kernel weight TKW-STI

Tolerance Index
Grain yield GY-TOL

Kernels per spike KS-TOL
1000-kernel weight TKW-TOL

Yield Stability Index
Grain yield GY-YSI

Kernels per spike KS-YSI
1000-kernel weight TKW-YSI
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ysis was carried out using the STRUCTURE software 
program (Pritchard et al., 2000) following Mora et al. 
(2015). Evanno’s method was implemented to define the 
number of clusters (Evanno et al., 2005). A mixed linear 
model (MLM) was used to detect associations between 
SNP markers and stress indices. The assessment was 
carried out using the TASSEL software package (Brad-
bury et al., 2007) and the following equation:

y = Xb + Qν + Zm + e

where y is the vector of phenotypic observations (drought 
stress indices); β a vector of SNP marker effects; v a vec-
tor of population effects; µ a vector of random polygene 
background effects; and ε a vector of residual effects. X, 
Q and Z are incidence matrices relating y to β, ν and µ, 
respectively. The variation of the µ vector was modeled 
as Var (µ) = 2Kσg

2, where K is the matrix of pairwise kin-
ship coefficients and σg

2 the genetic variance (Yu et al., 
2006). Correction for multiple comparisons was made 
using False Discovery Rate (FDR) analysis in SAS soft-
ware. 

Results and Discussion

According to statistical analyses of fixed effects, 
the genotype effect gave proof of statistical differences 
for all tolerance indices (p < 0.01), which means that 
there is an important genetic background which explains 
the phenotypic variation (in terms of drought tolerance 
indices). On the other hand, the environment effect 
(growing seasons 2011 and 2012) showed statistical dif-
ferences (p < 0.01) for the majority of traits, except for 
all SSI indices and GY-TOL, and the G × S effect gave 
proof of statistical differences for all indices studied (p 
< 0.01). In accordance with these results, Farshadfar et 
al. (2012) gave proof that the environment and G × S in-
teraction effects explained an important part of the total 
variation in tolerance indices (TOL, YSI, SSI and STI) in 
16 genotypes of wheat evaluated under both rainfed and 
irrigated conditions for three years. On the other hand, 
an analysis of variance revealed that Δ13C showed sta-
tistical differences between full irrigation (Santa Rosa) 
and rainfed (Cauquenes) conditions (p < 0.01). Under 
rainfed conditions, the cultivars had lower Δ13C values, 
which is an indicator of better water-use efficiency (Bar-
bou et al., 2010; Brienen et al., 2011). These results are 
consistent with the De Martonne Index.

Table 2 and Figure 1A and B show the SNP pairs 
in linkage disequilibrium (LD) per chromosome and ge-
nome, respectively. The majority of the SNPs were locat-
ed on chromosomes of B genome (52 %), followed by the 
chromosomes of A genome (39 %). At the chromosome 
level, 7 % of total SNPs were located on chromosome 
7B. Only one SNP was found on chromosome 4D. The 
LD analysis revealed that 29, 27 and 33 % of the SNP 
pairs on A, B and D genome, respectively, were in LD (r2 
> 0.03; p < 0.05). r2 values ranged from 3.8 × 10–7 and 

1 for all chromosomes. The most linked SNP pairs were 
located on chromosome 6D, and the most SNPs in high 
LD (r2 > 0.7) on D genome. Consistent with our results, 
Mora et al. (2015) and Edae et al. (2014) also reported 
that LD extended over a longer genetic distance for the 
D genome than for the A and B genomes. 

Genetic population structure analysis identified 
the presence of two genetically distinct subgroups (Fig-
ure 2). Cluster 1 contained 204 genotypes, while Cluster 
2 included 178 genotypes. Associations were not de-
tected after correcting for multiple comparisons (false 
discovery rate – FDR). However, a total of 219 associa-
tions were detected at p < 0.005, of which 175 SNPs 
(approximately 8 %) were associated with at least one 
trait, explaining between 2 % and 6 % of the total phe-
notypic variation (Table 3). Ninety-nine and 120 asso-
ciations were detected in the growing seasons of 2011 
and 2012, respectively. The difference in number of 
SNP associations detected between both growing sea-
sons is in accordance with the G × S interaction found 
in this study (Heidari et al., 2011). However, nine SNPs 
(located on chromosomes 6D, 3B, 2B, 7D, 6B and 3D) 
associated with TKW-STI were detected in both growing 
seasons. Consistently, Mora et al. (2015) reported eight 
SNPs over the growing seasons associated with TKW in 
a non-stress site (irrigated site). Interestingly, Saeed et al. 
(2017) also detected SNPs associated with TKW-STI and 
GY-STI in more than one growing season in wheat. The 
early detection of QTL and evaluation of their stability 

Table 2 – Percentage of SNP pairs in linkage disequilibrium (LD) per 
chromosome.

Chromosome Number of total 
SNP

Number of total 
SNP pairs

SNP pairs 
in LD*

%
1A 103 5253 33
2A 106 5565 29
3A 152 11476 22
4A 126 7875 36
5A 92 4186 27
6A 106 5565 24
7A 188 17578 32
1B 126 7875 27
2B 202 20301 36
3B 206 211115 2
4B 86 3655 35
5B 169 14196 25
6B 138 9453 36
7B 214 22791 30
1D 17 136 29
2D 26 325 34
3D 40 780 46
4D 1 - 0
5D 28 378 27
6D 63 1953 69
7D 25 300 25
*p > 0.05 after Bonferroni correction.
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across multiple environmental conditions would allow 
for the identification of candidate QTL for MAS (Sun et 
al., 2012). Multiple evaluations may minimize the risk 
of selecting genotypes that exhibit good performance in 
particular environments but not under several condi-
tions (El-Soda et al., 2014).

The highest number of trait associations was es-
tablished with SNP markers located on B genome (43 % 
of total associations). However, at the chromosome lev-
el, chromosome 4A was identified as the most repeated 
region for SNP-trait associations (26 associations). TKW-
STI (evaluated in 2011) was the index with the highest 
number of associations (31 associations), whereas the 
fewest number of associations were detected for KS-
SSI (one association) and KS-YSI (one association) in the 
same growing season. 

Thirty-two marker-trait associations were detect-
ed for GY-SSI, TKW-SSI and KS-SSI and were located 
mainly on chromosomes 4A, 4B and 6B. In particular, 
11 associations were detected for TKW-SSI (located 
mostly on chromosomes 4B, 7B and 6A), and 14 asso-
ciations were detected for KS-SSI. These associations 
were predominantly located on chromosomes 4A and 

6B. No SNPs located on genome D were associated with 
TKW-SSI and KS-SSI indices in both growing seasons. 
GY-SSI indices (2011 and 2012) were associated with 
SNPs located on the three genomes and involved seven 
chromosomes (1A, 2A, 5A, 6A, 2B, 5D and 6B), with 
one association for each chromosome. One hundred 
associations were detected for the STI indices, which 
were recurrent on chromosomes 6D, 4A and 6A. Fifty-
six associations were identified for TKW-STI and were 
located preferentially on chromosomes 6D, 3B and 6A. 
Thirty-one associations were identified for KS-STI and 
were mainly located on chromosomes 4A, 6B and 6A. 
Thirteen associations were detected for GY-STI with 
SNPs frequently located on chromosome 2D. Forty-six 
associations were detected for TOL indices, and these 
associations were frequently noted on chromosomes 2B 
and 4A. In summary, nine associations were identified 
for TKW-TOL with SNPs preferentially located on chro-
mosome 6A. Twenty-five associations were detected for 
KS-TOL and were mainly located on chromosomes 4A 
and 7A. Twelve associations were detected for GY-TOL 
with SNPs commonly located on chromosomes 3A and 
2B. Finally, 41 associations were detected for the YSI 

Figure 2 – Population structure of 382 wheat cultivars inferred using the model-based Bayesian algorithm implemented in STRUCTURE. The 382 
genotypes are represented in x-axis and the cluster assignment for each cultivar in y-axis (K = 2). 

Figure 1 – Linkage disequilibrium (LD) among all SNP pairs calculated for each genome. A, B and C are LD plots for A, B and D genome of 
wheat, respectively. 
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covered SSR markers explaining between 7 % and 17 % 
of phenotypic variation for TKW-STI, TKW-SSI, GY-STI 
and GY-SSI (GY expressed as GY per plant). SSRs asso-
ciated with TKW-STI were located on chromosomes 7D 
and 5D (two QTL detected in two growing seasons), and 
trait associations for TKW-SSI were detected on chromo-
somes 7D (one QTL detected in two growing seasons) 
and 3A. In addition, SSR markers associated with GY-
STI were located on chromosome 7D (one QTL detected 
in two growing seasons), and GY-SSI associations were 
identified using SSRs located on chromosomes 6D and 
7D (one QTL detected in two growing seasons). Kirigwi 
et al. (2007) reported SSRs associated with GY-SSI (in 
several growing seasons), which were located on chro-
mosome 4A, explaining between 12 and 41 % of the total 
phenotypic variation. The authors proposed that chro-
mosome 4A is a region in the wheat genome that con-
tains markers associated with drought tolerance. Inter-
estingly, Edae et al. (2014) reported one DArT marker on 
chromosome 4A, explaining 4 % of the phenotypic vari-
ation for GY-SSI. Consistently, in the present study, most 
of the SNP markers involved in marker-trait associations 
were located on chromosome 4A (26/129 associations; 
approximately 12 % of total associations), supporting 
the hypothesis that this chromosome plays a central role 
in the drought tolerance of wheat. On the other hand, 

indices, which were recurrent on chromosomes 2B and 
6B. Fourteen associations were identified for TKW-YSI 
with SNPs preferentially located on chromosomes 4B, 
3A and 6D. Sixteen associations were detected for KS-
YSI and were located mainly on chromosomes 5A and 
6B. Eleven associations mainly located on chromosome 
2B were identified for GY-YSI. 

Few studies of association analyses using stress in-
dices have been conducted on wheat. In fact, the studies 
available have been conducted using molecular markers, 
such as SSR (simple sequence repeat), DArT (Diversity 
Arrays Technology), AFLP (amplified fragment length 
polymorphism) and RFLP (restriction fragment length 
polymorphism). Dashti et al. (2007) detected AFLP, 
RFLP and SSR markers associated with the SSI, STI and 
TOL indices calculated from GY, explaining 21 %, 15 % 
and 36 % of the phenotypic variation, respectively. SNP 
markers associated with GY-SSI were located on chro-
mosomes 7A, 4B and 5B. Associations for GY-STI and 
GY-TOL were located on chromosomes 1B and 5B, re-
spectively. In addition, Dodig et al. (2012) reported SSR 
markers associated with GY-SSI and GY-TOL explaining 
between 15 % and 25 % of phenotypic variation. One 
SSR located on chromosome 2D was associated with 
GY-SSI and GY-TOL, and an exclusive SNP for GY-TOL 
was located on chromosome 2B. Saeed et al. (2017) dis-

Table 3 – Chromosome location and number of associations (p < 0.005) for tolerance indices: SSI (Stress susceptibility index), STI (Stress 
Tolerance Index), TOL (Tolerance Index) and YSI (Yield Stability Index) evaluated in the growing seasons of 2011 and 2012.

Index/year Chromosome (number of associations) PV% 
2011
TKW-SSI 2A(1), 4B(3), 6B(1), 7B(1) 3-4
TKW-STI 1A(1), 1B(1), 2A(1), 2B(2), 3B(4), 3D(1), 4A(1), 5A(3), 6A(4), 6B(2), 6D(9), 7B(1), 7D(1) 2-4
TKW-TOL 1A(1), 1D(1), 2B(1), 5A(1), 6A(1), 6B(1) 3-5
TKW-YSI 2A(1), 4B(3), 6B(1), 7B(1) 3-4
KS-SSI 4A(1) 3
KS-STI 2B(2), 2D(2), 4A(5), 5B(1), 6A(2), 6B(6), 7A(3), 7B(1) 3-6
KS-TOL 3B(2), 4A(1), 6A(1), 7A(4) 3-4
KS-YSI 4A(1) 3
GY-SSI 2A(1), 5A(1), 6D(1) 3-5
GY-STI 2B(1), 2D(4), 5B(2) 3-4
GY-TOL 4A(1), 6D(2), 7B(2) 4-5
GY-YSI 2A(1), 5A(1), 6D(1) 3-5
2012
TKW-SSI 3A(1), 3B(1), 6A(2), 7B(1) 3-4
TKW-STI 1B(1), 2B(2), 3A(1), 3B(3), 3D(1), 4A(3), 5B(1), 6A(3), 6B(2), 6D(4), 7B(3), 7D(1) 3-4
TKW-TOL 2B(1), 6A(2) 3-4
TKW-YSI 2A(1), 2B(1), 3A(2), 3B(1), 6D(2), 7B(1) 3-5
KS-SSI 3B(1), 4A(3), 5A(2), 6B(4), 7A(1), 7B(2) 3-5
KS-STI 2A(2), 4A(1), 5B(1), 6A(3), 7B(2) 3-4
KS-TOL 3B(1), 4A(5), 5A(2), 6B(4), 6D(2), 7A(1), 7B(2) 3-5
KS-YSI 2A(1), 2B(1), 4A(2), 5A(3), 6B(4), 7A(2), 7B(2) 3-5 
GY-SSI 1A(1), 2B(1), 5D(1), 6A(1) 3-4
GY-STI 3A(1), 3B(1), 4A(2), 7B(2) 3-5
GY-TOL 2B(3), 3A(3), 3B(1) 3-4
GY-YSI 1B(1), 2B(3), 3A(1), 3B(1), 5D(1), 6A(1) 3-5
GY = grain yield; KS = kernels per spike; TKW = 1,000-kernel weight; PV% = the proportion of phenotypic variation explained by SNP markers (in %).
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other studies involving QTL analyses have emphasized 
the importance of genome B in certain drought-related 
traits. Kumar et al. (2012) for instance, identified QTLs 
located on chromosomes 2B and 3B explaining up to 
56 % and 60 % of the phenotypic variation of potential 
quantum efficiency of photosystem II (Fv/Fm) and chloro-
phyll content (Chl), respectively, which were positively 
correlated with GY-STI (r > 0.95). In the present study, 
17 and 16 associations were located on chromosome 
2B and 3B respectively. Particularly, two SNPs of these 
chromosomes were associated with GY-STI, obtaining 
the highest explained phenotypic variation for GY-STI. 
The B genome has been recognized by carrying loci 
controlling water-use efficiency and related traits, and 
grain yield under water stress conditions (Mohammady 
et al., 2012; Poersch-Bortolon et al., 2016), which could 
explain why 43 % of the total associations in the present 
study were located on the B genome.

There have been conflicting reports on the phe-
notypic variation explained by the markers (e.g., SSR, 
RFLP, AFLP and our results with SNP markers) for traits 
involved in drought stress indices. The findings reported 
by Saeed et al. (2017) and Edae et al. (2014) are consistent 
with the present study. On the other hand, Jaganathan 
et al. (2015) detected one SNP associated with GY-SSI 
and three associated with GY-STI using GBS technol-
ogy, explaining between 10 % and 13 %, respectively, 
of the phenotypic variation in chickpea. PS et al. (2017) 
reported SNPs associated with SSI and STI (calculated 
from the % spikelet sterility and yield per plant) in rice, 
explaining between 6 % and 21 %, respectively, of the 
phenotypic variation. Curiously, some SNPs are associ-
ated with traits related to crop productivity and water-
use efficiency, explaining a similar range in phenotypic 
variation. For instance, we detected one association be-
tween the SNP iniaGBS11860 and KS-YSI (2012), which 
was previously associated with the photosynthetic car-
bon isotope discrimination in wheat (Mora et al., 2015).

Forty-five SNP markers were associated with more 
than one stress index. For example, one SNP located on 
chromosome 3A (i.e., iniaGBS21464) was associated with 
four indices in 2012: TKW-SSI, TKW-YSI, GY-STI and 
GY-YSI. Three SNPs located on chromosome 4A (iniaG-
BS22028, iniaGBS558 and iniaGBS2019) and four SNPs lo-
cated on chromosome 6B (iniaGBS41345, iniaGBS22659, 
iniaGBS1579 and iniaGBS22660) were associated with 
TKW-SSI and TKW-YSI in 2012. Additionally, the SNP 
iniaGBS44415 was associated with TKW-SSI, TKW-YSI, 
GY-STI and GY-YSI in 2011. In general, markers are fre-
quently associated with more than one trait (e.g., Contre-
ras-Soto et al., 2017b; Liu et al., 2011; Mora et al., 2015), 
which could be explained by the linkage between mark-
ers or possible pleiotropic effects (Zhu et al., 2014). In the 
context of genetic improvement, the pleiotropic effects of 
molecular markers could be used to take advantage of 
more than one trait of interest. For instance, Ookawa et 
al. (2010) reported a gene associated with high grain yield 
and enhanced lodging resistance, which was suggested 

as an important pleiotropic gene for the improvement 
of rice varieties. On the other hand, pleiotropic effects 
could be harmful for one trait and beneficial for another. 
QTLs associated with herbicide resistance have exhibited 
harmful pleiotropic effects on yield in a number of crops 
(Darmency, 2013).

Conclusions

Wheat culture is strongly affected by drought; 
therefore, the generation of drought tolerant cultivars is 
one of the main challenges to genetics and breeders. SNP 
markers linked to the QTL of drought tolerance indices 
were identified in a diverse genotype collection, and the 
phenotypic variation explained by SNP markers (up to 
6 %) was within an expected range according to other 
studies. QTL-rich regions on chromosome 4A were de-
tected, supporting the hypothesis that this chromosome 
has a key role to play in drought tolerance and should 
be exploited for wheat improvement. In addition, at the 
genome level, a high number of SNP-associations were 
located on the B genome, which have been linked with 
drought tolerance. 

The association analysis found a number of SNP 
markers associated with drought tolerance indices in 
both growing seasons, revealing genetic regions with 
stable effects under different environmental conditions. 
The use of drought tolerance indices in GWAS provides 
valuable information for marker-assisted selection in 
wheat.
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