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ABSTRACT: Spectroscopic techniques have great potential to evaluate soil properties. Howev-
er, there are still questions regarding the applicability of spectroscopy to analyze soil phospho-
rous (P) availability, especially in tropical soils with low nutrient contents. Therefore, this study 
evaluated the possibility to estimate P availability in soil and its pools (labile, moderately labile 
and non-labile) via Vis-NIR spectroscopy based on intra-field calibration. We used soils from two 
different locations, a plot experiment that received application of phosphate fertilizers (Field-A) 
and a cultivated field where a grid soil sampling was performed (Field-B). We used the technique 
of diffuse reflectance in the visible and near-infrared (Vis-NIR) to obtain the spectra of soil sam-
ples. Predictive modeling for P availability and labile, moderately labile and non-labile pools of 
P in soil were obtained via partial least squares (PLS) regression; classification modeling was 
performed via Soft Independent Modeling of Class Analogy (SIMCA) on three P availability levels 
in order to overcome the limitation on quantifying P via Vis-NIR spectroscopy. We found that 
isolating P contents as the only variable (Field-A), Vis-NIR spectroscopy does not allow estimating 
P pools in the soil. In addition, quantification of P available in the soil via predictive modeling has 
limitations in tropical soils. On the other hand, estimating P content in soil through classes of 
availability is a feasible and promising alternative.
Keywords: predictive modeling, classification model, precision agriculture, fractionation of 
phosphorus, soil fertility
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Introduction

Phosphorous (P) supply to plants is an essential 
factor to ensure proper crop development and high 
yields (Ziadi et al., 2013). In tropical soils, such as Oxi-
sols, phosphate fertilization generally requires attention 
due to adsorption reactions of the element with soil con-
stituents, which become a drain instead of a source of 
P for plants (Barbieri et al., 2009; Novais and Smyth, 
1999). The study on P availability for plants can be ac-
complished through its division into fractions, providing 
knowledge on soil dynamics, guiding soil fertilization in 
an economical and environmental manner (Cross and 
Schlesinger, 1995). The methodologies commonly used 
are based on sequential extractions with chemical re-
agents (e.g. Hedley fractionation - Hedley et al., 1982); 
however, this laboratory procedure is time-consuming, 
expensive, laborious and easily susceptible to mistakes 
(Cécillon et al., 2009). 

In this context, Vis-NIR spectroscopy is a promis-
ing approach to evaluate soil properties, because a single 
measurement allows inferring several properties (Nocita 
et al., 2015; Soriano-Disla et al., 2014; Wetterlind et al., 
2008). However, its use has limitations to estimate nu-
trients availability in the soil, since it is a complex and 
variable matrix involving interactions between mineral 
and organic materials (Mouazen et al., 2007; Shepherd 
and Walsh, 2007). Furthermore, results on prediction of 
P availability via Vis-NIR spectroscopy are not yet suf-
ficient to ensure satisfactory performance in most cases 
(Abdi et al., 2016; McCarty and Reeves, 2006; Terra et 
al., 2015). Therefore, questions remain regarding appli-
cability of Vis-NIR spectroscopy to analyze P in the soil, 

especially in tropical soils with low content of organic 
P, due to its low P availability and the complexity of P 
interactions with the minerals in this soil type. 

In this context, Niederberger et al. (2015) obtained 
excellent results predicting labile, moderately labile and 
non-labile pools of P in soils, arguing for the potential of 
this approach. However, the authors used a soil classified 
as Entisol (Soil Survey Staff, 2003), characterized by a 
low-to-medium weathering level of the parent material, 
which favors greater availability of P compared to Oxi-
sols. In addition, as the soil was sampled along an area 
of 8,100 ha, the samples had different physicochemical 
properties. Thus, the objective of our study was to evalu-
ate the possibility to estimate soil P availability and its 
pools (labile, moderately labile and non-labile) in Oxisoil 
via Vis-NIR spectroscopy, including the use of a model 
classification technique based on intra-field calibration.

Materials and Methods

Soil sampling and laboratory analyses
The soil samples used in this study were collected 

from two experimental sites of commercial cultivation of 
sugarcane. The first site (Field-A) was located in Agudos, 
SP (22°33’22” S, 49°06’15” W, 715 m altitude), with the 
soil classified as Arenic Ustox, according to the Soil Tax-
onomy System (Soil Survey Staff, 2003), and described 
as a Dystrophic Red-Yellow Latosol (Latossolo Vermelho 
Amarelo Distrófico) according to the Brazilian Soil Clas-
sification, with sandy loam texture. Soil sampling was 
carried out in a small area of the field, totaling 1.5 ha, 
where a plot experiment was installed to test phosphate 
fertilizers (variation of sources and rates of triple phos-
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phate or natural phosphate from Gafsa, whether or 
not associated with filter cake from the production of 
ethanol). The samples were collected from sugarcane 
planting rows at depths: 0-0.1 m; 0.1-0.2 m and 0.2-0.4 
m, resulting in 90 samples. The variation of fertilizer 
sources and rates and sampling depths aimed to obtain 
high variations of P contents in the soil fractions studied, 
providing proper predictive modeling via spectroscopy. 

The second site (Field-B) was located in Tabatinga, 
SP (21°38’6” S, 49°39’7” W, 490 m altitude), with 
two soils classified as Ustox, according to the Soil 
Taxonomy System (Soil Survey Staff, 2003); according 
the Brazilian Soil Classification, these soils are described 
as Dystrophic Red- Yellow Latosol (Latossolo Vermelho 
Amarelo Distrófico) and Dystrophic Red Latosol (Latossolo 
Vermelho Distrófico), with sandy and clay loamy texture. 
Samples were collected at depth 0-0.2 m, regularly spaced 
at every 100 m, resulting in 238 samples. This spatial grid 
allowed obtaining samples with high variability in all soil 
properties, not only in the P content. 

For soil samples from Field-A, besides the usual 
chemical analysis performed in a commercial laboratory, 
where available P is quantified via the extraction method 
with anion exchange resin (Camargo et al., 2009) (Table 
1), sequential extraction was performed to determine 
P fractions in the soil according to its availability, as 

proposed by Hedley et al. (1982), with modifications 
made by Condron et al. (1985). The extraction generates 
results of P quantification that were grouped into three 
pools: labile (organic and inorganic labile fractions 
extracted via NaHCO3 0.5 mol L–1), moderately labile 
(organic and inorganic moderately labile fractions 
extracted via NaOH 0.1 mol L–1 and HCl 1.0 mol L–1) and 
non-labile (organic and inorganic non-labile fractions 
extracted via NaOH 0.5 mol L–1). All results are expressed 
as mg dm–3, the standard procedure at Brazilian soil 
laboratories, with P measurements based on the soil 
volume rather than the soil mass. Regarding particle 
size, only one sample was collected in the experimental 
size (size of 900 m2) for soil characterization, resulting in 
859 g kg–1 of sand, 16 g kg–1 of silt and 125 g kg–1 of clay. 
The results for P pools in the soil from Field-A (Table 
1) were used only for predictive modeling, due to the 
reduced number of samples (n = 90).

For the soil from Field-B, the results of available P 
obtained via the anion exchange resin method (Camargo 
et al., 2009) (Table 2) were used for both predictive and 
classification modeling procedures.

Vis-NIR Soil Spectroscopy
For the analyses via spectroscopy, the first step was 

sample preparation. Samples from Field-A were dried at 

Table 1 – Descriptive statistics of chemical attributes and soil P pools of 90 samples (Field-A).

pH OM Pb K Ca Mg CEC BS
P-Fractioning

Labile Mod. Labile Non-Labile Totala

CaC2 g kg–1 mg dm–3 ------------------------------- mmolc dm–3 -------------------------------- % --------------------------------------------- mg kg–1 --------------------------------------------
Mean 4.7 9.6 51.8 1.3 15.2 4.1 41.7 45.5 36.3 84.2 82.2 202.7
Minimum 3.8 6.0 3.0 0.5 2.0 1.0 24.1 9.0 13.6 22.6 43.1 105.6
Median 4.7 9.0 18.0 1.1 10.0 4.0 36.6 48.0 28.4 54.0 80.7 164.9
Maximum 6.8 15.0 458.0 6.3 124.0 25.0 145.6 89.0 125.5 569.4 130.6 703.0
σ 0.6 2.0 87.2 0.8 17.8 2.9 17.7 17.5 20.3 97.6 18.4 111.8
Kurtosis 1.2 0.1 9.4 14.5 21.4 31.6 18.0 0.0 4.3 11.6 0.1 8.0
Asym. 1.0 0.7 3.0 2.9 4.3 4.6 3.8 0.1 1.9 3.4 0.5 2.8
CV% 10.0 20.0 200.0 60.0 100.0 70.0 40.0 40.0 60.0 100.0 20.0 60.0
aObtained with the sum of labile, moderately labile and non-labile pools; bAvailable phosphorus measured by anion exchange resin (Camargo et al., 2009). Asym. = 
asymmetry; σ = standard deviation; CV% = coefficient of variation; OM = organic matter; CEC = cation-exchange capacity; BS = base saturation. 

Table 2 – Descriptive statistics of physical and chemical attributes of the 238 samples (Field-B).

pH OM Pa K Ca Mg CEC BS
Particle size

Sand Silt Clay
CaCl2 g kg–1 mg dm–3 -------------------------------------- mmolc dm–3 -------------------------------------- % ------------------------------- g kg–1 -------------------------------

Mean 5.1 14.0 13.0 1.4 20.4 8.4 42.3 70.0 631 112 257
Minimum 4.2 8.0 1.0 0.3 7.0 3.0 23.5 46.0 326 24 83
Median 5.1 13.0 9.0 1.2 19.0 8.0 39.0 71.0 677 110 228
Maximum 5.8 44.0 120.0 8.4 57.0 20.0 85.4 89.0 877 267 495
σ 0.3 4.7 13.7 1.0 8.7 3.4 12.7 8.1 129 47 101
Kurtosis 0.2 9.6 18.4 11.4 1.8 0.5 0.7 0.1 –1.0 0 –1
Asym. –0.7 2.2 3.5 2.4 1.2 1.0 1.0 –0.5 –1.0 0 0
CV% 10.0 30.0 110.0 70.0 40.0 20.0 30.0 10.0 20.0 40.0 40.0
aAvailable phosphorus measured by anion exchange resin (Camargo et al., 2009). Asym. = asymmetry; σ = standard deviation; CV% = coefficient of variation; OM = 
organic matter; CEC = cation-exchange capacity; BS = base saturation.
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45 °C and sieved through 2 mm mesh (Nanni and De-
mattê, 2006; Udelhoven et al., 2003; Viscarra Rossel et 
al., 2010). Samples from Field-B were dried at 45 °C and 
sieved through 0.25 mm mesh for greater homogene-
ity and avoid soil texture influence, since the sampling 
was performed within a whole field; moreover, this 
procedure allowed comparison of performances with 
the study conducted by Niederberger et al. (2015). Fur-
thermore, spectra were collected via diffuse reflectance 
technique using the Fieldspec 4 Standard-Res Spectrora-
diometer (Analytical Spectral Devices Inc., Boulder, Col-
orado, USA), which operates within 350-2500 nm range, 
3.0 nm with spectral resolution for 350-1000 nm and 
10.0 nm for 1001-2500 nm, providing a 1.0 nm resolu-
tion via software correction, recorded in absorbance val-
ues. We used an accessory for soil readings (MugLight) 
with its own light source (100 W halogen bulb). 

Each soil sample was divided into three parts. Three 
spectra were obtained from each part, resulting from the 
mean of ten scans. At the end, the mean of nine spectra 
for each sample was calculated. The reading of the white 
reference (Spectralon®) was conducted every 15 min.

Data analysis and modeling
In the modeling stage, the first procedure was the 

division of training and validation sets. To that end, 70 
% of samples were selected for training and 30 % for ex-
ternal validation, resulting in 63 calibration samples and 
27 validation samples for Field-A and 167 and 71 sam-
ples for Field-B. This procedure was performed using 
the Kennard-Stone algorithm (Kennard and Stone, 1969), 
ensuring the homogeneous and representative selection 
of both sets based on the spectra.

For P quantification (predictive modeling), we 
used the partial least squares (PLS) regression, having 
as response variables P pools in the soil (Field-A) and P 
content available in the soil (Field-B). Due to the low per-
formance in P prediction, we also divided the P content 
into three levels of availability. We used Field-B for this 
classification, due to the larger number of samples. We 
conducted the classification via Soft Independent Mod-
eling of Class Analogy (SIMCA), with the classes: low 
(0-12 mg dm–3), medium (13-30 mg dm–3), and high (>30 
mg dm–3) P content availability. These intervals were de-
termined based on the table of interpretation limits of P 
contents in soils described by Raij et al. (1997).

The soil spectra were mean-centered (MC) and 
preprocessed to correct non-linearity, scattering, parti-
cle size effect, baseline and noise (Stenberg et al., 2010). 
To that end, pre-processing procedures were tested 
separately and/or simultaneously through multiplicative 
scatter correction (MSC) and standard normal variate 
(SNV), first (1D) and second (2D) derivatives, and Savitz-
ky-Golay smoothing (SMT). The last three methods were 
applied with windows ranging from 5 to 25 points at 
intervals of 2 points. The number of PLSR components 
in each model, as well as the better preprocessing of the 
spectra, was defined via the leave-one-out cross-valida-

tion procedure, seeking a high coefficient of determina-
tion (R2), and low root mean square error of prediction 
(RMSE). The selected pre-processing procedures were 
MSC + 1D (window of 25 points), with 7 components 
to the response variable P available (Field-B), none pre-
processing with 5 components for labile P and with 7 
components for non-labile P, and MSC with 3 compo-
nents for moderately labile P (Field-A). In the classifica-
tion procedure, 2D (7 point-window) was used. Finally, 
the quality of predictive models for the external valida-
tion dataset was evaluated through parameters R2 and 
RPD (Ratio of Percent Deviation) (Williams, 1987). De-
tection and quantification limits were defined, respec-
tively, as the lowest content that could be detected by 
certain equipment and lowest content that the method 
is capable of quantifying (Rambo et al., 2013). These val-
ues were calculated according to the equations proposed 
by Shrivastava and Gupta (2011). Classification models 
were evaluated according to the figures of merit: Selec-
tivity, Sensitivity, Accuracy, False Positive Rate (FPR) 
and Kappa coefficient.

Results and Discussion

Quantification of P pools in soil
Quantification of P pools in the soil via spectral 

data in Vis-NIR regions faces several limitations (Figure 
1). Models obtained for all P pools were classified as E 
category by the RPD (RPD values shown in Figure 1), 
that is, with poor and unreliable performance to predict 
the variables of interest (Viscarra Rossel et al., 2006). 

Although Niederberger et al. (2015) obtained high 
efficiency of prediction models for soil P pools (RPD 
classified as A or B), we believe that the contrasting re-
sults were due to differences in the methodologies used. 
These authors used data from samples collected in 8,100 
ha in China, which allowed alterations in several soil 
properties from one sample point to another, rather than 
dealing with changes only in P concentration. This may 
have aided in the construction of calibration models, 
since there was variation in other soil properties that 
directly influence the spectrum while having a specific 
relation with P pools. Thus, this variation may govern 
P availability in the soil and influence the spectra ob-
tained, which enables the modeling of P pools. Instead, 
the soil used in our study was collected in the same field 
(Field-A), varying only in the experimental plot and, 
consequently, in P contents. In addition, the low P avail-
ability range in samples (Table 1) may have also con-
tributed to the low quality of models. Thus, the Vis-NIR 
spectroscopy is not recommended for the analysis of P 
pools in the soil, since it is not sensitive to unique varia-
tions in P contents.

Quantification of soil P availability 
As sampling of a single plot experiment did not 

generate satisfactory results, since the only factor that 
changed between samples was the P content, we test-
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ed spatial sampling (Field-B), because the variation of 
other soil properties could allow the creation of predic-
tive models from Vis-NIR spectra (Oliveira et al., 2015). 
However, this approach also showed limitations. The 
model was classified as E category by the RPD value 
(RPD values are shown in Figure 2), that is, with poor 
and unreliable performance to predict variables of inter-
est (Viscarra Rossel et al., 2006). The main difficulties 
to obtain good prediction results of available P via spec-
troscopy are that this fraction is related to the soil solu-
tion and chemistry of the soil matrix (Janik et al., 1998) 
and does not present direct spectral response (Stenberg 
et al., 2010; Oliveira et al., 2015). Still, Coutinho et al. 
(2019) argue that available level of P shows relationship 
with iron and aluminum oxyhydroxides in the soil, al-
lowing its indirect prediction via spectroscopy. Further-
more, low contents found in highly weathered soils 
(Oxisoil) might compromise even more its detection. 
The presence of high portion of organic P could improve 
the spectral response and allow better modeling perfor-
mance, because organic compounds can be more easily 
excited by irradiation (Niederberger et al., 2015; Olivei-
ra et al., 2015). However, most tropical soils present low 
organic matter content, as we found in our study (Table 
1) and, therefore, tend to show low portion of organic P, 
limiting efficiency of soil spectroscopy. 

Concentrations very similar or below the detection 
and/or quantification limits of the spectroscopic tech-
nique, which can prevent identification of the property 
of interest and, consequently, its prediction, resulting in 
a model with low performance (Shrivastava and Gupta, 
2011). In this context, the values obtained for detection 
and quantification limits were, respectively, 0.4 and 1.2 
mg dm–3. Thus, these limits did not impair the modeling, 
since most samples showed higher P levels (Table 2). 

Regarding the poor performance of the models, 
it is important to highlight the quality of the reference 

method. In general, there are uncertainties in soil wet-
chemical analyses in laboratories to determine nutrient 
availability. Cantarella et al. (2015) reported in their certi-
fication process that the amount of discrepant results for 
P availability is relatively high (coefficient of variation ~ 
16 %) after more than 2,000 determinations originating 
from 122 laboratories of soil analyses. This deviation in 
the reference data may mask the actual availability of 
P in the soil, impairing fertilization prescriptions. This 
low accuracy of the reference data may explain the poor 
performance of the predictive modeling. Thus, as the 
reference values show accuracy limitations, some dis-
crepancy is expected to occur when obtaining quantifi-
cations via spectroscopic models (Coûteaux et al., 2003).

Figure 1 – Relationship between predicted P pool contents via Vis-NIR spectroscopy and measured P pool contents for external validation 
samples from Field 1. Left = labile pool; Middle = moderately labile pool; Right = non-labile pool. RPD = Ratio of Percent Deviation; n = number 
of samples in external validation dataset.

Figure 2 – Relationship between predicted P availability via Vis-NIR 
spectroscopy and measured P availability for external validation 
samples from Field 2. RPD = Ratio of Percent Deviation; n = 
number of samples in external validation dataset. 
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Classification models for P available in the soil	
As the quantification/prediction of available P was 

unsatisfactory, we invested in the proposal of creating 
classification models (Field-B). Thus, we verified that the 
classification of the P content in availability classes is a 
promising approach. The classification model presented 
substantial performance (category B) according to the 
Kappa coefficient (= 0.614), which indicates the agree-
ment between predicted and observed classes (Landis 
and Koch, 1977). This was corroborated by the classifier 
accuracy that achieved ~89 %, which means that al-
most 90 % of the samples (validation dataset) were clas-
sified in the correct P availability class.

We used ranges of P availability to establish the 
classes to facilitate the learning of the models, because 
they are categorical variables rather than absolute 
numbers (quantification). Thus, the classification mod-
el has to classify samples properly on a few P avail-
ability classes, while the prediction model must predict 
sample values (P availability) accurately. This con-
tributed to better classification of results (substantial 
performance according Kappa index) compared to the 
previous predictive modeling (unreliable performance 
according RPD value). Thus, the use of Vis-NIR spec-
troscopy is capable of identifying broad classification 
levels of available P.

The aforementioned classification approach is 
promising, since soil fertilization could be based on 
tables of fertilizer prescription, which traditionally in-
dicate the application rate based on the soil availability 
class of nutrients. The class establishment could be use-
ful for precision agriculture, considering that the cre-
ation of variable-rate prescription maps shows several 
uncertainties (errors) due to data interpolation (Mueller 
et al., 2004). Therefore, the creation of maps based on 
few levels of P availability could improve the applicabil-
ity of this precision agriculture approach, which will be 
tested by our research group in further studies. 

Conclusion

Intra-field quantification of phosphorus availabil-
ity in soils by Vis-NIR spectroscopy via predictive mod-
eling has limitations in tropical soils with low P content 
in the organic form.

In addition to low P content, we showed that by 
isolating P contents as the only variable, the Vis-NIR 
spectroscopy does not allow estimating P pools in the 
soil, hindering its use. 

On the other hand, the use of Vis-NIR spectros-
copy to estimate the soil P content through availability 
classes is a promising approach, since the prescription 
for fertilization tends to follow this classification. 
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