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ABSTRACT: This paper joins the main properties of joint regression analysis (JRA), a model based on the Finlay-
Wilkinson regression to analyse multi-environment trials, and of the additive main effects and multiplicative interaction 
(AMMI) model. The study compares JRA and AMMI with particular focus on robustness with increasing amounts of 
randomly selected missing data. The application is made using a data set from a breeding program of durum wheat 
(Triticum turgidum L., Durum Group) conducted in Portugal. The results of the two models result in similar dominant 
cultivars (JRA) and winner of mega-environments (AMMI) for the same environments. However, JRA had more 
stable results with the increase in the incidence rates of missing values.
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Introduction

Joint Regression Analysis (JRA) has been widely used in 
crop sciences, to structure and understand Genotype by Envi-
ronment Interaction (GEI) (Eberhart and Russell, 1966; Finlay 
and Wilkinson, 1963; Gusmão, 1985; Mooers, 1921; Pereira and 
Mexia, 2008; Yates and Cochran, 1938; Zheng et al., 2009), and 
in genetics, to analyse quantitative trait loci (QTL) by environ-
ment interaction (Emebiri and Moody, 2006; Korol et al., 1998). 
In this paper we are mainly interested in the approach proposed 
by Gusmão (1985) in which the precision in analysing series of  
randomized block experiments was highly increased, by con-
sidering environmental indexes for individual blocks instead of  
only one environmental index per experiment. In the literature 
some variants of  JRA are also denoted as SREG (Sites Regres-
sion) model (Cornelius et al., 1992; Crossa et al., 2002; Setimela 
et al., 2007).

Williams (1952), Gollob (1968), Mandel (1971), Bradu and 
Gabriel (1978) and Gauch (1988) have made an important 
contribution to the development of  additive main effects and 
multiplicative interaction (AMMI) models. These models have 
been widely used to analyze multi-environment trials because of  
their flexibility in allowing the use of  several multiplicative terms 
to explain the GEI. One of  the difficulties in choosing the right 
tool to analyse multi-environment trials arises when there are 
missing values in the two-way table of  genotypes and environ-
ments. These missing values can be either systematic (Calinski 
et al., 1992; Denis and Baril, 1992), or selected completely at 
random in the two-way table. 

This paper brings together the main features of  JRA and 
AMMI models, and compares them for analyzing a durum 
wheat (Triticum turgidum L., Durum Group) trial with particular 
focus on robustness with increasing amounts of  random miss-

ing data, either missing replications or missing cells (more likely 
when the proportion of  missing values is high). The aim here is 
not to compare the method’s ability to estimate missing values 
in comparison to real data (Alarcón et al., 2010; Bergamo et 
al., 2008) but to compare the overall stability when increasing 
the incidence rate of  missing values. An emphasis is made in 
the comparison between (i) the upper contour of  JRA and the 
mega-environments of  the AMMI model; and (ii) the stability 
of  the dominant/winner genotypes across environments. To 
obtain the results for the JRA we developed an R code, and the 
MATMODEL software (Gauch and Furnas, 1991) was used to 
fit the AMMI models.

Materials and Methods

Joint regression analysis
JRA has proven to be an important model for analysing 

and interpreting the GEI of  two-way classified data tables and 
continues to be largely used as a complement of  traditional 
statistical analysis in genetics, plant breeding, and agronomy, for 
determining yield stability of  different genotypes or agronomic 
treatments across environments (Crossa, 1990). JRA may also be 
used for the analysis of  series of  experiments in genotype com-
parison and selection. This technique is based on the adjustment 
of  a linear regression, per genotype, of  the yield on a synthetic 
variable measuring productivity, the environmental index.

JRA, when applied to two-way tables obtained from 
multi-environment trials, aims to determine the stability of  
the genotypes or agronomic treatments over a wide range 
of  environmental conditions and to interpret the interaction 
(non-additivity). Let Yij be a continuous response variable (usu-
ally yield) corresponding to a row factor j, j = 1, ..., J (usually 
the genotypes), and a column factor j, j = 1, ..., J (usually the 
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environments). The model used for the analysis of  multi-envi-
ronment variety trials can be defined as

(1)

(3)

(4)

(2)

where μ is the grand mean, Gi and Ej are the genotype and 
environment main effects, (GE)ij is the interaction and εij is the 
residual. A sub-model of  (1), aiming at estimating some stability 
parameters for making comparisons between varieties is given 
by JRA, and allows us to partitioning the GEI into two parts 
of  interest, i.e.

where bi is a linear regression coefficient for the i-th genotype 
and δij a deviation (unexplained GEI) (Freeman, 1973). The JRA 
model can then be written as

where εij comprises both the unexplained GEI and the ex-
perimental error (Shukla, 1972). We assume fixed genotypic and 
environmental effects and random residual term.

The model (3) used in the present paper does not take into 
account the block effects since it uses the blocks as environ-
ments, following Gusmão (1985). If  an experiment is designed 
with randomized blocks and the treatments correspond to the 
J genotypes to be compared, for each block in each design, the 
environmental index is measured by the average yield. For each 
of  the J genotypes, a linear regression of  yield on environmental 
indexes is adjusted.

Zamir, 1979; Gauch and Zobel, 1990). For the complete case, 
Pereira and Mexia (2010) presented an alternative algorithm, the 
double minimization algorithm, which converges to the absolute 
minimum of  the goal function (4) and is an adaptation of  the 
algorithm first presented by Fisher and Mackenzie (1923). More 
details on the zigzag and double minimization algorithms can be 
found in Pereira and Mexia (2010).

Upper contour
When two of  the regressions on genotypes intersect it 

means that one of  the genotypes is better for higher environ-
mental indexes while the other is preferable for lower environ-
mental indexes. The intersection of  regressions shows more 
than one genotype with similar performance. The upper contour 

L2 environmental indexes
For convenience, let us consider the joint regression model 

of  the second equation in (3), where , Ej, 
j = 1, ... b, is the environmental index corresponding to blocks 
instead of  environments, b the number of  blocks, Yij is a con-
tinuous response (e.g. yield) for cultivar/genotype i in block j 
if  present, and the pairs  , i = 1,..., I, are the regression 
coefficients, for the I genotypes.

To obtain the estimates for the regression coefficients 
and the environmental indexes, the goal function to be mini-
mized should be

Usually the weight pij is 1 [0] when genotype i is pres-
ent [absent] in block j. These weights may differ from block 
to block to express differences in representativeness of  the 
blocks and thus we take pij = pj when the i-th genotype is pres-
ent. The main problem in such modeling is how to estimate 
the parameters. However, the lately proposed so called zigzag 
algorithm (Pereira and Mexia, 2010) is very efficient in finding 
the estimates of  (Gi

*,bi
*), i =1,...,I,

 
and  Ej, j = 1,…b. This zigzag 

algorithm is an alternating least squares based algorithm (Calin-
ski et al., 1992; Denis and Baril, 1992; Digby, 1979; Gabriel and 

Figure 1 – Upper contour with the four dominant genotypes in the 
durum wheat population. The abbreviations for the 11 
environments are placed in the axis of  the environmental 
indexes (Bej1: Beja1; Bej2: Beja2; Ben1: Benavila1; Ben2: 
Benavila2; Evo: Évora; Elv1: Elvas1; Elv2: Elvas2; Elv3: 
Elvas3; Rev: Revilheira; Tav1: Tavira1; Tav2: Tavira2).
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Figure 2 – Ockham's hill for accuracy of  the yield estimates for 
the durum wheat experiment. The abscissa shows 
AMMI models of  increasing complexity from AMMI0 
to AMMI8, and the ordinate shows the number of  in-
direct replications determined by jackknife resampling 
(e.g. the parsimonious AMMI2 model extract 1.66 time 
more information than the full AMMI8 model).
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of  the JRA is a concave polygonal (Mexia et al., 1997), consti-
tuted by segments of  the adjusted regression lines, that contains 
the higher adjusted yields for the environmental indexes (Fig-
ure 1). Each of  these segments will correspond to a range of  
variation of  the environmental indexes in which the associated 
genotype will have the maximum adjusted yield (Pereira and 
Mexia, 2008). These genotypes are called dominant and should 
be selected. The remaining genotypes should be compared with 
the dominant to check whether they are dominated on entire 
range for the adjusted environmental indexes, [c, d]. If  so, they 
can be safely discarded from the breeding program.

An analogy can be made between Figure 1 in this paper and 
Figure 2 in Gauch (1997), where the AMMI1 nominal yields 
for a corn trial is depicted as a function of  the environment 
interaction principal component (IPC) axis 1. A more detailed 
comparison in what concerns the winner genotypes across the 
environments is presented latter in this paper.

Genotype comparison and selection
Let L be the number of  dominant genotypes with dominant 

ranges  The entire range for the 
environmental indexes will be  . To have interac-
tion between genotypes and environments there are two possible 
cases for different slopes,  and . After establishing 
the upper contour, non-dominant genotypes should be compared 
with the dominant ones. This comparison should be made on the 
left [right] extreme of  the dominance range if  the non-dominated 
genotypes have lower [greater] slope than the dominant one. So, 
when 

 
we are led to compare the adjusted values  

 and  at the environmental index . These 
comparisons between slopes may be made using one of  follow-
ing statistical tools: (i) one-sided t tests for the null hypothesis; (ii) 
Scheffé multiple comparison tests (Scheffé, 1959); (iii) Bonferroni 
multiple comparison method (Seber and Lee, 2003); (iv) Tukey 
multiple comparison method (only for the complete case); and (v) 
Control of  False Discovery Rate which is robust against erroneous 
rejections (Benjamini and Hochberg, 1995). More details of  these 
tests can be found in Pereira and Mexia (2008). 

AMMI models
The core idea of  the AMMI models is: (i) first apply the 

additive analysis of  the variance model (ANOVA) to a two-way 
data (in the present case with genotypes and environments); 
and (ii) secondly apply the multiplicative principal component 
analysis (PCA) model to the residual from the additive model (in 
this case to the interaction) (Gauch, 1992). The AMMI model 
with N multiplicative terms can be written as

(ii) to clarify GEI (Crossa et al., 1990; Zobel et al., 1988); and 
(iii) to improve the accuracy of  yield estimates (Crossa et al., 
1990; Zobel et al., 1988).

Durum Wheat Yield Data
All the properties and comparisons presented in this paper 

are illustrated with a data set resulting from a breeding pro-
gram in Portugal, carried out by the Portuguese National Plant 
Breeding Station (ENMP, Elvas) in the years of  1992/1993 and 
1993/1994. It contains the yield from nine genotypes (CELTA; 
HELVIO; TE9006; TE9007; TE9008; TE9110; TE9115; 
TE9204; and TROVADOR) of  durum wheat (Triticum turgidum 
L., Durum Group), measured in 11 environments (Benavila1; 
Revilheira; Évora; Elvas1; Beja1; Tavira1; Elvas2; Tavira2; 
Elvas3; Benavila2 and Beja2), and performed in complete ran-
domized blocks with four replicates. These environments were 
obtained in two years, the first 6 in the first and the second 5 
in the second year. Only the locations Tavira, Benavila and Beja 
were the same in both years. All the locations in this data set are 
in south Portugal, Tavira being at the sea side (Algarve) while 
the remaining in the inland (Alentejo). More details about this 
data set can be found in Pereira and Mexia (2010).

Simulation of  missing values
Since the plants may be destroyed by animals, floods or dur-

ing the harvest, and the yield measurements may be erroneously 
performed and inadequately introduced in the data base, missing 
values are common in agricultural experiments. When dealing 
with missing values researchers should decide between: (i) find 
a good tool to estimate the missing values (Alarcón et al., 2010; 
Bergamo et al., 2008), or (ii) chose a robust technique against 
missing observations to perform the analysis. In the present study 
we will be interested in the second approach, namely to compare 
the robustness of  JRA and AMMI with the increasing of  miss-
ing data. Our interest here is to study the case where the missing 
values were selected “completely” at random, instead of  having 
systematic patterns (Calinski et al., 1992; Denis and Baril, 1992). 

Our simulation procedure can be summarized in the fol-
lowing steps:
(i) Choose the incidence rate of  missing values α (e.g. α = 5, 
10, 25, 50, 75 %); 
(ii) Remove, randomly, α % of  the two-way table with geno-
types and environments, leaving at least one observation in each 
environment and in each genotype; 
(iii)  a. Use the zigzag algorithm (Pereira and Mexia, 2010) to 
compute the regression coefficients and the L2 environmental 
indexes for JRA by minimizing the loss function (4); Results 
such as those shown in Figure 1 and in Table 3 can be obtained 
using the appropriated multiple comparison tests mentioned 
above. b. Use the MATMODEL software (Gauch and Furnas, 
1991) to estimate the missing values; Results such as those 
shown in Table 3 can be obtained by this software; 
(iv) Repeat (ii) and (iii) n times for each incidence rate of  miss-
ing values. The number of  interactions n should be chosen 
based on the size of  the original two-way table. In this particular 
case we used n=100.

For higher incidence rates of  missing values it is more 
likely that not only replications are missing, but cells (means). 

(5)

where Yij is the yield of  genotype i in environment j; μ the grand 
mean; αi the genotype mean deviations (the genotype means 
minus the grand mean); βj the environment mean deviations; 
λnn the singular value for the PCA axis n; γni and δnj are the 
genotype and environment PCA scores for PCA axis n; N is the 
number of  PCA axes retained by the model; and θij is the re-
sidual. If  the experiment is replicated, an error term εijr, which 
is the difference between the Yij mean and the single observation 
for replicate r, should be added.

The main purposes of  the AMMI models were pointed out 
by Crossa (1990): (i) model diagnosis (Bradu and Gabriel, 1978); 
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In this case an Expectation-Maximization (EM) algorithm 
provides an effective general strategy for obtaining maximum 
likelihood estimates (Gauch, 1992). This procedure has been 
adapted for AMMI and is called EM-AMMI (Gauch and Zo-
bel, 1990), and is implemented in the MATMODEL software 
(Gauch and Furnas, 1991).

Results and Discussion

A comparison between the algorithms and the alternative 
methods

This subsection presents a comparison between the two 
algorithms mentioned in the above section - (i) zigzag algorithm 
(Pereira and Mexia, 2010) and (ii) double minimization algorithm 
(Pereira and Mexia, 2010); and the two methods based in the 
joint regression model - (iii) the regression analysis of  the mean 
yield of  individual genotypes on the overall mean of  the trial 
(Finlay and Wilkinson, 1963), and (iv) the regression analysis of  
the genotype mean yield on block mean, proposed by Gusmão 
(1985). This comparison is illustrated with a numerical example 
using the durum wheat yield population. Estimates of  intercept, 
slope and the coefficients of  determination, obtained from the 
Finlay and Wilkinson (1963) and Gusmão (1985) methods, and 
the zigzag and double minimization algorithms are presented 
in Table 1.

To compare these four procedures it is important to analyze 
the slopes and coefficients of  determination. They produced 
almost the same results regarding the ordering of  the genotypes 
per slope (only the Gusmão’s method gave a small difference). 
The coefficients of  determination are mainly similar, the zigzag 
and Double Minimization algorithms being lower than Gusmão 
(1985) only for three environments (HELVIO, TE9110 and 
TE9115). Moreover, the zigzag and double minimization have 
completely agreed and may be seen as the most suited for re-
gression analysis of  complete randomized blocks because of  
their convergence to the minimum of  the loss function (4).

Another comparison can be made regarding the sums of  
the sums of  squares of  residuals for the two procedures and 
two algorithms (Table 2). Here the advantage of  the zigzag and 
double minimization algorithms over the two other procedures 
is evident since the algorithms induce lower sums of  the sums 
of  squares of  residuals. This result is true for all the examples 
and the mathematical proof  can be found in Pereira and Mexia 
(2010). If  we compute the pairwise Pearson correlations be-
tween the environmental indexes for the four alternatives in 
Table 2, we conclude that all the obtained environmental in-
dexes are highly correlated (minimum of  0.984). In particular, 
the results obtained using the zigzag and double minimization 
algorithms have a coefficient of  correlation of  1.000 since they 
completely agree with each other, and they are slightly bet-
ter than the Finlay and Wilkinson (1963) and Gusmão (1985) 
approaches. In the case of  a comparison using α-designs or 
incomplete blocks (instead of  the randomized complete block 
design) some advantage within the two algorithms could better 
be presented (Pereira and Mexia, 2010).

Genotype comparison and selection
The results for some of  the multiple comparison tests 

mentioned above can be found in Table 3. The graphical repre-
sentation of  the dominant genotypes, together with the ranges 
of  dominance (i.e. the lower and upper bound for the interval 
where the each genotype is dominant) and environments where 
that dominance occurs, is depicted in Figure 1. The bounds of  
the environmental indexes 2.21 and 8.84 (Table 3, complete 
data) are kept unchanged by the zigzag algorithm and corre-
spond to the lowest and highest mean yield of  all the blocks.

AMMI preliminary analyses
Table 4 gives the ANOVA for AMMI4. The genotypes, en-

vironments and GEI account for 4.1 %, 86.4 %, and 9.5 % of  
the treatment sum of  squares (SS). The noise in the GEI may be 
estimated by the interaction df times the error MS, namely 40.80, 

Table 1 – Adjusted regression coefficients and coefficients of  determination, as evaluated by the two procedures and two algorithms.

Finlay and Wilkinson (1963) Gusmão (1985) Zigzag and 
Double Minimization

Genotype Intercept Slope R2 Intercept Slope R2 Intercept Slope R2

CELTA -0.518 1.239 0.893 -0.472 1.229 0.907 -0.544 1.245 0.918
TE9007 -0.542 1.121 0.907 -0.492 1.110 0.918 -0.544 1.121 0.924
TE9006 -0.300 1.086 0.815 -0.361 1.100 0.863 -0.416 1.112 0.870
TE9204 0.077 1.067 0.861 0.058 1.071 0.895 0.016 1.080 0.899
HELVIO -0.130 1.051 0.902 -0.112 1.047 0.924 -0.244 1.065 0.894
TROVADOR -0.140 1.042 0.841 -0.206 1.056 0.892 -0.154 1.056 0.928
TE9008 0.375 0.951 0.883 0.403 0.945 0.900 0.376 0.951 0.899
TE9110 -0.089 0.892 0.773 -0.051 0.884 0.783 -0.037 0.880 0.767
TE9115 1.268 0.551 0.510 1.232 0.559 0.542 1.297 0.545 0.507

Table 2 – Sums of  the sums of  squares of  residuals, as evaluated by the two procedures and two algorithms.

Finlay and Wilkinson (1963) Gusmão (1985) Zigzag and Double Minimization
249.5 207.3 205.5
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Table 3 – Dominant and number of  significantly dominated genotypes for JRA, environments where the genotypes were 
dominant (JRA) and where the genotypes were winners (AMMI). The results are for the complete data set and 
the incidence rates of  missing values, and based on one run (out of  100) of  the simulation described above. 
Abbreviations for the environments: Bej1: Beja1; Bej2: Beja2; Ben1: Benavila1; Ben2: Benavila2; Evo: Évora; Elv1: 
Elvas1; Elv2: Elvas2; Elv3: Elvas3; Rev: Revilheira; Tav1: Tavira1; Tav2: Tavira2

JRA AMMI
Dominant 
or Winner 

genotype

R a n g e  o f  
dominance

Number of  significantly dominated genotypes
Environments Environments

t test* t test** Scheffé* Bonferroni*  

Complete 
data

TE9115 [2.21; 2.27] 3 0 0 0 Ben2
TE9008 [2.27; 2.80] 2 0 0 0 Rev, Ben1, Evo Rev
TE9204 [2.80; 3.40] 3 1 0 1

CELTA [3.40; 8.84] 4 2 0 2
Elv1, Bej1, Tav1, 
Elv2, Tav2, Elv3, 
Ben2, Bej2

Ben1, Evo, Elv1, 
Bej1, Tav1, Elv2, 
Tav2, Elv3, Bej2

5 % of  
missing 
values

TE9115 [2.21; 2.38] 2 0 0 0 Rev, Ben2
TE9008 [2.38; 2.60] 2 0 0 0 Rev
TE9204 [2.60; 3.48] 3 1 0 0 Ben1, Evo

CELTA [3.48; 8.88] 4 2 1 2
Elv1, Bej1, Tav1, 
Elv2, Tav2, Elv3, 
Ben2, Bej2

Ben1, Evo, Elv1, 
Bej1, Tav1, Elv2, 
Tav2, Elv3, Bej2

10 % of  
missing
values

TE9008 [2.22; 3.17] 4 1 0 1 Ben1, Rev, Evo
TE9204 [3.17; 3.64] 5 1 1 1 Elv2, Ben2 Ben1, Rev, Bej2

CELTA [3.64; 9.47] 5 2 1 2 Elv1, Bej1, Tav1, 
Tav2, Elv3, Bej2

Evo, Elv1, Bej1, 
Tav1, Elv2, Tav2, 
Elv3, Ben2

25 % of  
missing 
values

TE9115 [2.09; 2.10] 5 3 0 2
TE9008 [2.10; 3.17] 5 3 0 2 Ben1, Rev, Evo

TE9204 [3.17; 3.75] 6 4 2 3 Elv2, Elv3, Ben2 Ben1, Rev, Evo, Bej1, 
Elv3, Ben2, Bej2'

CELTA [3.75; 8.77] 6 5 2 4 Elv1, Bej1, Tav1, 
Tav2, Bej2

Elv1, Tav1, Elv2, 
Tav2

50 % of  
missing 
values

TE9115 [2.07; 2.09] 5 4 1 2
TE9008 [2.09; 3.16] 2 2 1 2 Ben1, Rev, Evo

TE9204 [3.16; 3.85] 3 3 2 3 Elv2, Elv3, Ben2 Ben1, Rev, Evo, Bej1, 
Ben2, Bej2

CELTA [3.85; 9.21] 3 3 2 3 Elv1, Bej1, Tav1, 
Tav2, Bej2

Elv1, Tav1, Elv2, 
Tav2, Elv3

75 % of  
missing 
values

TE9115 Elv3

TE9204 [1.52; 3.47] 8 8 8 8 Ben1, Rev, Evo, 
Ben2

CELTA [3.47; 9.10] 8 8 8 8
Elv1, Bej1, Tav1, 
Elv2, Tav2, Elv3, 
Bej2

Ben1, Rev, Evo, Elv1, 
Bej1, Tav1, Elv2, Tav2, 
Ben2, Bej2

*0.05; **0.01

which by difference from the total of  141.74 (total GEI SS) im-
plies a GEI signal SS of  100.94, or 71.21 % (Gauch, 1992). Fig-
ure 2 shows the numbers of  indirect replications for the AMMI 
model family from AMMI0 to AMMI8. The models are less 
parsimonious, or more complex, moving to the right. AMMI2 
achieves the highest number of  indirect replications of  1.66 
(i.e. 1 replication gives 1.66 more information when considering 
the parsimonious AMMI2 model). To the left of  this model, 
excessively simple models underfit the real signal, whereas to 
the right, excessively complex models overfit the spurious noise. 

This relationship between accuracy and parsimony has been 
named as Ockham's hill (Gauch, 2006; Mackay, 1992).

Since the signal is much simpler than the noise, the signal 
is extracted selectively in early model parameters whereas noise 
is extracted selectively in late model parameters. A parsimoni-
ous model, which captures most signals and discards most of  
the noise, can be chosen by stopping at the right point (Gauch, 
1992). From Table 4 it is possible to obtain the SS of  the GEI 
signal of  100.94 (“total GEI SS” minus “noise in GEI”) and 
the SS for the first two PCs together of  115.05 (77.04 for IPC1 
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and 38.01 for IPC2), which means that these two PCs are mostly 
signal whereas the remaining are mostly noise. The F tests in 
Table 4 also suggested retaining the first two PCs. For com-
parison with AMMI, the Finlay-Wilkinson linear regressions on 
environment mean capture a SS of  43.63, which is about 56.6 
% of  the GEI SS captured by IPC1.

Figure 3 depicts the AMMI1 biplot for the durum wheat ex-
periment. The choice of  the AMMI1 biplot instead of  AMMI2 
was made to allow the comparison with Figure 1. The abscissa 
shows the main effects and the ordinate shows the IPC1 scores. 
The 9 genotypes are represented in bold font and the 11 en-
vironments in normal font. The first IPC captures 54.73 % 
(77.04/141.74) of  the GEI sum of  squares. But, since this GEI 
is only 71.23 % (100.94/141.74) signal, this graph captures 
the most of  GEI signal and a small amount of  noise (Gauch, 
1992). With this biplot it is easier to understand the association 
between genotypes and environments where they perform bet-
ter regarding grain yield.

IPC1 makes a distinction between Tavira (Algarve, sea side) 
and the rest of  the environments (Alentejo, inland) (Figure 3). 
When comparing with Figure 1, we can see that the four domi-
nant genotypes are ordered by IPC1 scores in Figure 3. This 
provides an agreement between the environmental indexes and 
IPC1 scores, and connects them to a measure of  yield produc-
tion. The order of  environments along the main effects of  
Figure 3 and environmental indexes of  Figure 1 is the same, 
as expected.

Upper contour and mega-environments
In this subsection we intend to make a comparison between 

the upper contour of  JRA and the AMMI mega-environments 
(Gauch and Zobel, 1997). Figure 1 shows the 11 environments 
placed in the axis of  the environmental indexes. The first three 
environments, namely Rev, Ben1 and Evo, have higher yield with 
the genotype TE9008, and the remaining eight environments 
have better production with the genotype CELTA. Follow-

ing the same analysis using the AMMI mega-environments as 
Gauch and Zobel (1997), based on AMMI1 estimates, we may 
conclude that this data set has three winners: (i) CELTA wins in 
nine environments; (ii) TE9008 wins in the environment Rev; 
and (iii) TE 9115 wins in the environment Ben2. However the 
main conclusion is taken by both analyses: CELTA is the uni-
versal winner (Table 3).

Stability with missing values
JRA is an extremely robust technique against missing ob-

servations in what concerns genotype comparison and selection 
(Pereira et al., 2007). They used a series of  17 experiments of  
α−designs of  winter rye genotypes, in the years of  1997 and 
1998, and considered proportions of  missing values from 5 % 
to 75 %, with step size of  5 % generated randomly in triplicate. 
The durum wheat data set was used here to test the stability 
and agreement in choosing the dominant genotypes for differ-
ent incidence rates of  missing values, between JRA and AMMI. 
Table 3 presents the main results for different incidence rates 
of  missing values. The missing values were chosen randomly as 
described before. 

The analysis of  Table 3 should be performed between meth-
ods and between incidence rates of  missing values. Regarding 
the comparison between methods, the most similar results are 
for the complete data without missing values, with eight envi-
ronments having higher yield for the same (dominant/winner) 
genotypes. The number of  environments dominated/won by 
the same genotypes decreases when increasing the proportion 
of  missing values. The only exception is the case with 75 % 
of  missing values, with 6 agreements between analyses, which 
is more likely to change each time the random procedure to 
remove observations is run.

Regarding the comparison between percentages of  missing 
values, Table 3 (second, eighth and ninth columns) illustrates a 
more stable and robust performance of  JRA, since the dominant 
genotypes are kept unchanged for an incidence of  missing val-
ues until 50 %. While for JRA there are six environments (Rev, 
Elv1, Bej1, Tav1, Tav2 and Bej2) which are dominated by the 

Table 4 – AMMI4 analysis of  variance. The grand mean is 
4.502 t ha–1.

Source df SS MS p-value*
Total 395 1648.74 4.174
   TRT 98 1497.37 15.279 < 0.001

    GEN 8 61.35 7.669 < 0.001

    ENV 10 1294.27 129.427 < 0.001

    G × E 80 141.74 1.772 < 0.001

      IPC 1 17 77.04 4.532 < 0.001

      IPC 2 15 38.01 2.534 < 0.001

      IPC 3 13 10.79 0.830 0.076

      IPC 4 11 10.15 0.923 0.052

      Residual 24 5.76 0.240 0.985

Error 297 151.37 0.510
Based on F tests. df  = degrees of  freedom, SS = sum of  squares, 
MS = mean square, TRT = treatments, GEN = genotypes, ENV 
= environments, G × E = genotype by environment interaction, 
IPC = interaction principal component.
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Figure 3 – AMMI1 biplot for the durum wheat experiment. Bold 
font represents the codes of  the genotypes and plain text 
the abbreviations for the environments (Bej1: Beja1; Bej2: 
Beja2; Ben1: Benavila1; Ben2: Benavila2; Evo: Évora; 
Elv1: Elvas1; Elv2: Elvas2; Elv3: Elvas3; Rev: Revilheira; 
Tav1: Tavira1; Tav2: Tavira2).
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same genotypes in all the cases (with exception of  the extreme 
75 % incidence rate of  missing values), for the AMMI analysis 
it only happens in 4 environments (all of  then are won by 
CELTA). Moreover for the AMMI model the genotype TE9008 
and TE9115 only win in one of  the five cases (incidence rates), 
while for the JRA the dominant genotypes are more stable.

Although the dominant genotypes have little change with the 
incidence rate of  missing values it seems clear that CELTA is the 
strongest genotype regarding the yield production. It is always 
dominant for higher environmental indexes and always wins one 
mega-environment. With 75 % of  missing values (297 out of  396 
observations) the JRA yet identifies two of  the dominant geno-
types presented in the upper contour of  Figure 1, while AMMI 
identifies a “small” mega-environment Elv3 and a larger mega-
environment with the remaining ten environments (Table 3).

We carried out 100 simulations as described before, and 
Table 3 shows the results for one of  them chosen randomly. 
The 100 data sets for each proportion of  missing values resulted 
in the identification of, at least, one dominant/winner genotype 
coincident to the complete data set when considering 75 % of  
missing values. For 50 % or less JRA always identified TE9008 
and CELTA as dominant genotypes, whereas TE9204 (not 
dominant/winner in the complete data set) and CELTA almost 
always win one AMMI mega-environment. A detailed summary 
of  the 100 runs is presented in Table 5.

Conclusion

The aim was not to compute estimates of  missing values 
and compare them with the original data, but to compare the 
final results (i.e. dominant/winner genotypes and environments 
where the were dominant/winner) between JRA and AMMI 
and between the complete data and incomplete data sets with 
different incidence rates of  missing values. The main conclu-
sions were the similarity between the dominant genotypes in 
JRA and the winners of  the mega-environments in the AMMI 
analysis; and a more stable performance of  JRA for higher pro-
portions of  missing values. The results from JRA trend to be 
more significant than those from AMMI models in these kind 
of  trials, because the genotypes in the program have proved to 
have strong adaptability. 
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