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ABSTRACT: In the context of multi-environment trials, where a series of experiments is con-
ducted across different environmental conditions, the analysis of the structure of genotype-by-
environment interaction is an important topic. This paper presents a generalization of the joint re-
gression analysis for the cases where the response (e.g. yield) is not linear across environments 
and can be written as a second (or higher) order polynomial or another non-linear function. After 
identifying the common form regression function for all genotypes, we propose a selection pro-
cedure based on the adaptation of two tests: (i) a test for parallelism of regression curves; and 
(ii) a test of coincidence for those regressions. When the hypothesis of parallelism is rejected, 
subgroups of genotypes where the responses are parallel (or coincident) should be identified. 
The use of the Scheffé multiple comparison method for regression coefficients in second-order 
polynomials allows to group the genotypes in two types of groups: one with upward-facing con-
cavity (i.e. potential yield growth), and the other with downward-facing concavity (i.e. the yield 
approaches saturation). Theoretical results for genotype comparison and genotype selection are 
illustrated with an example of yield from a non-orthogonal series of experiments with winter rye 
(Secalecereale L.). We have deleted 10 % of that data at random to show that our meteorology 
is fully applicable to incomplete data sets, often observed in multi-environment trials.
Keywords: Scheffé multiple comparison method, joint regression analysis, test for parallelism, 
test of coincidence

Introduction

Farmers and scientists aim to identify superior per-
forming genotypes across a wide range of environmental 
conditions. Here, by environments we mean combina-
tions of locations and years. The main source of differ-
ences between genotypes in their yield stability is the 
fact that the genotype and environment effects are not 
additive, i.e. genotype-by-environment interaction (GEI) 
is present in the data. This interaction can be due to con-
trasting drought stress levels, winter low temperature 
stress, abiotic stresses, growing cycle duration, availabil-
ity of nutrients, etc. The GEI can be expressed either as 
crossovers, when two different genotypes change in rank 
order of performance when evaluated in different envi-
ronments, or inconsistent responses of some genotypes 
across environments without changes in rank order. The 
study and understanding of these interactions is a ma-
jor challenge for breeders and agronomic researchers 
attempting to improve complex traits (e.g. yield) across 
environmental conditions.

Various techniques have been used to analyze 
the interaction in general and GEI in particular. Read-
ers interested in those methods are referred to e.g. 
Aastveit and Mejza (1992); Annicchiarico (2002); 
Gauch (1992); Kang and Gauch (1996); Romagosa et 
al. (2009).

Regression is one of the most popular and most 
applicable methods used for inference about genotype 
comparison and selection in the context of multi-envi-
ronmental experiments. In regression analysis two sets 
of variables are used, the first characterizing genotypes, 
and the second environments. The so-called adjusted 

means (or some other genotypic characteristic) for 
genotypes usually constitute observations of the depen-
dent variable. In our illustration we take the original 
observations of the phenotypic variable as a realization 
of each dependent variable. The independent variable 
is defined by environmental indexes, which represent 
a measurement of productivity. Although Finlay and 
Wilkinson (1963) defined these environmental indexes 
as the average over all environments for every geno-
type, in this study we compute them with an itera-
tive zigzag algorithm (Mexia et al., 1999; Pereira and 
Mexia, 2010) which leads to the best linear unbiased 
estimators of the joint regression parameters. In joint 
regression analysis (JRA), after selecting the variable of 
interest (e.g. yield), the joint regression model adjusts a 
linear regression per genotype across all environments 
(Pereira et al., 2011; Rodrigues et al., 2011), on a syn-
thetic variable measuring productivity, the environ-
mental index. Several variants of JRA have been pro-
posed. The one in which we will be interested here was 
first proposed by Gusmão (1985), who showed that the 
precision in analyzing series of randomized block ex-
periments was increased by considering environment 
indexes for individual blocks instead of only one envi-
ronmental index per environment. Mexia et al. (1999) 
introduced the L2 environmental indexes obtained by 
minimizing the sum of sums of squares of residuals, 
both in order to the coefficients of the regressions and 
to the environmental indexes.

Here a generalization of the joint regression 
analysis is presented for cases where the response (e.g. 
the yield) is not linear across environments and can 
be written as a second (or higher) order polynomial or 
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another non-linear function. In our considerations we 
shall start with the estimation of the regression func-
tions (linear or curvilinear) independently for all geno-
types. In the second step the hypothesis of parallelism 
of regressions for all genotypes is tested. In general it 
is expected that the hypothesis of parallel regression 
lines will be rejected because of the presence of GEI 
in the data. If we reject the parallelism of regression 
curves, the next step to investigate GEI is to try to find 
subgroups of genotypes with similar responses to dif-
ferent environmental conditions. The genotypes can 
then be divided into groups based on the Scheffé mul-
tiple comparison method for regression coefficients, i.e. 
the genotypes with similar behavior will be grouped 
together and the calculations performed for each group 
separately.

The methodology will be illustrated by using a 
data set for winter rye (Secalecereale L.) from multi-envi-
ronment trials carried out in the years 1997 and 1998 in 
Słupia Wielka, Poland (52o13’ N, 17o13’ E).

Materials and Methods

The zigzag algorithm
For convenience, let us consider data arranged in 

a two-way array with I rows and b columns. Suppose 
Yij is a continuous response variate (e.g. yield) for geno-
type i in block j if present. The joint regression mod-
el discussed here is an extension of that of Finlay and 
Wilkinson (1963) where the environmental indexes are 
computed for each block instead of for each environ-
ment. Assuming that the yield vectors are independent, 
normal, homoscedastic and that genotype i is present in 
block j (or replicate), the joint regression model can be 
written as:

Yij = ai + bi cj + eij   (i=1,..., I; j = 1,..., b)	  (1)

with ai the intercept and bi the slope for genotype i, 
cj  the block environmental index and eij the residuals. 
These environmental indexes represent the averages 
over a block/superblock and can be seen as a (spatial) 
measure of productivity.

Gusmão (1985, 1986) showed that the precision 
in analyzing series of randomized block experiments 
was improved considering environmental indexes for 
individual blocks of only one environmental index per 
experiment instead of one environmental index per 
environment. This proposal results in K experiments 
each with b blocks, i.e. Kb supporting points per regres-
sion instead of only K such points used by the classi-
cal Finlay-Wilkinson joint regression model (Finlay and 
Wilkinson, 1963).

To estimate the model parameters, we wish to 
minimize

,	  (2)

where pij is the weight of genotype i in block j. If the 
genotype is absent we take pij=0 . When the genotype 
occurs we take ij jp p= , j = 1, 2,…, b. These weights 
may differ from block to block to express differences 
in the representativeness of the blocks. If there are sev-
eral blocks in the same location, their weights will be 
the same. In the illustration presented in this paper we 
use 1 and 0 for the weights, because no information 
was available about the relevance of the importance of 
blocks.

The zigzag algorithm (Pereira and Mexia, 2010) is 
used to minimize the loss function (2) iteratively, with 
respect to ai , to bi and to the environmental index jx . 
For the complete case (i.e. all the genotypes are present 
in each environment) the average yield per block can 
be a good initial value for searching the environmental 
indexes (Gusmão, 1985). When incomplete blocks are 
used one may take the average yields for the correspond-
ing superblock as the initial values. In the worst case any 
initial values may be taken, since the computation time 
does not increase much.

We assume that the yield vectors have components 
normally and independently distributed, so that the zig-
zag algorithm will lead to maximum likelihood estima-
tors and enable us to make inferences while comparing 
genotypes.

The zigzag algorithm may be described as follows:

Calculate the initial values for the environ-
mental indexes 0

bx , which range within the 
interval [a0,b0], where 0 01 0{ ,..., }ba Min x x=

 
and 

0 01 0{ ,..., }bb Max x x= ;

Minimize the function  and obtain  
and ; 

To minimize , minimize the 
functions:

, j = 1, 2,…, b,

to obtain the new vector b
0x′  of new environmental 

indexes;

Standardize the vector of environmental in-
dexes to keep the range unchanged. With

{ }0 01 0, , ba Min x x′ ′ ′=  , { }0 01 0, , bb Max x x′ ′ ′= 

 
take

( )0 0
1 0 0 0

0 0
j i

b a
x a x a

b a
− ′ ′= + −

′ ′− ; to obtain the vector b
1x , the 

new environmental indexes.

Repeat steps (ii) to (iv) until successive sums of 
sums of squares of weighted residuals differ by less than 
a fixed value.

At the end of each iteration, a standardization of 
the adjusted environmental indexes is carried out so that 
the range does not change from iteration to iteration. The 
procedure is carried out until the goal function stabilizes. 

(i)

(ii)

(iii)

(iv)

(v)
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The environmental indexes adjusted in this way are called 
L2 environmental indexes, because the L2 norm was used. 
The described zigzag algorithm is a version of the itera-
tive algorithms existing in the literature; see for example, 
Digby (1979); Gabriel and Zamir (1979) and Ng and Wil-
liams (2001). Pereira and Mexia (2010) proved the con-
vergence of the zigzag algorithm and that the adjusted 
parameters could be seen as maximum likelihood esti-
mators. The alternative algorithms only considered the 
numerical adjustment.

Test for coincidence
Considering as before Yij, the phenotypic observa-

tion for genotype i in block j, j = 1,…,b; i = 1,…, I, and 
Xj, the environmental index for environment j, can be 
written as

Yij = bi0 + bi1z1j + ... + bitztj + eij 	  (3)

where bik (k = 0, 1,…, t) are the t+1 unknown regression 
coefficients, zkj (=fk(xj)) are known functions of the envi-
ronmental indexes xj, eij are independent and identically 
distributed random variables following normal distribu-
tion with E(eij) = 0, for all i, j, and

			    (4)

After identifying the regression functions for all 
genotypes, a test of coincidence for regressions can be 
used to check whether the yield responses for genotypes 
are similar with respect to environmental indexes. This 
test can be performed in two stages (Kleinbaum et al., 
2008; Williams, 1967): (i) a test for parallelism of regres-
sion curves; and (ii) a test of coincidence for those re-
gressions.

Equation (3) can be rewritten as

Yij = mi + bi1(z1j –z1) + bi2(z2j –z2) + ... + bit(ztj –zt) +

eij, j = 1, ..., b; i = 1, ...I 	  (5)

After centering the observations we have

bi0 = mi – bi1z1 –  bi2 z2) –  ... – bit zt.	  (6)

The null hypothesis to test the parallelism of re-
gression functions can be written as

H0 : bik = bck, i = 1,…, I;  k = 1,…, t,		  (7)

where bck denotes the common kth regression coefficient, 
equal for all genotypes.

Let us consider now the case when some of the ob-
servations Yij are missing. Then, let ni (≤ b) be the num-
ber of environments in which the genotype i is observed, 
and 

I

i
i

N n
=

= ∑
1

.
Classical regression techniques are used to esti-

mate the parameters by the least squares method, inde-
pendently for each genotype. Then we have

where bi is the vector of estimators of regression pa-
rameters for the genotype i, Zi is an  ( )in t×  matrix of 
centered values of explanatory variables, Yi = [Yi1, Yi2, 
..., Yini

]’, i = 1, 2, ..., I. The SSi,e has ni – t – 1 degrees 
of freedom.

Table 1 gives the analysis of variance to test the 
parallelism of regression functions. The statistic ,FC I , un-
der 0H , follows an F central distribution with (I – 1)
t and N – It – I degrees of freedom. After rejecting the 
hypothesis that all intercepts are equal we can test the 
hypothesis of the form:

H01 : b10 = b20 = ... bI0.	  (8)

To test H01 it is necessary to calculate the estimator 
of common regression coefficients bC (under hypothesis 
H0). These estimators can be obtained by solving normal 
equations of the form

Z’ZbC = Z’Y	  (9)

where,   

Table 1 – Analysis of variance for parallelism of the regression lines.
Source of variation d. f. Sum of squares Mean square F-ratio

Combined Regression t
,SSR C C′ ′= b Z Y

,
,

SS
MS R C

R C t
=

Between regressions (I – 1)t , ,
1

SS -SS
I

C I i i R C
i=

′ ′= ∑b Z Y
,

,

SS
MS

( 1)
C I

C I I t
=

−
,

,

MS
F

MS
C I

C I
e

=

Combined Residuals N – It – I
'

1 1

SS
I I

e i i i i
i i= =

′ ′= −∑ ∑Y Y b Z Y SS
MS e

e N It I
=

− −

Total within genotypes N – I
'

,
1

SS
I

Y I i i
i=

= ∑Y Y
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By 
'

1

SS   
I

C C i i C
i=

′ ′ ′ ′ ′= − = −∑Y Y b Z Y Y Y b Z Y  we denote the 
comon sum of squares for deviation from regression 
with e N I tν = − −  degrees of freedom.

Let Y  be the vector of all N observations corre-
sponding to the vector  of t regression parameters and 
an N × t matrix Z

~  of observed values of Z. Using the 
standard regression technique we obtain the sum of 
squares for the residualSS   E ′ ′= −Y Y bZ Y

    .
The overall analysis of variance to test the hypotheses H0 

and H01 is presented in Table 2. The statistic FI, under H01, 
follows an F-distribution with I – 1 and N – It –I degrees 
of freedom.

Plant materials
To illustrate the described methodology, we use 

the yield data from a winter rye (Secalecereale L.) ex-
periment, obtained in multi-environment trials carried 
out at Słupia Wielka (Poland) in 1997 and 1998. In each 
design there were four superblocks, with four blocks of 
four plots each. Each genotype occurred in one plot per 
superblock. The data set used in this illustration is a sub-
set with five genotypes (CHD_296, RAH_596, RAH_697, 
RAH_797 and URSUS) and 32 blocks. From this two-
way table with 32 rows and five columns, 10 % of the 
data values were deleted to simulate the possibility of 
having missing values due to pests, animals or other 
likely factors. The removal of missing values was per-
formed so as to produce an identical number of missing 
cells per genotype. The summary of the two-way data is 
presented in Table 3.

Results and Discussion

After applying the zigzag algorithm to the non-
orthogonal series of experiments described in the previ-
ous section, the environmental indexes are obtained and 
used as independent variable for the regression curves. 
The response function (i.e. yield) with respect to envi-
ronmental index was estimated by several functions and 
the adjusted coefficient of determination, R2, obtained. 
Table 4 shows the adjusted R2 for all the considered 
functions and all five genotypes.

Although all the adjusted R2 are high and very simi-
lar, we have decided to use quadratic regression to ex-

press the responses of genotypes because this model is 
that for all genotypes it gives the best fit of the data, as can 
be seen from Table 4. The adjusted regression coefficients 
of the quadratic model, R2 and p-values arepresented in 
Table 5. Figure 1 represents the adjusted quadratic regres-
sions for the five winter rye genotypes in study.

After rejecting the hypothesis that the regression 
is not a quadratic curve for each of the genotypes (p < 
0.001, Table 5) we are led to test whether the regression 
curves are parallel for all five genotypes (cf. Table 1). The 
hypothesis that the regression lines are parallel is rejected 
(Table 6), as expected after analyzing Figure 1 and from a 
preliminary analysis where GEI was found in this data. 

In the next step of investigating GEI we tried to 
find subgroups of genotypes where responses are par-
allel (or coincident). By simple inspection of the coef-
ficients (Table 5), we can consider two groups of geno-
types: (1) CHD_296; RAH_797 and URSUS; (2) RAH_596 
and RAH_697. In this case this is in accordance with the 
preliminary analysis presented in Figure 1.

To quantify the differences we can use mul-
tiple comparison methods such as Scheffé (Scheffé, 
1959; Miller, 1991). When using the Scheffé method, 
representing by f1–a, r, g the 1 – a quantile of the cen-
tral F distribution with r and g degrees of freedom, 
and 2 ,  1,..., ,  0,1, 2

imbs i I m= =  the variance of the re-
gression coefficient bim, the pairs of quadratic re-
gression coefficients which satisfy the condition 

, m = 0, 1, 2, are 
different at the significance level a.

Since the regression coefficients b1 and b2 do not 
differ among environments (p < 0.05), we present in 
Table 7 only the results for the Scheffé multiple com-
parison method of the b0 coefficients.

Table 2 – Overall analysis of variance to test the coincidence of the regression lines.
Source of variation d. f. Sum of squares Mean square F-ratio

Overall regression t SS ′= b ZY  

R
SSMS R

R t
=

Between intercepts I – 1 SS SS  - SSI E C= SS
MS

1
=

−
I

I I
MSF
MS

I
I

e
=

Between regressions (I – 1)t ,SSC I ,MSC I ,FC I

Residual-combined N – It –I SSe
MSe

Total within genotypes N – 1 ′ Y Y

Table 3 – Descriptive statistics for the five genotypes and the 
environmental index.

Genotypes ni Mean Std. Dev. Min. value Max. value
CHD_296 29 8.24 2.26 5 12.5
RAH_596 29 9.13 2.80 5.8 13.8
RAH_697 29 9.75 2.71 5.9 14
RAH_797 29 9.62 3.00 5.4 13.6
URSUS 28 10.45 3.57 5.5 15.8
Environmental index 32 9.68 2.96 5.73 14.13
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Table 5 – Regression coefficients, coefficient of determination and p-value for the five genotypes.

Genotype
Regression coefficients

R2 p-value
b0 b1 b2

CHD_296 -2.049  1.486 -0.037 0.93 <0.001
RAH_596  6.021 -0.354  0.064 0.97 <0.001
RAH_697  6.900 -0.440  0.068 0.97 <0.001
RAH_797 -4.194  1.968 -0.049 0.99 <0.001
URSUS -3.964  1.901 -0.037 0.99 <0.001

Figure 1 – Adjusted quadratic regressions for the five winter rye genotypes in study. The abscissa corresponds to the yield and the ordinate to 
the environmental index. The dots represent the genotypes and the solid lines the adjusted quadratic regressions.

Table 6 – ANOVA for parallelism of all five quadratic regression lines.
Source of variation d.f. Sum of squares Mean square F-ratio p-value
Combined regression 2 1100.25 550.12
Difference of regressions 8 33.23 4.15 17.74 < 0.001
Combined residuals 129 30.20 0.23
Total within groups 139 1163.67

                      Genotype
Function CHD_296 RAH_596 RAH_697 RAH_797 URSUS

Linear 0.924 0.958 0.954 0.978 0.983

Logarithmic 0.931 0.928 0.919 0.985 0.985

Inverse 0.919 0.881 0.865 0.972 0.968

Quadratic 0.931 0.972 0.972 0.985 0.986

Compound 0.893 0.966 0.959 0.952 0.950

Power 0.914 0.947 0.935 0.975 0.977

S-Curve 0.918 0.909 0.891 0.981 0.985

Growth 0.893 0.966 0.959 0.952 0.950

Exponential 0.893 0.966 0.959 0.952 0.950

Logistic 0.920 0.942 0.932 0.982 0.907

Table 4 – Adjusted R2 values for several response functions.
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Table 7 – Scheffé multiple comparison tests of the b0 coefficients.

bi0 – bl0 RAH_596 RAH_697 RAH_797 URSUS

CHD_296 8.07** 8.949** 2.145* 1.915NS

RAH_596 - 0.879NS 10.215** 9.985**
RAH_697 - - 11.094** 10.864**
RAH_797 -- - - 0.23NS

*Significant at the 0.05 probability level; **Significant at the 0.001 probability level; NSnot significant at the 0.05 probability level.

The groups obtained with the Scheffé method at 
significance level 1 % are the same as those given by 
the simple inspection of the coefficients or by analysis 
of Figure 1.

The multiple comparison method of Scheffé made 
it possible to divide the genotypes into two groups: one 
group with upward-facing concavity (i.e. potential yield 
growth) and other with downward-facing concavity (i.e. 
the yield approaches saturation). Inspecting the coeffi-
cients, especially b2, it is possible to see the form of the 
yield curves. If b2 is positive, the curve will be convex, 
otherwise concave.

Table 8 shows the common regression coefficients 
for all genotypes together and each of the two groups 
obtained using the Scheffé multiple comparison method, 
while Table 9 gives the ANOVA to test the parallelism of 

regression lines for each of the two groups of genotypes. 	
The hypotheses of parallelism between the quadratic re-
gressions were rejected for the first group of genotypes 
(Table 9). However, we do not reject the same hypothesis 
for the second group. Hence, in this case, we can go one 
step further and test whether the regressions in the second 
group are coincident (hypothesis H01). From the ANOVA 
presented in Table 10 we reject that hypothesis, i.e. al-
though the quadratic regression lines are parallel they are 
distinct. Therefore the adjusted regression functions for the 
genotypes RAH_596 and RAH_697 can be written as:

2
_ 596

ˆ 6.229 0.397 0.066RAHY x x= − + ;

2
_ 697

ˆ 6.717 0.397 0.066RAHY x x= − + ,

Table 9 – ANOVA to test the parallelism of regression lines for each of the two groups of genotypes.

Group Source of variation d.f. Sum of squares Meansquare F-ratio p-value

1 Combined Regression 2 699.09 349.54
Difference of Regressions 4 21.13 5.28 22.03 < 0.001
Combined Residuals 77 18.46 0.24
Total within groups 83 738.68

2 Combined Regression 2 413.25 206.62
Difference of Regressions 2 0.008 0.004 0.018NS 0.98
Combined Residuals 52 11.73 0.23
Total within groups 56 424.99

NSnot significant at the 0.05 probability level.

Table 10 – ANOVA to test the coincidence of regression functions in the second group (RAH_596 and RAH_697).
Source of variation d.f. Sum of squares Mean square F-ratio p-value
Overall regression 2 415.40 207.70
Between intercepts 1 3.44 3.44 15.26* 0.0003
Between regressions 2 0.008 0.004 0.18NS 0.98
Residual-combined 52 11.73 0.23
Total-within genotypes 57 430.58
*Significant at the 0.001 probability level; NSnot significant at the 0.05 probability level.

Table 8 – Common regression coefficients, coefficient of determination and p-values for all genotypes together and each of the two groups 
(centered data).

Groups of genotypes
Regression coefficients

R2 p-value
b0 b1 b2

All 0.000  0.852  0.005 0.95 <0.001

Group 1 0.000  1.628 -0.033 0.95 <0.001

Group 2 0.000 -0.397  0.066 0.97 <0.001
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where the b1 and b2 are the common regression coeffi-
cients from Table 8 and the b0 coefficients are calculated 
according to expression (6).

We point out that we did not find groups of geno-
types with identical regressions; this may be due to the 
high level of GEI. All that we can say is that genotypes 
RAH_596 and RAH_697 have yields parallel, with that 
of the second genotype a little higher.

Conclusions

The hypothesis of parallelism of regression curves 
was rejected, which is natural in multi-environment tri-
als with interaction between genotype and environment. 
The main difference in the two subgroups of genotypes 
where the responses are parallel is that one group had 
upward-facing concavity (i.e. potential yield growth) and 
the other had downward-facing concavity (i.e. the yield 
approaches saturation), which can help breeders in their 
genotype selection. The approach proposed in this paper 
is general and applicable to any series of experiments 
conducted in multi-environment trials or simply to the 
case of two-way classified data.
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