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ABSTRACT: The diameter and height growth model is one of three submodels used for simulating 
individual tree growth. In Brazil, there are few studies on the dimensional growth of individual trees 
be they native or exotic species, despite their potential. This study aimed to evaluate diameter 
and height growth models for individual trees for eucalyptus stands and to validate the best fitting 
model. Tree diameter and height data were obtained from 48 permanent plots of unthinned stands 
of Eucalyptus grandis × Eucalyptus urophylla hybrid located in northern Brazil. The evaluation of the 
diameter and height growth models was based on adjusted coefficient of determination, standard 
error of estimate as a percentage, trend, root mean square error and Akaike Information Criterion. 
Analysis also included distribution of residual percentage, statistical significance and signs of the 
coefficients. The Lundqvist–Korf model provided the most accurate estimates for diameter and 
height growth, in comparison with the other models, providing better statistical values, greater 
proximity to observed values and better distribution of residual percentages. The use of this type 
of model is feasible and can result in significant improvements in the accuracy of yield estimates.
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Individual tree growth models for eucalyptus in northern Brazil
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Introduction

Dimensional growth in terms of diameter and 
height is one of the three constituents of an individual 
tree model and is subject to complex interactions 
(Andreassen and Tomter, 2003; Soares and Tomé, 2002). 
It is influenced by growth vigor, past growth conditions, 
microenvironment, genetic traits and competitive status 
(Tomé and Burkhart, 1989).

In models at the level of the individual tree, 
growth is often estimated via the potential growth 
function or growth equations (Davis et al., 2005). In 
the potential growth function, growth is obtained by 
multiplying potential growth (Pg) by a modifier function 
(fm) (Biging and Dobbertin, 1992; Soares and Tomé, 
1997). Pg describes the maximum possible growth that 
a tree can attain, whereas fm describes the decrease 
in growth potential due to competition (Kiernan et al., 
2008). In contrast, growth equations (or functions) use 
tree attributes (tree size, competition indices, crown 
ratio, vigor), stand attributes (age, site index, stand basal 
area) and site characteristics as predictor variables, all 
combined in a single equation (Uzoh and Oliver, 2006).

Several equations are used to estimate growth, 
including linear or polynomial equations (Kiernan et 
al., 2008), the Bertalanffy equation (Vanclay, 1994), the 
Richards equation (Amaro et al., 1998), the Gompertz 
equation, the logistic equation and the exponential 
equation (Zeide, 1993) in addition to nonlinear functions 
(Zhang et al., 2004). However, the superiority of modifier 
functions over growth equations (or functions) has not 
been demonstrated. 

Many studies have been conducted on model 
growth in diameter and height at the individual tree level 
in forests in the USA and Europe (Biging and Dobbertin, 
1992; Lynch and Murphy, 1995; Tomé and Burkhart, 

1989; Vospernik et al., 2010). In Brazil, there have been 
few studies estimating forest growth at this level. Existing 
studies refer to native species such as Cabralea canjerana 
(Durlo, 2001), araucaria (Araucaria angustifolia) (Chassot et 
al., 2011), cedar (Cedrela fissilis) (Durlo et al., 2004) and 
certain species from the Amazon region (Silva et al., 2002). 
On the other hand, there are no models that estimate 
growth at the individual tree level for planted commercial 
species. Because of the importance of the genus Eucalyptus 
in Brazil, with more than four million hectares planted 
(ABRAF, 2011) and the gap in growth modeling at 
individual tree level, the aim of this study was to evaluate 
and compare various diameter and height models for 
individual Eucalyptus grandis × Eucalyptus urophylla trees.

Materials and Methods

The study was conducted in Monte Dourado, in the 
state of Pará, Brazil (0º53’22” S, 52º36’6” W, 65 m a.s.l.). 
The region has a tropical monsoon climate (Am), with an 
average annual precipitation of 2.115 mm and a short dry 
season between Sept and Nov, according to the Köppen 
classification. The average annual temperature is 26.4 ºC, 
and average relative humidity ranges between 80 % and 
85 % (Martins et al., 2011).

Data were obtained from 48 permanent plots (1997 
to 2003) in a continuous forest inventory of unthinned 
stands of hybrid Eucalyptus grandis W. Hill ex Maiden x 
Eucalyptus urophylla S.T. Blake (urograndis). Thirty of these 
plots were used for model fitting, and the others were 
used for model testing (simulation). Each plot was 500 
m² with spacing between trees of 3 × 3 m. The following 
measurements were made: diameter 1.3 m above ground 
level (dbh) of all trees using a caliper, total height (Ht) of 
the first 15 trees (Table 1) and total height (Hd) of the five 
dominant trees, using Vertex IV (Campos and Leite, 2009). 
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To estimate Ht for the remaining trees, a 
hypsometric equation was used, which was fitted to the 
site (Martins et al., 2011) (eq. 1):

Ht = 36.9876 – 30.4340 . exp(–0.000499 . (dhb . ln(Hd 
ln(t))1.388275  					     (1)

( 2R =83.7%; Sy.x%= 2R 11.79%).

where dbh = diameter outside bark as measured 1.30 
m above ground level (cm); Hd = average height of 
dominant trees (m); t = age (months); 2R % = adjusted 
coefficient of determination (percentage); and Sy.x% = 
standard error of estimate (percentage), both computed 
in the original units of the dependent variable (m).
The heights of dominant trees (Hd) were also used to 
classify the productive capacity by means of site indices 
(SI) (eq. 2) via the guide curve method (Campos and 
Leite, 2009), which correlates the height of dominant 
trees with the stand age at an index age.  			 
		

ln SI = ln(Hd) + 14.8802 . 1 1

it t

  −  
  

	  
(2)

where ti = index age (60 months); t = age (months).
The thresholds used for plot classifying into 

productivity classes were: i) low productivity class 
(SI = 20, which represents the center value of the class): 
plots with Hd  ≤  23 m with index age of 60 months; 
ii) average productivity class (SI = 26): plots with Hd  
between 23 and 29 m; and iii) high productivity class 
(SI = 32): plots with Hd  > 29 m. 

Seven models for estimating the diameter and 
height growth of an individual tree were evaluated 
(Table 2). As the growth models used in this study have 
a projection structure (t → t+1), the Durbin-Watson 
test (dw) was applied to verify autocorrelation in 
these models, which all have a similar autoregressive 
structure (Gujarati, 2004). This analysis evaluated 
linear and nonlinear relationships. Models were fitted 
independently to each productivity class (Martins et al., 
2011) (SI = 32, SI = 26 and SI = 20).

Two model fitting tools were used in this study: 
the SAS software MODEL procedure (Statistical Analysis 
System, version 8.0, 2001), with maximum likelihood 
fitting for nonlinear estimation, and the nonlinear 
estimation procedure from Statistica software (Statsoft, 
version 7.0, 2008), which uses a variant of the Gauss-
Newton method to estimate the parameters of nonlinear 
regression by the least squares method. 

The fit of the equations of the seven models 
was verified with the following statistics: the adjusted 
coefficient of determination ( 2R ), trend (BIAS), standard 
error of estimate in percent (Sy.x%), root mean square 
error (RMSE) and Akaike Information Criterion (AIC) 
(Gujarati, 2004):
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where yi = i-th observed value for the dependent 
variable; iy  = i-th estimated value for the dependent 
variable; iy  = mean observed value for the dependent 
variable; n-1 = degrees of freedom of the total in 
the analysis of variance; n-p-1 = degrees of freedom 
of the residual from the analysis of variance of the 
regression, p = number of coefficients and n = number 
of observations.

The model resulting in the greatest 2R , least 
BIAS, Sy.x%, RMSE and AIC was selected as the best 
model. In addition to the above statistics, graphs were 
developed to compare observed diameters and heights 
with those estimated by models, as well as graphs of 
the distribution of residual percentages (res%) relating to 
estimated diameters and heights (Vanclay, 1994). 

Table 1 – Characteristics of Eucalyptus grandis × Eucalyptus 
urophylla located in Monte Dourado, in the state of Pará, Brazil.

Age (months) 24 - 72

Diameter at breast height: dbh at 1.30 m (cm) 4.0 - 29.4

Average diameter: q (cm) 7.3 - 18.4
Total height: (Ht) (m) 8.5 - 34.1
Dominant height: (Hd) (m) 13.1 - 34.8
Basal area (m² ha–1) 4.7 - 27.2
Volume (m³ ha–1) 23.8 - 353.9
Density (trees ha–1) 760 - 1180

∑= / n
i=1

dbh
n

dbh
; 

∑
2

= /
=1

n
q dbh n

i  
Ht is the distance between the ground and the top of tree, and Hd is the five 
trees heights of largest dbh in each plot.
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Table 2 – Models used for estimating diameter and height growth for individual eucalyptus trees.
Number Model Author

1 ( )( )â ââ å− ⋅ − +
= ⋅

1 1
0 2 1

2 1 exp
t t

Y Y Pienaar and Schiver (1981)

2
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  

= ⋅ + 
 

. and  A =b0+ b1 . SI Lundqvist-Korf / Amaro et al. (1998)
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Richards / Zeide (1993)

5 ( ) ( )0 1 2 0 1 1
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2 1
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Adapted Schumacher equation Campos and Leite 
(2009)
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Linear / adapted from Bella (1971) and Campos and 
Leite (2009)

Y2 = diameter (cm) or height (m) in future age; Y1 = diameter (cm) or height (m) in current age; t2 = future age (months); t1 = current age (months); BAI = basal area 

index = 
2

2
id

BAI =  
q

; di = dbh subject-tree (cm) and q = quadratic mean diameter (cm); b0. b1. b2. b3 = coefficients to be estimated; and e = random error.

The best-fitting model to represent diameter and 
height growth was also tested with independent data. 
Simulation was performed on 18 permanent plots whose 
evaluation was based on the RMSE. The homogeneity 
of variance was tested between the observed values of 
diameter and height and the values estimated by the 
best model in each productive capacity class using a 
Bartlett’s test (H0 = homogeneous variances versus H1 
= heterogeneous variances). This same Bartlett’s test 
can be used to test the absence of normality, and this 
test was used in this study. The observed mean values of 
diameter and height were compared, using a t-test, with 
the mean values estimated by the best model in each 
productive capacity class.

Results

In this study, all equations referring to the models 
assessed for the variables diameter and height in all three 
productivity classes provided values that were very close 
to each other according to the relevant statistics ( 2R , 
BIAS, Sy.x%, RMSE and AIC) (Table 3). The models with the 
best fit were those for SI = 32, followed by SI = 26 and 
finally SI = 20. Individual tree diameter and height growth 
models are among the basic and essential components of 
forest growth models (Sánchez-González et al., 2006).

The best estimates of diameter were obtained 
using models 1, 2 and 6. Only a few equations showed 
significant autocorrelation according to a dw test (Table 
3). In these cases, it is incorrect to compare the 2R  
values for the estimators with those reported by other 
studies because the ordinary least squares estimators are 
biased (Gujarati, 2004). 

Generally, lower estimates of 2R  (0.28 to 0.83) 
were found by Sterba and Monserud (1997) and by 

Andreassen and Tomter (2003) for the basal area 
increment of Pinus sylvestris, Picea abies and Betula sp. 
Tomé and Burkhart (1989) and Adame et al. (2008) also 
found lower estimates (0.51 to 0.54) for the diameter 
increment of Eucalyptus globulus and Quercus pyrenaica 
(0.44). Lower estimates were also obtained by Soares 
and Tomé (1997) (0.99) using the Lundqvist-Korf (L-K) 
model for the quadratic dbh mean of Eucalyptus globulus. 

In analyzing BIAS, models 1 and 7 (SI = 32, 26 and 
20), 2 (SI = 32 and 20) and 6 (SI = 32) overestimated 
diameter in a small range of values, whereas models 3, 4, 
and 5 (SI = 32, 26 and 20), 2 (SI = 26) and 6 (SI = 26 and 
20) underestimated diameter. Soares and Tomé (1997) 
obtained similar negative estimates of BIAS (-0.038 to 
-0.016 cm) for the quadratic dbh mean of Eucalyptus 
globulus, the same as had been observed by Sánchez-
González et al. (2006) for the diameter increment of 
Quercus suber. Härkönen et al. (2010) found values 
higher than those found in this study; these authors used 
other models to estimate the diameter growth of Betula 
pendula (-0.70 cm) and Betula pubescens (-0.80 cm).

The highest estimates found for Sy.x% and RMSE 
were ±5.98 (S = 20) and 0.699 cm (S = 26), respectively, 
both for model 5, whereas the lowest were ±3.03 in 
SI = 32 and 0.46 cm in SI = 20, respectively, both for 
model 2. Sánchez-González et al. (2006) and Härkönen 
et al. (2010) found higher values of Sy.x% and RMSE for 
the growth of Quercus suber (±40.82), Picea abies (±14.4 
and 2.8 cm) and Pinus sylvestris (±17.0 and 3.4 cm) and 
similar values for Betula pendula (± 3.8 and 6.3 cm) and 
Betula pubescens (±5.8 and 3.5 cm).

All equations based on the models provided very 
similar values for height for all the statistics assessed. 
The best equations involving height were those based on 
models 2 and 6, as they provided higher 2R  values and 
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lower BIAS, Sy.x%, RMSE and AIC values in comparison 
with the other models. As in the case of diameter, several 
equations showed autocorrelation (Table 3).

The statistic 2R   was higher in model 2 in all 
productivity classes, with estimates between 0.97 and 
0.99 with values referring to S = 20 and 32, respectively. 
Lynch and Murphy (1995) and Mabvurira and Miina 
(2002) found similar estimates of 2R  for the height 

growth of Pinus echinata (0.96 to 0.98) and Eucalyptus 
grandis (0.94) with different models. Filipescu and 
Comeau (2007) and Mette et al. (2009) obtained lower 
estimates for Picea glauca (0.47 to 0.86), Abies alba (0.18 
to 0.89) and Picea abies (0.39 to 0.82), using different 
height increment equations.

The lowest estimates of BIAS were found for 
models 2, 3 and 4. As in the case of diameter, the 

Table 3 – Statistics used for evaluating the seven diameter and height growth models.

Model Author/Type Site índex 2R BIAS Sy.x% RMSE AIC dw

diameter

1 Pienaar and Schiver
SI = 32 0.9836 0.00328 ± 3.31 0.5308 1.2839 1.9609
SI = 26 0.9818 0.00330 ± 3.69 0.5330 1.2857 1.7849
SI = 20 0.9752 0.00331 ± 4.70 0.5283 1.2809 1.7208

2 Lundqvist-Korf
SI = 32 0.9875 4.26x10–6 ± 3.03 0.4737 1.2276 1.7603
SI = 26 0.9825 -5.28x10–5 ± 3.48 0.4802 1.2338 1.7470
SI = 20 0.9724 6.24x10–6 ± 4.39 0.4615 1.2158 1.7379

3 Logistic
SI = 32 0.9721 -0.00028 ± 4.33 0.6942 1.4150 2.0661
SI = 26 0.9724 -0.00024 ± 4.82 0.6968 1.4881 1.8687
SI = 20 0.9696 -0.00003 ± 5.12 0.5777 1.3366 1.8339

4 Richards
SI = 32 0.9720 -0.00035 ± 4.34 0.6944 1.4863 2.0648
SI = 26 0.9723 -0.00026 ± 4.83 0.6970 1.4894 1.8675
SI = 20 0.9706 -0.00002 ± 5.13 0.5778 1.3375 1.8334

5 Schumacher
SI = 32 0.9697 -0.00209 ± 4.80 0.6948 1.4842 2.0646
SI = 26 0.9612 -0.00411 ± 5.65 0.6990 1.4903 1.8562
SI = 20 0.9586 -0.00486 ± 5.98 0.5775 1.3354 1.8346

6 adapted Schumacher 
SI = 32 0.9871 0.00052 ± 3.85 0.6081 1.2109 1.6942
SI = 26 0.9801 -0.00012 ± 3.59 0.6290 1.2277 1.4255ns

SI= 20 0.9702 -0.00063 ± 4.53 0.5498 1.2192 1.4256ns

7 Linear
SI = 32 0.9860 0.00035 ± 3.92 0.4921 1.3718 1.6957ns

SI = 26 0.9800 0.00013 ± 3.71 0.5249 1.3973 1.6682ns

SI = 20 0.9700 0.00069 ± 4.74 0.4882 1.3041 1.6803ns

Height

1 Pienaar and Schiver
SI = 32 0.9865 0.00145 ± 2.34 0.4733 1.2270 1.8099
SI = 26 0.9791 0.00166 ± 3.16 0.5526 1.3071 1.7583
SI = 20 0.9732 0.00199 ± 3.63 0.6940 1.4833 1.7438

2 Lundqvist-Korf
SI = 32 0.9886 0.00070 ± 2.00 0.4682 1.2224 1.7945
SI = 26 0.9869 0.00084 ± 2.53 0.5622 1.2988 1.7688
SI = 20 0.9706 0.00018 ± 3.25 0.5324 1.2862 1.7639

3 Logistic
SI = 32 0.9750 -0.00017 ± 2.96 0.7038 1.4984 2.0172
SI = 26 0.9750 -0.00019 ± 3.49 0.7634 1.5854 1.7491
SI = 20 0.9667 -0.00005 ± 4.10 0.7224 1.5245 1.7209

4 Richards
SI = 32 0.9749 -0.00025 ± 2.97 0.7048 1.5009 2.0115
SI = 26 0.9751 -0.00014 ± 3.47 0.7635 1.5865 1.7486
SI = 20 0.9667 -0.00004 ± 4.09 0.7224 1.5248 1.7209

5 Schumacher
SI = 32 0.9480 -0.00210 ± 4.60 0.7011 1.4935 2.0320
SI = 26 0.9429 0.00398 ± 5.21 0.7628 1.5836 1.7516
SI = 20 0.9480 -0.00311 ± 5.04 0.7204 1.5206 1.7300

6 adapted Schumacher 
SI = 32 0.9878 -0.00122 ± 2.07 0.4947 1.2446 1.8439
SI = 26 0.9847 -0.00179 ± 2.71 0.5927 1.3530 1.8029
SI= 20 0.9700 -0.00228 ± 3.43 0.6043 1.3670 1.4017ns

7 Linear
SI = 32 0.9750 0.00393 ± 2.30 0.6065 1.3729 1.8410
SI = 26 0.9636 0.00159 ± 2.83 0.6543 1.4272 1.7804
SI = 20 0.9694 0.00431 ± 3.22 0.5336 1.3864 1.3874ns

BIAS = trend, Syx% = standard error of estimate in percent, RMSE = root mean square error, AIC = Akaike information criterion, dw = Durbin Watson test. ns = the 
null hypothesis could be rejected at 5 % level of significance (there is autocorrelation).
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equations based on models 1, 2 and 7 (SI = 32, 26 and 
20) had positive BIAS values, demonstrating that these 
models tended to overestimate height growth in all three 
productivity classes despite the limited range. Models 
3, 4 and 6 (SI = 32, 26 and 20), as well as 5 (SI = 32 
and 20), produced negative estimates, underestimating 
height growth. Lynch and Murphy (1995) found higher 
BIAS values for Pinus echinata (0.13 to 0.25  m), the 
same trend observed by Mabvurira and Miina (2002), 
who found a BIAS of 0.19  m for Eucalyptus grandis.
Härkönen et al. (2010) found negative estimates of BIAS 
for the height growth of Pinus sylvestris (-0.2  m) and 
Betula pendula (-0.1 m) but positive estimates for Betula 
pubescens (0.5 m) and Picea abies (1.1 m).

The lowest Sy.x% and RMSE values were found for 
the equations based on model 2 and model 6, both for 
S = 20 and S = 32 (Table 3). By comparison, Härkönen 
et al. (2010) found higher values of height growth for 
Picea abies (±18.5 %), Pinus sylvestris (±20.7 %), Betula 
pendula (±34.5 %) and Betula pubescens (±26.7 %).

Virtually, all coefficients of the equations were 
significant (p ≤ 0.05) (Table 4). The sign of the coefficient 
of age was negative (models 1, 5, 6 and 7), indicating that 
growth increases with increasing age until a certain point 
is reached (the index age), whereas other variables remain 
constant. These findings are biologically consistent and 
similar to results found in other growth studies at the 
individual tree level (Lee et al., 2004; Subedi and Sharma, 
2011). Additionally, the signs of the site index and 
competition index were positive for diameter and height 
growth in all productivity classes. These results show that 
trees will reach greater diameters and greater heights in 
better sites (Adame et al., 2008) where there is a greater 
opportunity to compete. Thus, these results are consistent 
with the literature (Mabvurira and Miina, 2002; Lee et al., 
2004; Sánchez-González et al., 2006) and are biologically 
realistic, reflecting good estimates for all diameter and 
height growth models evaluated in this study. 

The values estimated by the equations based on 
the seven diameter growth models were concentrated 
near the 1:1 line (Figure 1), indicating a good estimation 
capability for all three productivity classes. Models 3, 
4 and 5 had a slight tendency to overestimate smaller 
diameters and underestimate larger diameters. This 
trend was also observed by Sterba and Monserud (1997), 
Mabvurira and Miina (2002), Mette et al. (2009) and 
Vospernik et al. (2010). These trends are common and 
difficult to explain, with overestimation occurring more 
often in low-density stands and underestimation more 
often in high-density stands (Vospernik et al., 2010).

Models 1, 2 and 6 performed well in terms of the 
assessed statistics (Table 3) and managed to accurately 
estimate tree diameter in all three productivity classes. 
Nevertheless, model 1 underestimated the diameters of 
the larger trees, those in SI = 32. model 6 overestimated 
the diameters of the larger trees in a narrow range in SI 
= 20. This result is similar to that reported by Filipescu 
and Comeau (2007) for Picea glauca.

The residual percentages for diameter growth 
(Figure 2) were well distributed for models 2, 6 and 7 in 
all three productivity classes. Despite its good statistical 
performance, model 1 showed a slight deficiency in its 
residual distribution, underestimating trees of larger 
diameter in all three productivity classes. Models 3, 4 and 
5 had a marked deficiency in their residual distributions 
and failed to capture the growth trends for trees of 
smaller and larger diameters (S = 32, 26 and 20). These 
three models overestimated the small-diameter region 
and underestimated the large-diameter region. This trend 
was similar to that reported by Härkönen et al. (2010). 
For diameter growth, the equations based on models 2, 
6 and 7 succeeded in accurately estimating diameter 
variation in all three productivity classes and did not 
exceed a residual percentage of ± 20 %. Nevertheless, 
model 2 showed better estimates in terms of the assessed 
statistics and had well distributed residuals.

Wykoff (1990), Kiernan et al. (2008) and Monty 
et al. (2008) obtained similar results, for the basal 
area increment, diameter growth and circumference, 
respectively, for different species. Andreassen and 
Tomter (2003) found variations of more than 20 % for 
the basal area increment in Picea abies, Pinus sylvestris 
and Betula sp and Härkönen et al. (2010) reported a ± 
17% for Pinus sylvestris, ± 26 % for Betula pubescens and 
± 35 % for Betula pendula.

For height growth (Figure 3), the points were close 
to the 1:1 line in all models. As in the case of diameter 
growth, a tendency of the models to produce incorrect 
estimates was noted in height growth for trees of smaller 
and larger sizes. Model 1 overestimated smaller and 
larger trees in all three productivity classes. Model 2 
slightly overestimated larger trees, with a wider range in 
SI = 32. Models 3, 4 and 5 showed a pattern similar to each 
other, with little variation among the three productivity 
classes. SI = 32 and 26 showed overestimates for trees of 
smaller height, whereas SI = 20 showed overestimates 
for trees of smaller height and underestimates for taller 
trees. Models 6 and 7 showed a slight tendency to 
overestimate smaller trees in all productivity classes and 
a strong tendency to overestimate larger trees.

Results from Soares and Tomé (2002) corroborated 
those obtained from most of the models evaluated 
in this study. Soares and Tomé (2002) state that this 
response is due to data quality and to equation fitting, 
with equation accuracy decreasing as the productivity 
class gradually decreases. Additionally, height is a 
difficult variable to measure and must be obtained 
indirectly via hypsometric equations that, in turn, 
contain intrinsic inaccuracies.

The trends described above were validated by 
Figure 4. In all three productivity classes, model 1 failed 
to accurately estimate smaller heights, particularly 
between 10 and 15 m, and heights greater than 30 m. 
Model 2 was superior to the other models, providing 
good fits to the height data. Models 3, 4 and 5 had good 
performance only at intermediate and greater heights. 
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Models 6 and 7 failed to estimate the endmost values 
of the variable height, particularly initial values smaller 
than 18 m.

Mette et al. (2009) and Härkönen et al. (2010) also 
found it difficult to estimate height growth, particularly 
for trees of smaller (10 m) and larger sizes (25 m). It is 
important to note that trees in all height classes directly 
influence the overall volume attained (Mette et al., 
2009). Therefore, models that are incapable of capturing 

Table 4 – Estimates of coefficients of equations based on the seven models assessed for diameter and height growth in each productivity class.

Model Author/Type Site index
Coefficients

1b̂ 1b̂ 3b̂ 3b̂

Diameter

1 Pienaar and Schiver
SI = 32 2.934140 -0.168673 - -
SI = 26 4.293090 -0.122824 - -
SI = 20 6.342193 -0.055502 - -

2 Lundqvist-Korf
SI = 32 -1.200180 0.853270 0.107830 -
SI = 26 -0.915366 1.173732 0.130767 -
SI = 20 -0.530658 1.152842 0.117852 -

3 Logistic
SI = 32 3.137.793 0.003474 0.020746 -
SI = 26 6.482.663 0.001923 0.017193 -
SI = 20 1.939.965 0.004365 0.018406 -

4 Richards
SI = 32 248.96300 -492.4530 3.410603 158.93160
SI = 26 237.36270 -482.5870 2.978402 165.97030
SI = 20 39.39905 -312.9910 5.033450 228.70990

5 Schumacher
SI = 32 8.495734 -0.885400 - -
SI = 26 8.203557 -0.395100 - -
SI = 20 8.350873 -0.193500 - -

6 adapted Schumacher 
SI = 32 - -4.688430 0.031580 -
SI = 26 - -7.095700 0.032628 -
SI = 20 - -6.092120 0.028113 -

7 Linear
SI = 32 -2.845272 -160.2479 1.117634 0.066377
SI = 26 -1.101105 -101.3858 1.019442 0.023330
SI = 20 -0.417740 -18.73329 0.682528 0.027806

Height

1 Pienaar and Schiver
SI = 32 5.766211 -0.558560 - -
SI = 26 5.537374 -0.448034 - -
SI = 20 5.364213 -0.123117 - -

2 Lundqvist-Korf
SI = 32 0.311642 0.138940 0.0411735 -
SI = 26 0.387227 0.233971 0.0341151 -
SI = 20 0.070028 0.163913 0.0403665 -

3 Logistic
SI = 32 9.808.204 0.002540 0.026709 -
SI = 26 10.443.790 0.002433 0.785754 -
SI = 20 38.193980 0.021176 0.025808 -

4 Richards
SI = 32 202.18170 -363.1670 5.235780 181.61960
SI = 26 1.410.1960 -510.0510 2.725276 127.39000
SI = 20 38.207810 -8.134970 0.868685 33.66498

5 Schumacher
SI = 32 9.571995 -1.473100 - -
SI = 26 9.594813 -2.034000 - -
SI = 20 9.189918 -1.430400 - -

6 adapted Schumacher 
SI = 32 - -12.31600 0.021510
SI = 26 - -13.73940 0.027437
SI = 20 - -9.869940 0.037967 -

7 Linear
SI = 32 1.327131 -129.7281 0.989989 0.038137
SI = 26 0.901372 -137.3477 0.966169 0.022195
SI = 20 2.266086 -3.55983ns 0.938322 0.089072

variation in a given height range should be avoided even 
if they provide good estimates for the remaining height 
classes. Only model 2 was capable of estimating height 
growth for the three productivity classes with a residual 
percentage not exceeding ±20 %. 

Except for where SI = 32, model 2 was also accurate 
in simulating diameter and height growth in individual 
eucalyptus trees (Figure 5) using independent data. One 
of the reasons for the superiority of the L-K model is the 
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Figure 1 – Diameter growth (dbh) as estimated and observed by equations based on the seven models in each productivity class. The solid line 
is the 1:1 line.
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Figure 2 – Residual percentages of equations based on the seven diameter growth (dbh) models as a function of estimated diameters in each 
productivity class.



220

Martins et al. Individual tree growth models for eucalyptus

Sci. Agric. v.71, n.3, p.212-225, May/June 2014

Figure 3 – Height growth as estimated and observed by equations based on the seven models in each productivity class. The solid line is the 
1:1 line.
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Figure 4 – Residual percentages of equations based on the seven height growth models as a function of estimated heights in each productivity 
class.
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functional relationship and flexibility of the equation, 
whose coefficients have biological significance (Amaro 
et al., 1998).Thus this model is among the functions 
most commonly used to estimate growth phenomena 
(Burkhart and Tomé, 2012).

Crescente-Campo et al. (2010) reported serious 
heteroscedasticity problems in equations for the basal 
area increment, as well as non-normality of errors in 
equations for the diameter and height increment, in 
contrast to the results of this study (Table 5). A Bartlett’s 
test indicated that the assumptions of normality were 
met for the observed and estimated diameters by 
the L-K model in all three productivity classes (p > 
0.05). The same was true for height except where SI 
= 26. Additionally, this test confirmed homogeneity of 
variance for the observed and estimated diameters in 
all three productivity classes and for the observed and 
estimated heights in classes SI = 32 and SI = 20, a 
desirable result.

No difference (p > 0.05) was found between the 
observed mean values and the values estimated by the 
L-K model for diameter and height (S  =  32 and 20). 
For diameter, the RMSE was less than 1 cm in all three 
productivity classes, a result similar to those reported 

Figure 5 – Diameter and height simulated by the Lundqvist-Korf model in all three productivity classes.

Table 5 – Mean and variance related to diameters and heights 
observed and simulated by the Lundqvist-Korf model in all three 
productivity classes. 

Site index
Mean Variance

Obs Sim Obs Sim
Diameter
SI = 32 14.42 14.15ns 12.42 13.12ns

SI = 26 13.18 13.06ns 12.62 12.94ns

SI=20 10.69 10.67 ns 9.23 9.39 ns

Height
SI = 32 20.81 20.25ns 20.06 18.41ns

SI = 26 19.10 18.23* 20.07 17.67*

SI = 20 16.13 15.66 ns 13.60 12.76 ns

Obs = observed values; Sim = simulated values; ns= not significant; 
*significant at 5 % by the t-test (compares the observed mean with each 
estimated mean) and by the Bartlett’s test (compares the observed variance 
with each estimated variance) in all three productivity classes.

by Bueno and Bevilacqua (2010). Nevertheless, the 
simulation of height was less accurate than the simulation 
of diameter, reflecting the difficulty found in fitting an 
ideal model to the variable height. A visual analysis of 
the observed and estimated values (Figure 5) indicated 
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an underestimation of height in trees taller than 30 m (SI 
= 32) and in trees taller than 22 m (SI = 26). However, 
RMSE was 0.59 m for SI = 32 and 0.91 m for SI = 26. 
An error in the range of 0.50 m can be considered low 
and totally acceptable from the standpoint of height 
modeling because the top portion of the tree is typically 
ignored for commercial purposes. However, an error 
greater than 0.50 m can be harmful, as it could affect 
the estimation of volume. One approach to the problem 
of estimating height is to use hypsometric equations 
with simulated data with regard to diameter, as the 
simulation of diameter was excellent. The L-K model 
showed greater consistency between the statistics and 
biological reality and thus provided the most accurate 
and best fitting model for diameter and height growth.

Discussion

Although the models in this study include 
diameter and height explicitly as dependent variables, 
many studies use alternative forms of diameter and 
height growth as dependent variables (e.g., diameter 
and height increment, diameter and height growth 
rate, square increment and natural logarithm of each), 
as well as growth modifier functions (Adame et al., 
2008). However, modeling the diameter and height 
increment is not the only alternative for predicting 
tree growth, and other variables have been modeled, 
including future diameter and height (Bueno and 
Bevilacqua, 2010). All are alternative approaches to 
estimating the increase in stem and height size. They 
are mathematically related, and few differences in the 
outcome of the modeling process are expected (Vanclay, 
1994) if the assumptions regarding the error term are 
met (Bueno and Bevilacqua, 2010; Zhang et al., 2004). 

In Brazil, the use of diameter and height as 
dependent variables in models to assess growth at the 
individual tree level is common (Chassot et al., 2011) 
and conceivable (Campos and Leite, 2009). Bueno and 
Bevilacqua (2010) compared the two approaches in 
modeling the diameter growth of Pinus occidentalis and 
found that the estimates of future diameters (as used in 
this study) showed lower errors if directly projected by 
the model than those resulting from estimates using the 
increment in diameter. A possible justification is that the 
periodic increment varies significantly as a function of 
the environmental conditions of the study site (Garcia, 
1988), which are extremely variable in northern Brazil. 
Additionally, this problem is exacerbated in rapidly 
growing species such as eucalyptus, as they show large 
increments in comparison with slowly growing species.

Growth equations can be derived directly from 
functions correlating diameter and height as a function 
of independent variables such as competition index, 
site, stand height and stand density (Davis et al., 2005; 
Lynch and Murphy, 1995). However, there has been 
no confirmation of the universal superiority of one 
dependent/independent variable over another or of 

the performance of modifier functions relative to that 
of growth equations. The choice of one function in 
preference to another and the functional relationship 
chosen between variables (Sánchez-González et al., 
2006; Soares and Tomé, 1997) will depend on the 
interests and convenience of the researcher (Vanclay, 
1994).

A large number of growth models with numerous 
combinations of variables are continually evaluated and 
tested for a wide variety of species (Uzoh and Oliver, 
2006). It becomes more difficult, however, to select the 
best model to estimate growth if the modeling unit is 
an individual tree (Davis et al., 2005) because the high 
resolution of this type of modeling entails problems 
caused by cumulative errors (Cao, 2006). Even with 
such difficulties, it was nevertheless possible to obtain 
a good estimate of diameter and height growth using 
model 2.

The reasons for prefering model 2 (L-K) is that 
this model provided better statistical estimates, as the 
values estimated by model 2 were close to the observed 
values in terms of accuracy for diameter and height 
growth (Figures 1 and 3). This model also showed a 
good distribution of residual percentages (Figures 2 
and 4), and accurate estimating of diameter and height 
growth in all size classes (smaller, intermediate and 
larger trees) in all three productivity classes. Model 2 
was also found to be accurate in simulating diameter 
and height growth in individual eucalyptus trees 
(Figure 5), revealing greater consistency between the 
statistics and biological reality and thus providing the 
most accurate and best fitting model for diameter and 
height growth.

In Brazil, individual tree growth models are still 
rarely used to model growth and yield. Most applications 
use whole-stand and size-class models. A major reason 
for this practice is that models on an individual tree 
level are considered more complex; because of this 
belief, users in Brazil have little experience with this 
type of model. However, the results presented in this 
study show that the use of this level of modeling is 
feasible and can offer significant improvements 
for estimating growth and yield more accurately. 
Moreover, it is a flexible type of model because it 
provides detailed information about dynamics and 
stand structure, including the distribution of volume by 
size class. From this detailed information, it is possible 
to correct projections for different uses of timber, 
sawmill, lumber, paper, plywood, charcoal, pulp and 
biomass and to understand how competition and the 
site index impact growth.
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