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1. Introduction

The problem of classification of the simple Lie algebras over a field of
characteristic p > 7 was solved in the middle of the 90’s by H. Strade,
R. Block and R. L. Wilson (see [B], [BW1], [BW2], [SW], [S89.1], [S92],
[S92.1], [Wi]). In the beginning of the 2000’s, A. Premet and H. Strade
proved the classification results for p =5 and 7 in a series of papers [PS1],
[PS2], [PS3], but for p =2 and p =3 the problem is still open. Through-
out this paper all algebras are defined over a fixed algebraically closed field
k of characteristic 2 containing the prime field [F>. We start with some
basic definitions and known facts.

Definition 1.1. A Lie algebra L over k is a Lie 2-algebra if there exists
amap L = L, v +— 212, called 2-map, such that

(x 4+ M) = 2l 4 X292 4 N[z, 9], for all z,y € L, X € k.

It is well known fact that for every algebra A over a field k of character-
istic 2 the corresponding Lie algebra Derp A of k—derivations of A has the

natural structure of 2—Lie algebra such that d?(a) = d?(a) = d(d((a)).

Definition 1.2. Let L be a Lie algebra such that Z(L) = 0, which is
also called a centerless Lie algebra. The 2-closure of L in Dery(L),
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94 Alexandre N. Grichkov * and Marinés Guerreiro T

denoted by Lo, is the smallest subalgebra of Dery(L) containing L and
closed under the 2-map.

According to H. Strade [S89], the toral rank of L is the maximal dimen-
sion T'(L) of the toral subalgebras of L. By definition, a toral subalgebra
2] _

is an abelian subalgebra with a basis {t1,...,t,} such that ¢ = t;,i =
1,...,n. The absolute toral rank TR(L) of a centerless Lie algebra L is
T(Lg) — toral rank of 2—closure of L defined above.

The first results for the classification problem in characteristic 2 are as
follows.

Theorem 1.1 (S. Skryabin, [Sk]). Let L be a simple finite dimensional
Lie k-algebra over an algebraically closed field k of characteristic 2. Then
L has absolute toral rank greater or equal to 2.

In the case of absolute toral rank 2, A. Grichkov and A. Premet an-
nounced the following result:

Theorem 1.2 (A. Premet, A. Grichkov [GP]). Let L be a simple Lie
k-algebra of finite dimension with k an algebraically closed field of char-
acteristic 2. If the absolute toral rank of L is 2, then L is classical of
dimension 3, 8, 14 or 26.

The toral rank 3 is a much more difficult case and it is still open. In this
work we begin the study of the simple Lie algebras of dimension seven and
absolute toral rank 3 over an algebraically closed field k of characteristic
2.

In the literature up to this date there appeared only three types of the
simple Lie 2-algebras of dimension 7 and absolute toral rank 3: the Witt-
Zassenhaus algebra W (1;3) [Ju], the Hamiltonian algebra Hy [SF](p. 144)
(this algebra corresponds to a non-standard 2-form) and a family L(e),
called the Kostrikin-Dzhumadil’daev algebras, that depends on one param-
eter ¢ € k [K]. Here we calculate some features of these algebras such
as their group of 2-automorphisms and their varieties of idempotent and
nilpotent elements. We also present some Cartan decompositions for these
algebras. The study of the algebras W and Hs is motivated by the following
conjecture.

Conjecture 1.1. Let L be a simple finite dimensional Lie algebra over an
algebraically closed field of characteristic 2. If dimL > 3 then L contains
a subalgebra W or Hs.

In this paper we prove that all simple Kostrikin-Dszumadil’daev 7-
dimensional Lie algebras are isomorphic to the Hamiltonian algebra Hs.
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This is a reason why we sometimes use in this paper the notation K in-
stead of Hy for this algebra.

In a second paper we will prove that, for dimension 7 and absolute toral
rank 3, a simple Lie 2-algebra is either isomorphic to a Witt-Zassenhaus
or to a Hamiltonian algebra.

Definition 1.3. Let L be a Lie 2-algebra. A k-linear map ¢ : L — L is
a 2-automorphism of L provided that ¢(z) = (p(z))? for all z € L.
Denote by Autyo(L) the group of all 2-automorphisms of L.

Note that by definition of Lie 2—algebras, every 2—automorphism of a
Lie 2—algebra is an automorphism of L, but inverse is not true.

Throughout this paper we denote by a the element a + 1, for a € k,
and (M) is the k-vector space spanned by the set M.

2. The Witt-Zassenhaus algebra

The simple Witt-Zassenhaus Lie algebra, denoted here by W = W(1;3),
can be constructed using different approaches as one can see in [Ju], [SF]
or [K]. Here we consider a basis {y; : —1 < i < 5} for W and denote
its 2-closure in Dery(W) by Wy = (n,k, &%, y; : =1 < i < 5). The Lie
multiplication in Wa is given by the table below. Note that the diagonal
of this table exhibits the elements z[2, for each z € Ws.

The 2-closure Wy of the Witt-Zassenhaus algebra W
L Unl s 16 [ya] wo [ o0 [v2] ys [walus

n 10 yas | y2]y | 0] 0[0] 0 [0]O
k ya| &) 0 0 0O |y—1|wo| v1 |y2]|ys
K e 0l ool o]0 ][0][yr]lw|m
y-1]ys| O O | K Jy—1| Y |v1| Y2 |Ys | Va4
yo || 0] 0 O {y1]lwyw | v1 0] ys |0 |ys
vi |0 Jy1[ 0 | wo | vyi [y |0]wys|ys|0
v || 0y | O || O 0 0l wys |00
y3s | O y1 [y-1| ¥y | y3s [ va |ys| n |00
ya |0 y2 [ wo | y3 | 0 [y |[O] 0 0O
ys |0l ys [ w1 | ya lys | O O] O JOJO

2.1. The group of 2-automorphisms G = Auty2(W>).

Proposition 2.1. The group G1 of 2-automorphisms of Wa is defined
on the basis elements of Wa, for ¢ = ¢p(a_1,a1,a3,a4,a5) € G1 and
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a_1 # 0, by:
YY1 > a_1Y-1 + a1y + a3ys + ouys + asys
Yo — Yo +0440C}y5
y1 — a’iyi + aza’iys
Yo —> aliye
ys — aliys + araliys
ys — aliy
ys — o ys
— a:?n
K — a2 k4 a3n+ a1y + (o] + asra3)ys +
a_tagys + (g ag + a—ras)ys + aroays
K2 aty K2+ o ain + o azyo + o oy +

042_1(% a3 + a—q Oé5) Y2 + oz2_1 a% Yq + a2_1 Qa3 04 Ys.
Note that dimy G1 = 5 for every field k of characteristic 2.

Proof. It is not difficult to prove that, for all 0 # a_1, a1, a9, as, ag, as €
k, a map ¢ defined as in the proposition is a 2-automorphism of Ws. In order
to prove that every 2-automorphism of Ws is defined exactly like this, we
first construct some (G1—invariant subspaces and subsets of W5. Construct
some (G1—invariant subspaces and subsets of W5.

It is clear that all subsets defined below are G1—invariant subsets. Note
that W = [Wa, Ws].

1L Vi ={zeW:z® =0} = Spani{y2, ys, ys},
Vo ={z e W:[z,V1] CVi} = Spani{yo, y1,y2, Y3, Y1, Y5},
Vs = [Va, Vo] = Span{y1,ys, ya, Y5}
Vi = [V3, V3] = Spany{ya, ys},
Vs ={x € Vs : [z, V3] =0} = kys,
Ve = {x € V1 : dim[z, Ws] = 3} = kys.

Let ¥ be an arbitrary 2-automorphism of Ws. Since V5 is Gi-invariant,
we may suppose that y! = ys, y¥y = S0 riyi. By [y-1,5] = yi-1,
1=0,...,5, we have

yff = T71y47?/§) = 7“31y3+7217“13/5,y§) = T31y2+7“317“oy3+r71(7“07“1+7’27:1)y5-

A

Since r_1 # 0 and Vg is Gi—invariant, rg = ro = 0. Using some 2-
automorphism ¢(a_1, a1, ag, ag, a5) we may suppose that ro = r = rg =
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rg =ry = r5 = 0. Hence,

yﬂ =Tr-1Yy-1, Z/Zf =T-1Y4, yéf = T%lyS,

vy =13 ye, yl =1, vl =2 0.

By [yo, ys5] = 5, we get 77 = 1. Then ¢ = ¢(r_1,0,0,0,0).
At last, n¥ = (yg))p], kY = (yfl)p], since 1 is an 2-automorphism. O

2.2. Idempotent and Nilpotent Elements of W5. The sets of nilpo-
tent and idempotent elements of a Lie algebra are quite important features
of the algebra structure as they allow us to construct different subalgebras
and study the relations among them. In fact a method based on a study
of the orbits of toral elements with respect to the automorphism group of
the algebra and on an investigation of the centralizer of a toral element was
already used in several papers describing the structure of tori and Cartan
subalgebras of a Lie p-algebra, for a prime p, see [S92], [BW2] [R], [W].

Proposition 2.2. For the Lie 2—algebra Wy, the variety of idempotent
elements is given by I(W) = U§:1 I8, , where

I&V = {a4/§[2}+a2ﬁ+b2n+ay_1 + Cyo+(5+b)y1—|—(62+b+d)y2 n
bys + dys+ (eb+d)ys: a € k*,b,c,d € k},

Iy = {a®n+yo +byr + b’ y2 + ays + abys + cys : a € k*,b,c €k},

I, = {yo+ay +a*ys + bys : a,b € k}.

Moreover, T}y, = {x + Kk +y_1 +y1 + y2}C1; that is, all elements of
1114/ belong to the same orbit under the G1-action.

I, = Uper/z, {0+ Yo + by + b%y2 + y3 + bya}&1, where Zg = {1,6,6% =
14 6).

I3 = y$" U {yo + 1 + 2}

Proof. Let t = ¢ = bixl@ + byr + bgn + ay_1 + agyo + a1y1 + asys +
asys + asys + asys. Comparing the coefficients at k2, ..., ys, by Table I we
get:

by = b3, by = a?, by = a3,

a = a'as + baar + aa,

a1 = bias + bsaz + aas + apaq,
as = b1bs + boay + aas + a%,

(1)

(2)

ap = a3 + biay + azbs + aas, (3)
(4)

(5)

as = bQ(Lg, + aaq + apas, ( )
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a4 = babs + aas + azaq, (7)

as = abs + aja4 + asas + apas, (8)

Note that 0 # ¢ is an idempotent if and only if we have all equalities (1)—(8).
By (1), we have by = a*. Suppose that a # 0. Using (2) we get

ag =1+ aa; + a3a3.

—~
=)
~—

By (5) we get
as = a'al + a’ay + a2 + aas. (10)
By (7) we have
a4 = aas + asay + a2a§, ap = adas + a’aza; + a% + aag; (11)
then t = a*kl? + a® + Kk + adn + ay_1 + (1 + aay + a’az)yo + a1y1 + (aPas +
a’azay + a3 +aaz)ys + azys + (aas +aza; + CLQCL%)?M + asys is an idempotent.

In the case a = 0 the calculations are analogous but more easy.

All statements about the conjugation of idempotents are easy to prove.
For example, consider the set I%V. Ifb=0thent=a’p+yo+ays + cys =
(n+yo +y3)?, where ¢ = ¢(x,%,0,0,0), 2% = 1/a, y = xc/a. Suppose that
b # 0. In this case t = a®n + yo + byr + b?yo + ays + abys + cys is
conjugated with t(by) =7 + yo + b1 y1 + b3 Y2 + y3 + b1 ys. Suppose that
t(b1) is conjugated with t(ba) =n + yo + bay1 + b3y2 + ys3 + b2 ya, then
t(b1)? = t(b2), ¢ = ¢(x,y,2,p,q). Hence, x> = 1 and byz = by. O
Proposition 2.3. The variety N(W) of 2-nilpotent elements is given by
N(W) ={z e Wy :zl@ =0} =2, Nj;,, where
Ny = {an + bys + cya + dys : a € k*,b,c,d € k}

N3, = {ax +%n—|—cy0+by1 —|—dy2+§y4—|—%y5 cack*,bcdek}
N3, = {ays + bys + cys : a,bcek} C W.

Moreover,

i) Ny = {an+y2 +cys +dys : 0 # a,d,c € k} U {an +ys + dys : 0 #
a,d € k, Y U{n+dys : d € k/Z3}C", here k/Z3 is the set of orbits of the
following Zs—action on k : x — dz, 6 = 1.

i) NZ, = {sPI}Y9 forms one orbit under the Gi-action.

iit) Ny, = {y2 + bys + cys : b,c € EYGT U {ys+cys : c € k}E U y?l.

We note also that the G1-stabilizers of the elements in N‘:,)’V have dimen-
sion 4, but they may be defined over different fields.

Proof. The set N(W) we can describe as the set (W) but more easy.
Consider the set of G1—orbits of the natural Gj—action on N(W). It is
easy to see that (NI}V)G1 = NI}V' Let n =an + bys + cys + dys € NI}V
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and b # 0. Then we can find a diagonal automorphism ¢ = ¢(«,0,0,0,0)
such that n? = a1n + yo + c1ys + diys. Note that for all a1, a9, a3,a4 € k
we have n® = n®(@®01,02,03.04) If n¢ = (agn + yo + coys + doys)?F0:0.0.0),
then 32 =1 and ¢(3,0,0,0,0) = 1. It means that a1n + yo + c1ys + d1ys is
the unique representative of its G —orbit.

Analogously we proceed in the case b = 0, ¢ # 0. Suppose that b = ¢ = 0.
As above we can find a diagonal automorphism ¢ such that (an + dys)? =
n + diys. Let ¥ = ¢(5,0,0,0,0) and (n + diys)? = 1 + doys. Therefore,
B8 =1and B7°d; =dy. Then B=6 €k, 6> =1, B7° =4, and dy,ds are
contained in the same Zs—orbit.

The other cases may be considered analogously. O

3. The Kostrikin-Dzhumadil’daev algebras

The Kostrikin-Dzhumadil’daev Lie algebras L(e) (or K D-algebras, for
brevity) of dimension 7 form a family depending on one parameter & €
k (see Example 7.2 of [K]). The multiplication table of basis elements in
L(e) is as follows:

A KD-algebra L(e)
L[ LG)-1 [ Lo [ L) [L(e):]

up | u1 [ eo | e1 | fo | f1 g
uQ . 0 EUY | EUur | € el f1
Ul 0 . EUul | Eug | e1 €g fo
eo [[ewo [u | - [ e [efoléfi] g
e1 || Euy [eug | e1 - lefil€fo 0
ol eo | er |[efolefi] - g 0
S 0

Efiléfol| g
0

€1 €0 :
gl i | fo ] g 0 0

Firstly note that for ¢ = 0 or € = 1 the algebra L(¢) is semi-simple but
not simple. It is an easy exercise to prove that Ly and L; are isomorphic.
For € ¢ {0, 1}, the following theorem holds.

Theorem 3.1. Given ¢ ¢ {0,1}, the corresponding simple K D-algebra
L(g) is isomorphic to the Hamiltonian algebra Hy = H((2,1),w).

Proof. For ¢ € k\ {0,1}, consider the Lie algebra L(e) as given

above and apply the following changing of basis: Vy = v/z&(ug +u1), V4 =

1 e
eup + Eur, Fo = fo+ f1, Fo = E(E_fo + ¢ef1), B1 = L Ey =
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eg +el, G= % Hence, L(e) is isomorphic to the Lie algebra K =
€€

(Vo, V1, Eo, E1, Fo, F1,G) given by the Lie multiplication table below. It

is easy to see that a basis of the 2-closure Ko may be chosen as follows:

{t,m,n, Vo, V1, Eo, E1, Fy, F1,G} and the multiplication table in K is the

following;:

The 2-closure Ko of the K D-algebra K
L [ tim][n[Vo[VilBi|Eo| Fa]Fo]| G |

t t 0[O0 | Vo[ Vi|]O]O | |F|O

m 0 0 E() 0 0 0 0 V1 Vb E1
ni||O0[E|O0]O0|F|G|O]0]0]O0

VWwllVWw|O0]0]0]0([Vi| 0] O0|Ey| I
ViVl 0 [TF [0 | m[V|Vi|Ey|FE]|Fp
Eil0 [0 GIVi Vol t |Ei|F | Fi|O
Ey[[ O] 0[]0 |0 | Vi|EL|E|F1] O |G
F; 1 F; 1 Vl 0 0 E() F{ 0 F 1 n G 0
F 0 F 0 ‘/0 0 EO E 1 F 1 0 G n 0

G|lO|EL]| O [|Fi|F|O[G|]O]O0]O

Note that K has a Cartan subalgebra C' = k{Ey, Fy, Vp} of toral rank one
(but the absolute toral rank of C' is equal to two!) Recall that Skryabin’s
Theorem 6.2 [Sk] asserts (in particular) that every finite dimensional simple
Lie algebra L over a field of characteristic 2 with a Cartan subalgebra C
of toral rank one is isomorphic to a Hamiltonian algebra if dimL/Ly =
2, where L is a maximal subalgebra that contains C. In our case Ky =
Spang{Eo, Fy, Vo, G, F1} and dimK /Ky = 2. Hence K is a Hamiltonian
algebra by Skryabin’s Theorem. On the other hand there exists a unique
7-dimensional Hamiltonian algebra Hy = H((2,1),w), where w = (1 +

(3)

xy" xg)dx1 A dxg is a non-standard 2-form. O

From now on we will denote a K D-algebra L(e), for ¢ ¢ {0, 1}, simply
by K and its 2-closure by Ko, as in the theorem above.

3.1. The group of 2-automorphisms Gy = Auty2(K>).
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Proposition 3.1. The group of 2-automorphisms Go of the Lie 2-algebra
Ky is defined on its basis elements, for ¢ = p(a,b,c) € Go and a # 0, by:

0: Ey — Eg+ a?b02G
G — da*G
FO — CLFO
F, — ol +0G
Eiy — Ey+albF + cG
Vo — a 'V +a2bEy+a3bPF +a 30 F) +a 3G
Vi — a'Vi +a2bE +atcF +a 3P Fy + (e 2be+
a )@
n — a’n
t — t+a?Pn+altbF
m +— a?m+a*b’t + (a2 + a5 )n + a3V +

a2 E +a2cEy +a PV F + a0 Fy+
a tb?cG.

Note that dimyg G2 = 3 for every field k of characteristic 2.

Proof. Let ¢ be an automorphism of Ky. Then {z € K : 2P = 2}9=
{z e K : 2P =2}={Fy+aG : a € k}; in particular, Eg = Ey + aG.

For all aq,as € k, the map Ey + asG — Ey + a1G may be extended to
an automorphism ¢ = ,, 4,. Hence, ngo’“ = Fy and we may assume
that ES = Ey. Let S = AnngEg = Spang{Vy, Eo, Fy}. Then $® = S and
Vod) =aVp, 0# a € k, since kVp = {x € S : 212 = 0}. It is easy to see that
the map 7 : By — Eo, Vo — a Vo, Vi — o= 'V1, Fi — aFy, Fy — aFp,
G — a?G is an automorphism. Therefore, Vy"" =V, and we may suppose
that Eg = Ey, Voq5 =Vp. Since {z e S:zl =0} ={zec5:z¥ =0} =
kVo U kFy, we have Fg) = Fy. Analogously, if T' = {z € K : [z, Ey] = =}
then AnnpFy = kG and G® = G. We have Ef’ = F1 + aF1 + bG, then

[EC, ) = [B1, R)® = F = F1 = |[E1 + aF) + bG, Fy) = F| + aG,
and a = 0. Furthermore,
VP = B, Vo]? = [EC, V] = [E1 + bG, Vo) = Vi + bF.

It is easy to see that ¢ is an automorphism. Hence, dimGy = 3. O

3.2. Idempotent and Nilpotent Elements of K5.

Proposition 3.2. For the 2-closure Ko of the K D-algebra, the variety
of idempotent elements I(K) = {z € ko : 0 # z12 = z} is given by

S&o Paulo J.Math.Sci. 4, 1 (2010), 93-107
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6
UI%,where

i=1

I} = {a?t+&2m + E(b+aa)’n+ a1 Vo + 1V + aa By + bEy +
Eb+alaa+a))Fy + alaa+a+a)Fy + Eaba+aa+a)G : a,a,b €
k&€ k*}

I ={t+&MF*+b+c)’n+ M Vo+bEy+ € B+ €02 +b) Fy + 2 beG
& bcek}

o={t+¢&1n+ Ey + c&Fy + €2dG : & c,d €k}

I;L( = {t + 52(00+01)2n + &1 By + g€ Fy + f2CQClG 2 € o, 01 Ek}
I?( = {6t +éa*n+a(6Fo+F)+ B+ Ey+dG : 62+5+1=0, a,d € k}
I$ = {Ey+ dG : d € k}.

I

Proposition 3.3. The variety of nilpotent elements N(K) = {z €
Ko - 2@ = 0} is described as follows: N(K) = US| Ni , where

N ={t+Bm+(*+Bd*)n+ BcVo + Ey + BdEy + c(Fy + Fy)+dG :
B,d,c € k}

Ni={t+cn+E +c(Fo+ F)+dG :d,cek}

N ={n+dG : dek}, Nt ={n+aVy:ack}

Ny ={n+0V+d¥Ey + bd*(Fp+ Fy) + &G : d,b €k}

NS = {3 Vo + &®vEy + ay? (Fo + Fi) + ¥ G : o,y € k}.

Proofs of Propositions 3.2 and 3.3 are analogous to the proof of Propo-
sition 2.2. O
Proposition 3.4. The Gz-orbits of the variety 1(K) = Uz?:l Ol are
I = O} = UneOl \, Ol = {t + m + AV + V1 }©
I%i = 0l} = ubekog{,b, OI%M ={t+ V +bEy + bb(F\ + Fp) +
b2b G } &2
[} = OI} = UaerOI} 4, OTf g = {t + Eo + d G}

It =014 UOIy, OIf = {t}52 OI3 = {t + [\ + |y + G}
I =0I% = {6t + By + Ey:6*+6+1 = 0}
1§ = OIf; = {Ey}“2.

Proof. Show that I}, = UAekOI}(A. Denote by ¢(a,b,c) an automor-
phism from Proposition 3.1. Let a1 = &, by = £2(1 4+ a), ¢ = £(6730% +
E(b+aa)), A = ai(a& 4+ a;3by). Then by direct calculation we get

(t+m+ AVo + V)20 = ot + €2 m + €(b+a6a)’ n + ag™ Vot

' Vi+aa By +bEy + E(b+alaata))Fr + Ealaatata) Fy + 2a(ba +
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aa+a)G e I}Q\.
The other cases may be considered analogously. For example,
16 = {6t+ Ey + Ey : 624+ 6 + 1=0,}°,

since (6t + By + Eg)?haedta®) — 5¢ 4 §a2n+a(0Fy+F\)+ E1 + Eo+ dG.
O

Note that N[5( C K. We have the following result on the varieties of
nilpotent and idempotent elements.

Theorem 3.2. The varieties I(A) and N(A), for A€ {W,K}, are irre-
ducible.

Proof. We write a detailed proof for the variety I(K) and leave the
other cases to the reader. It suffices to prove that the first orbit includes
in its closure (in the Zariski topology) all the other orbits. Observe that a
generic element of the orbit orb(1), in projective coordinates, is written as:
FONE b a) = MNE2a2t+ M m + EHB2N2+ (A +a)2(A+a)?) n + NSaé Vo +
NEVL+ MEa(Ma) By + NE2b Eg + X263 (bA%+ (M -a) (aa+ 2 +a)) Fy +
NEA+a)Aa+aa+ad) Fy + XA+ a)(ba + aa + a)) G .

1) Now we make the following substitutions: b = %, £ = T i‘i)g, a =
1 _
AAE1) a=1 and A =X+ 1. Hence,
A3 ! PR . \8 10
f(A’F’M_ ’ﬁ) = F(t+n+Eo+F0)+A m+?vo+ﬁvl+
)\10 )\10
PRI TR

Let x be the closure (in the Zariski topology) of the orbit OI}<. Then we
have MO(t +n + Ey + Fo) + A28 m + A8V, + A2A101 + A0 By +
MYF € x. Hence, for A =1, one gets u =t +n + Ey + Fy € x.
Applying the automorphism (a,b,c) with a?> = b,c =0 to u we obtain
u? =t + Ey + a®>G € x. Therefore, OI?( is contained in x.

2) Putting { =a, A\=a, a1 =%, by = b we have

a’?
f=fla,a,a,ba) = aba’t + o®m + o®b?a*n + o Vy + a"a Vi +
a5azbEO + o*a’b Fy.
2
Hence,aﬁ—fa2 =@t+ V) +atm+ a Vi + (b—1> n + by Ey + %Fl =

aq

f(a1, b1). Therefore, f(ai, Ta1) = (t + Vo + 72n + 7F) + afm +
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a1 Vi + a1 Ey. Thus, for « =0, one gets g=t + Vo + 7°n + 7F; € ¥.

Applying the automorphism ¢ = ¢(1,7,0) to g, we obtain ¢¥ =t + Vj +

TEy + 77 (Fo+ F1) + 727G € x. Therefore, OI% is also contained in Y.
3) Now put b=0 and A =a in f. Then

f=a'a?t+a®m+d"¢(Vy + Vi) +a'Eala+ ) By + a3 (a+ a)*(Fy +

F) +a?¢ta+a)?G.

Substituting a; = %, az = & we have:
14+ a9)a
g= a4§f%ﬂ =t+ala3m+ (1+a2)Fy +arad(Vo + V1)+(a12)2(Fo -
1+ a9)?
Fy+ LEa) o
ajy

For a; = as + 1 one gets g =t + ax?a3m + dp By + dea3(Vo + V1) +
az(Fo + F1) + G. Hence, if ag =1, then ¢ =t + Fp + F1 + G € ¥,
that is, Ol}l{ is contained in x.

) Let A\=T1a=0b, a= 72a and so, as 7247 = 1, we have a+\ = .

Hence,

flra, &, 1a, m%a) = 1a8¢% + ab¢% (Eg + E1) + 2a®m + 12a7¢Vy +
(175 V1 .

«@
3 abg?
7'2,0V0 + pVi. For p =0 we have 7t + Eg+FE; € x. Therefore, OI% C x.

5) Applying the automorphism ¢ = ¢(a,0,0) to g =t + Fy + F1 + G,
we get ¢¥ =t + a(Fy + 1) + a®G . Hence, for a = 0, the orbit of ¢ is
also contained in .

6) Finally, to prove that OI} C x, consider 3(t 4+ Vo + bEo + bb (Fy +
Fy) + b*bG) = at + aVp + Ey + b(Fy + Fy) + bbG, with a € k. In
this way, for a = 0,b = 1, in the Zariski topology, Ejy lies in the closure
of OI%( , which is contained in Y. O

By substituting p = —, one gets = (1t + Eo+ Fy) + m2p*m +

3.3. Cartan decompositions. An interesting and important problem for
a Lie 2-algebra is the classification of its Cartan subalgebras up to auto-
morphisms. Here we give some examples of Cartan subalgebras of Ks and
Ws such that the corresponding Cartan decomposition is defined over a
field F4 for W5 and over Fs for the algebra K.

Conjecture 3.1. A toral subalgebra of As of dimension 3 always has an
idempotent from IY, A € {W,K}. Let T be a toral subalgebra of Wa of
dimension 3. Suppose that T is defined over a field F, then F4 C F.
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A particular example of a toral Cartan subalgebra T' of W5 is generated
by {t1,ts,t3} where t1 =n+yo+ys, to =kl + Kk +y_1 +y1 + o, t3 =
6%k +y1) + 0k 4y 1 +1o), with 62 +6+1=0,6°=1,5 € k*.

Let G = (o, 3,7) be an elementary abelian group of order 8. A Cartan
decomposition of Wa with respect to T is given by

Wo =Ta) el
£€g

where L¢ = (e¢) and eq = y—1 +y2, 3 = 2(yo +y3) + (y2 +ys) + 2,
ey = Yo+ Y2+ Ys+ys+ys, €arp =Y-1+Y2+ys+ 8y +ys) + 6% ys,
Caty = Y-1+ Y1+ Y2+ Y3+ s+ s, €s1y = 0(yo+y3) + (Y2 +ys) + 6%y
and €aqpiy = Y1+ Y2+ Ys + 0y3 + 62 (Y1 + ya).

In the diagonal of the table below, we present the elements e?], ¢ €

G and t = t3 + 6(t1 + to), £ = 6%ty + Oty + t3. Note that this Cartan
decomposition occurs over a field k with four elements.

l “ Ca [ s [ Gy [ Catp [ Caty [ €8+~ [ Catpty l
€a ts + Ot 0%€nis €atry 5%ep ey 0€atBtry | €84~
es ears otq 0 ’eq 5% CatBiny 0 Catry
Sl Catry 0 t Catptry Ca 0 Catp

Catp 5ep 5 ea Catpty t depiy deaty €y

Ca+ry €y 526a+[3+w [ 56[3_;,_7 ts 4+ t1 + Ota 5ea+[3 5265

€54~ (5€a+ﬁ+7 0 0 66a+-y 56a+5 52t1 (56a
€atBtry 0€s4~ Caty €ats €y 5%ep deq t

Consider the following elements of Ko:

ti=m+Ey+W; ag=F1+Fy+G by =W+ Fy+G
to=t+n+ I ay = FEyg+ Vi bo = Ey+ Fi
tg=t+m+V a3 = By + Fy b3 = Vo

b=Vi+E1+ F

Let T = (t; : i =1,2,3) with £ = t,. It is easy to verify that [a;,t;] =
dijai, I(K) = {te K : t¥ =t} = {aa) +az+aaz+by+b : a € k}. This
gives a decomposition of K5 on root spaces, and we have the following Lie

multiplication table, where in the diagonal are written the elements z2.
Observe that this multiplication is defined over the prime field F5.
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L lt[tof[ts[arfas] b [as] by [b] b |
tl tl 0 0 aj 0 bl 0 bQ 0 b
tQ 0 t2 0 0 a9 b1 0 0 bg b
t3 010 1t3] 0|0 0 as b b3 b
aj aj 0 0 t2 b1 a9 0 as b b3
a 0 a9 0 b1 tl aq b3 b 0 b2
bi b1 | b1 | 0 ag|ar [t1+ta+t3| b 0 by as
as 0 0 as 0 bg b tQ aq a b1
bo || b2 | O |[bo|asg| b 0 ap |t1 +ta+t3 | O a2
b3 0 b3 b3 b 0 b2 a 0 0 0
b b b b b3 bg as bl a9 0 tQ + t3
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