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Abstract. In this work we prove the existence of a compact global
attractor for the flow of the equation

∂m(r, t)

∂t
= −m(r, t) + g(βJ ∗ m(r, t) + βh), h, β ≥ 0,

in L2(S1). We also give uniform estimates on the size of the attractor
and show that the flow is gradient.
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1. Introduction

We consider here the non local evolution equation

∂m(r, t)

∂t
= −m(r, t) + g (βJ ∗ m(r, t) + βh) , (1.1)

where m(r, t) is a real function on R × R+, h and β are non negative

constants and J ∈ C1(R) is a non negative even function supported in the

1Partially supported by CNPq-Brazil grants 2003/11021-7, 03/10042-0.
2Partially supported by CNPq-Brazil grant 141882/2003-4.
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interval [−1, 1] and integral equal to 1. The ∗ above denotes convolution
product, namely:

(J ∗ m)(x) =

∫

R

J(x − y)m(y)dy.

An equilibrium of (1.1) is a solution for (1.1) that is constant with respect
to t, that is, m satisfies

m(r) = g(βJ ∗ m(r) + βh).

There are several works in the literature dedicated to the analysis of the
particular case of (1.1) where g ≡ tanh, that is

∂m(r, t)

∂t
= −m(r, t) + tanh(βJ ∗ m(r, t) + βh). (1.2)

In this case, if β ≤ 1, equation (1.2) has only one (stable) equilibrium, (see
[9] and [11]). If β > 1 there is h∗, implicitly defined by equation (1.3) below,
such that, for 0 ≤ h < h∗, equation (1.2) has three spatially homogeneous

equilibria, m−
β , m0

β, m+

β , each of which is identically equal to one of the

roots of the equation

mβ = tanh(βmβ + βh). (1.3)

In [7], the existence and uniqueness (modulo translation) of a travelling

front connecting the equilibria m−
β and m+

β is proved. In [9], the existence of

a non-homogeneous stationary solution referred to as the “bump” is proved
for h “sufficiently close” to 1. In [11], the existence of a such solution is
established for 0 < h < h∗.

The existence and uniqueness (modulo translation) of an equilibrium for

(1.2) which tends asymptotically to ±m+

β , referred to as the “instanton” is

proved in [8] and [10] for the case h = 0.

In [1], the existence of a global attractor for (1.2) is proved for the case
of bounded domain and h = 0.

We now collect the conditions on g which will be used used as hypotheses
along the paper and indicate the points where each one is needed.

(H1) The function g : R → R, is globally Lipschitz, that is, there exists a
positive constant k1 such that

|g(x) − g(y)| ≤ k1|x − y|, ∀x, y ∈ R.

In particular, there exist non negative constants k2 and k3 such that

|g(x)| ≤ k2|x| + k3, ∀x ∈ R. (1.4)

(H2) The function g ∈ C1(R) and g′ is locally Lipschitz.
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(H3) There exist non negative constants k4 and k5, such that

|g′(x)| ≤ k4|x| + k5, ∀x ∈ R.

(Observe that if (H1) and (H2) hold then (H3) also holds with k4 = 0
and k5 = k1.

(H4) The function g has positive derivative. In particular it is increasing.

(H5) There exists a > 0 such that, for all x ∈ R, |g(x)| < a. In particular,
when a < ∞ (1.4) holds with k2 = 0 and k3 = a.

(H6) The function g−1 is continuous in (−a, a) and the function

f(m) = −1

2
m2 − hm − β−1i(m), m ∈ [−a, a],

where i is defined by

i(m) = −
∫ m

0

g−1(s)ds, m ∈ [−a, a],

has a global minimum m in (−a, a).

This paper is organized as follows. In Section 2 we prove that, under
hypothesis (H1), (1.1) (restricted to P2τ )) generates a flow in L2(S1), which

is of class C1 if one also assumes (H2). Section 3 is dedicated to the proof
of existence of the global attractor, generalizing some results of [1], where
the case h = 0 was considered. This is done using hypotheses (H1) and
(H3) (we don’t need to assume (H2) at this point). In Section 4, we prove
a comparison result under the hypotheses (H1) and (H4), generalizing
Theorem 2.7 of [8]. Assuming also (H3) and (H5) (with a < 0) we prove
an uniform estimate for the attractor. Finally, in Section 5 assuming (H6),
we exhibit a continuous Lyapunov functional for the flow of (1.1), and as
used it to prove that, under hypotheses (H1), (H3), (H4), (H5) and
(H6), the flow is gradient in the sense of [5]. As consequence, the global
attractor coincides with the unstable manifolds of the equilibria.

2. Well posedness in L2(S1)

The Cauchy problem for equation (1.1) in the space of continuous boun-
ded functions, Cb(R), with the sup norm is well posed, since the function
given by the right hand side of (1.1) is uniformly Lipschitz in this space,
(see [2] and [3]).

It is an easy consequence of the uniquennes theorem that the subspace
P2τ of 2τ periodic functions is invariant,
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We considerer here the equation (1.1) restricted to the P2τ , τ > 1. As we

will see below, this leads naturally to the consideration of a flow in L2(S1),

where S1 denotes the unit sphere.

Now, if τ > 1 is a given positive number, we define Jτ as the 2τ periodic
extension of the restriction of J to interval [−τ, τ ]. It is then easy to show
that, if u ∈ P2τ , then

(J ∗ u)(x) =

∫ τ

−τ

Jτ (x − y)u(y)dy. (2.5)

In view of the (2.5), the equation (1.1), restricted to P2τ , with τ > 1,
can be written as

∂m(x, t)

∂t
= −m(x, t) + g

(
β

∫ τ

−τ

Jτ (x − y)m(y, t)dy + βh

)
.

Define ϕ : R → S1 by

ϕ(x) = ei π

τ
x

and, for u ∈ P2τ , v : S1 → R by

v(ϕ(x)) = u(x).

In particular, we write J̃(ϕ(x)) = Jτ (x). Then we have the following result,
whose simple proof is omitted.

Proposition 2.1. The function u(x, t) is a 2τ periodic solution of (1.1) if
and only if v(w, t) = u(ϕ−1(w), t) is a solution of

∂m(w, t)

∂t
= −m(w, t) + g

(
βJ̃ ∗ m(w, t) + βh

)
, (2.6)

where, now, (∗) denote convolution in S1, that is

(J̃ ∗ m)(w) =

∫

S1

J̃(w · z−1)m(z)dz

and dz = τ
π
dθ, where dθ denote integration with respect to arc length.

From now on we will write J instead of J̃ for simplicity.

Proposition 2.2. Suppose that the hypothesis (H1) holds. Then the func-
tion

F (u) = −u + g(βJ ∗ u + βh)

is uniformly Lipschitz in L2(S1).
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Proof From (H1) and the triangle inequality, we obtain

‖F (m) − F (u)‖L2 =

= ‖ − (m − u) + g(βJ ∗ m + βh) − g(βJ ∗ u + βh)‖L2

≤ ‖m − u‖L2 + k1‖β(J ∗ m) − β(J ∗ u)‖L2

= ‖m − u‖L2 + k1β‖J ∗ (m − u)‖L2 .

But, from Young’s inequality, (see [4]),

‖J ∗ (m − u)‖L2 ≤ ‖J‖L1‖m − u‖L2

= ‖m − u‖L2 .

Thus

‖F (m) − F (u)‖L2 ≤ (1 + k1β) ‖m − u‖L2 ,

which concludes the proof. �

From Proposition 2.2, it follows that the Cauchy problem for (2.6) is

well posed in L2(S1) with a unique global solution, (see [2] and [3]). More
precisely, we have

Corollary 2.3. Equation (2.6) has a unique solution for any initial con-
dition in L2(S1), which is globally defined.

The following result has been proven in [12].

Proposition 2.4. Let X and Y be normed linear spaces, F : X → Y a
map and suppose that the Gateaux derivative of F , DF : X → L(X,Y )
exists and is continuous at x ∈ X. Then the Frechet derivative F ′ of F
exists and is continuous at x.

Remark 2.5. If u ∈ L2(S1), then

|(J ∗ u)(w)| ≤
√

2τ‖J‖∞‖u‖L2 , ∀ w ∈ S1. (2.7)

In fact,

|(J ∗ u)(w)| ≤
∫

S1

|J(wz−1)||u(z)|dz

≤
∫

S1

‖J‖∞|u(z)|dz,

and the estimate follows from Hölder’s inequality, (see [2]).

Proposition 2.6. Assume that the hypotheses (H1) and (H2) hold. Then
the function

F (u) = −u + g(βJ ∗ u + βh)
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is continuously Frechet differentiable in L2(S1) with derivative given by

F ′(u)v = −v + g′(βJ ∗ u + βh)β(J ∗ v).

Proof By a simple computation, using the hypothesis (H1), it follows
that the Gateaux’s derivative of F is given by

DF (u)v = −v + g′(βJ ∗ u + βh)β(J ∗ v).

Now, note that for each u ∈ L2(S1), due to linearity of the convolution,
DF (u) is a linear operator. Furthermore

‖DF (u)v‖L2 ≤ ‖v‖L2 + ‖g′(βJ ∗ u + βh)β(J ∗ v)‖L2 .

But, from (2.7), we have

|β(J ∗ v)(w)| ≤
√

2τβ‖J‖∞‖v‖L2 , ∀w ∈ S1

and, from (H2)
∫

S1

|g′(β(J ∗ u)(w) + βh)|2dw = L < ∞.

Hence

‖g′(βJ ∗ u + βh)β(J ∗ v)‖2

L2 =

=

∫

S1

|g′(β(J ∗ u)(w) + βh)|2β2|(J ∗ v)(w)|2dw

≤
∫

S1

|g′(β(J ∗ u)(w) + βh)|2β22τ‖J‖2
∞‖v‖2

L2dw

= β22τ‖J‖2
∞‖v‖2

L2

∫

S1

|g′(β(J ∗ u)(w) + βh)|2dw

= Lβ22τ‖J‖2
∞‖v‖2

L2 .

Thus

‖g′(βJ ∗ u + βh)β(J ∗ v)‖L2 ≤
√

Lβ
√

2τ‖J‖∞‖v‖L2 .

Therefore

‖DF (u)v‖L2 ≤ (1 +
√

L2τβ‖J‖∞)‖v‖L2 .

Furthermore, DF is a continuous operator. In fact

‖DF (u1)v−DF (u2)v‖L2 =

= ‖[g′(βJ ∗ u1 + βh) − g′(βJ ∗ u2 + βh)]β(J ∗ v)‖L2 .
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Keeping u1 ∈ L2(S1) fixed and letting u2 → u1 in L2(S1) it follows, from

(2.7), that (βJ ∗u2 + βh) is in a ball of L∞(S1) centered in (βJ ∗u1 + βh).
Thus, using hypothesis (H2), there exists a constant M > 0 such that

|g′(βJ ∗ u1 + βh)(w) − g′(βJ ∗ u2 + βh)(w)| ≤ Mβ|J ∗ (u1 − u2)(w)|.
Using this last estimative and (2.7), we obtain

‖DF (u1)v − DF (u2)v‖L2 =

(∫

S1

|g′(βJ ∗ u1 + βh)(w)−

− g′(βJ ∗ u2 + βh)(w)|2β2|(J ∗ v)(w)|dw

) 1

2

≤
(∫

S1

M2β2|J ∗ (u1 − u2)(w)|2β2|(J ∗ v)(w)|2dw

) 1

2

≤ Mβ22τ
√

2τ‖J‖2
∞‖u1 − u2‖‖v‖L2 .

It follows from Proposition 2.4 that F is Frechet differentiable with con-
tinuous derivative in L2(S1). �

Remark 2.7. Since the right-hand side of (2.6) is a C1 function, the flow
generated by (2.6) is C1 with respect to initial conditions, (see [6]).

3. Existence of a global attractor

We prove, in this section, the existence of a global maximal invariant
compact set A ⊂ L2(S1) for the flow of (2.6), which attracts each bounded

set of L2(S1) (the global attractor, see [5] and [13]).

We recall that a set B ⊂ L2(S1) is an absorbing set for the flow T (t) if,

for any bounded set C ⊂ L2(S1), there is a t1 > 0 such that T (t)C ⊂ B for
any t ≥ t1.

The following result was proven in [13]

Theorem 3.1. Let X be a Banach space and T (t) a semigroup on X.
Assume that, for every t, T (t) = T1(t)+T2(t) where the operators T1(·) are
uniformly compact for t large, that is, for every bounded set B there exists
t0, which may depend on B, such that

⋃

t≥t0

T1(t)B

is relatively compact in X and T2(t) is a continuous mapping from X into
itself such that the following holds: For every bounded set C ⊂ X,

rc(t) = sup
ϕ∈C

‖T2(t)ϕ‖X → 0 as t → ∞.
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8 Antônio Luiz Pereira and Severino Horácio da Silva

Assume also that there exists an open set U and bounded subset B of U
such that B is absorbing in U . Then the ω-limit set of B, A = ω(B), is a
compact attractor which attracts the bounded sets of U . It is the maximal
bounded attractor in U (for the inclusion relation). Furthermore, if U is
convex and connected, then A is connected.

Lemma 3.2. Assume that the hypothesis (H1) holds and k2β < 1. Then the

ball of radius 2
√

2τ(k2βh+k3)

1−k2β
is an absorbing set for the flow T (t) generated

by (2.6).

Proof If u(w, t) is a solution of (2.6) with initial condition u(w, 0) then,
by the variation of constants formula

u(w, t) = e−tu(w, 0) +

∫ t

0

e−(t−s)g(β(J ∗ u(w, s) + h))ds.

Thus

d

dt

∫

S1

|u(w, t)|2dw =

= −2

∫

S1

u2(w, t)dw + 2

∫

S1

u(w, t)g(βJ ∗ u(w, t) + βh)dw.

But, by Hölder inequality∫

S1

u(w, t)g(βJ ∗ u(w, t) + βh)dw ≤

≤ ‖u(·, t)‖L2

(∫

S1

(g(βJ ∗ u(w, t) + βh))2dw

) 1

2

.

Using (1.4) and Young’s inequality in the right-hand side of the inequality
above, we obtain∫

S1

u(w, t)g(βJ ∗ u(w, t) + βh)dw ≤ ‖u(·, t)‖L2∗

∗
[
k2β

(∫

S1

(J ∗ u(w, t))2dw

) 1

2

+

(∫

S1

(k2βh + k3)
2dw

) 1

2

]

≤ ‖u(·, t)‖L2

[
k2β‖J‖L1‖u(·, t)‖L2 +

√
2τ(k2βh + k3)

]

= ‖u(·, t)‖L2

[
k2β‖u(·, t)‖L2 +

√
2τ (k2βh + k3)

]
.
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Thus

d

dt
‖u(·, t)‖2 ≤

≤ −2‖u(·, t)‖2

L2 + 2k2β‖u(·, t)‖2

L2 + 2
√

2τ(k2βh + k3)‖u(·, t)‖L2

= 2‖u(·, t)‖2

L2

[
−1 + k2β +

√
2τ (k2βh + k3)

‖u(·, t)‖L2

]
.

Since k2β < 1, let ε = 1−k2β > 0. Then, while ‖u(·, t)‖L2 ≥ 2
√

2τ(k2βh+k3)

ε
,

we have

d

dt
‖u(·, t)‖2

L2 ≤ 2‖u(·, t)‖2

L2(−ε +
ε

2
)

= −ε‖u(·, t)‖2

L2 .

Therefore

‖u(·, t)‖L2 ≤ e−εt‖u(·, 0)‖L2

= e−(1−k2β)t‖u(·, 0)‖L2 ,

which concludes the proof. �

The next result generalizes Theorem 3.3 of [1].

Theorem 3.3. Suppose that (H1), (H3) hold and k2β < 1. Then there
exists a global attractor A for the flow T (t) generated by (2.6) in L2(S1),

which is contained in the ball of radius 2
√

2τ(k2βh+k3)

1−k2β
.

Proof If u(w, t) is the solution of (2.6) with initial condition u(w, 0) we
have, by the variation of constants formula

u(w, t) = e−tu(w, 0) +

∫ t

0

es−tg(β(J ∗ u(w, s) + h))ds. (3.8)

Write
T1(t)u(w) = e−tu(w, 0)

and

T2(t)u(w) =

∫ t

0

es−tg(β(J ∗ u(w, s) + h))ds

and suppose u(·, 0) ∈ C, where C is a bounded set in L2(S1). Then

‖T1(t)u‖L2 −→ 0, as t −→ ∞, uniformly in u.
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Also, using (3.8), we have that ‖u(·, t)‖L2 ≤ K, for t ≥ 0, where K =

max
{

R,
2
√

2τ(k2βh+k3)

1−k2β

}
. Therefore, for t ≥ 0 we have

∂T2(t)u(w)

∂w
=

∫ t

0

es−t ∂

∂w
g(β(J ∗ u(w, s) + h))ds

= β

∫ t

0

es−tg′(β(J ∗ u(w, s) + h))(J ′ ∗ u)(w, s)ds.

Thus∣∣∣∣
∂T2(t)u(w)

∂w

∣∣∣∣ ≤ β

∫ t

0

es−t|g′(βJ ∗ u(w, s) + βh)||(J ′ ∗ u)(w, s)|ds.

Using (H3) and (2.7), we obtain

|g′(βJ ∗ u(w, s) + βh)||(J ′ ∗ u)(w, s)| ≤
≤ [k4|βJ ∗ u(w, s) + βh| + k5]|J ′ ∗ u(w, s)|
≤ [k4|βJ ∗ u(w, s)| + k4βh + k5]|J ′ ∗ u(w, s)|

≤
[
k4β

√
2τ‖J‖∞‖u(·, s)‖L2 + k4βh + k5

]√
2τ‖J ′‖∞‖u(·, s)‖L2

≤ k4β2τ‖J‖∞‖J ′‖∞K2 + (k4βh + k5)
√

2τ‖J ′‖∞K.

Hence∣∣∣∣
∂T2(t)u(w)

∂w

∣∣∣∣ ≤

≤ β

∫ t

0

es−t
[
k4β2τ‖J‖∞‖J ′‖∞K2 + (k4βh + k5)

√
2τ‖J ′‖∞K

]
ds

=
[
k4β

22τ‖J‖∞‖J ′‖∞K2 + (k4β
2h + k5β)

√
2τ‖J ′‖∞K

] ∫ t

0

es−tds

≤
[
k4β

22τ‖J‖∞‖J ′‖∞K2 + (k4β
2h + k5β)

√
2τ‖J ′‖∞K

]
.

It follows that, for t > 0 and any u ∈ C, the value of ‖∂T2(t)u
∂w

‖L2 is bounded

by a constant (independent of t and u ). Thus, for all u ∈ C, we have that

T2(t)u belongs to a ball of W 1,2(S1). From Sobolev’s Imbedding Theorem,
it follows that ⋃

t≥0

T2(t)C

is relatively compact. Therefore, the result follows from Theorem 3.1, the

attractor A being the set ω-limit of the ball B
(
0,

2
√

2τ (k2βh+k3)

1−k2β

)
in L2(S1).

�
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4. Comparison and boundedness results

In this section we prove a comparison result that generalizes Theorem
2.7 of [8], where the case g ≡ tanh and h = 0 was considered.

Definition 4.1. A function v(w, t) is a subsolution of the Cauchy problem
for (2.6) with initial condition u(·, 0) if v(w, 0) ≤ u(w, 0) for almost all
w ∈ S1, v is continuously differentiable with respect to t and satisfies

∂v(w, t)

∂t
≤ −v(w, t) + g(β(J ∗ v(w, t) + h)), (4.9)

almost everywhere.

Analogously, the function V (w, t) is a super solution if has the same
regularity properties as above, satisfies (4.9) with reversed inequality and

V (w, 0) ≥ u(w, 0) for almost all w ∈ S1.

Theorem 4.2. (Comparison Theorem) Assume hypotheses (H1) and (H4)
hold and let v(w, t), [V (w, t)] be a sub solution [super solution] of the Cauchy
problem of (2.6) with initial condition u(·, 0). Then

v(w, t) ≤ u(w, t) ≤ V (w, t),

almost everywhere.

Proof

Define the operator G on L∞(S1 × [0, T ]) by

G(f)(w, t) = e−tf(w, 0) +

∫ t

0

e−(t−s)g(β(J ∗ f(w, s) + h))ds.

Then (G(f))(w, 0) = f(w, 0). Also, from (H4), it follows that G is mono-

tonic, that is, for any f1, f2 ∈ L∞(S1 × [0, T ]) with f1 ≥ f2 (a.e. in

S1 × [0, T ]), G(f1) ≥ G(f2) (a.e. in S1 × [0, T ]).

From (1.4), we obtain

|G(f)(w, t)| ≤ e−t|f(w, 0)| +
∫ t

0

e−(t−s)|g(β(J ∗ f)(w, s) + βh)|ds

≤ e−t|f(w, 0)| +
∫ t

0

e−(t−s)[k2|β(J ∗ f)(w, s) + βh| + k3]ds

≤ e−t|f(w, 0)| +
∫ t

0

e−(t−s)k2β|(J ∗ f)(w, s)|ds+

+

∫ t

0

e−(t−s)(k2βh + k3)ds.
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Since |(J ∗ f)(w, s)| ≤ ‖f‖∞ almost everywhere in S1 × [0, T ], we obtain

‖G(f)‖∞ ≤

≤ e−t‖f‖∞ + k2β‖f‖∞
∫ t

0

e−(t−s)ds + (k2βh + k3)

∫ t

0

e−(t−s)ds

≤ ‖f‖∞ + k2β‖f‖∞ + k2βh + k3.

Therefore G : L∞(S1 × [0, T ]) → L∞(S1 × [0, T ]).

Furthermore, if k1βT < 1, G is a contraction in any subset of functions
of L∞(S1 × [0, T ]) with the same values at t = 0. In fact

|G(f1)(w, t) − G(f2)(w, t)| =

=

∣∣∣∣
∫ t

0

e−(t−s)[g(β(J ∗ f1)(w, s) + βh) − g(β(J ∗ f2)(w, s) + βh)]ds

∣∣∣∣

≤
∫ t

0

e−(t−s)k1β|(J ∗ f1)(w, s) − (J ∗ f2)(w, s)|ds

≤
∫ t

0

e−(t−s)k1β(J ∗ |f1 − f2|(w, s))ds

≤
∫ t

0

e−(t−s)k1βJ ∗ ‖f1 − f2‖∞ds

= k1βT‖f1 − f2‖∞
∫ t

0

e−(t−s)ds

≤ k1βT‖f1 − f2‖∞,

almost everywhere in S1 × [0, T ]. Hence
‖G(f1) − G(f2)‖∞ ≤ k1βT‖f1 − f2‖∞. Therefore, if k1βT < 1, G is a

contraction. Thus, if u(w, t) is a solution of (2.6) with u0 = u(w, 0), we
have

u = lim
n−→∞

Gn(u0)

on L∞(S1 × [0, T ]). The same holds for a solution ũ with ũ0 = ũ(w, 0). If

ũ0 ≤ u0 a.e., with g monotonic, it follows that

Gn(ũ0) ≤ Gn(u0), a.e.

Now, if v is a sub solution of (2.6) we have

d

dt
v(w, t) + v(w, t) ≤ g(β(J ∗ v(w, t) + h)), a.e.

Multiplying both sides of the inequality above by et, we have

d

dt

(
etv(w, t)

)
≤ etg(β(J ∗ v(w, t) + h)), a.e.
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Integrating from 0 to t, we obtain

v(w, t) ≤ e−tv(w, 0) +

∫ t

0

e−(t−s)g(β(J ∗ v(w, s) + h))ds,

almost everywhere. Therefore v(w, t) ≤ G(v)(w, t), a.e., and since g mono-
tonic, it follows that v(w, t) ≤ Gn(v)(w, t) almost everywhere. Thus,
v(w, t) ≤ z(w, t), a.e., where

z = lim
n−→∞

Gn+1(v).

Now, from the continuity of G, it follows that

G(z) = G
(

lim
n−→∞

Gn(v)
)

= lim
n−→∞

Gn+1(v) = z.

Therefore z is a fixed point of G, that is, z is a solution of (2.6) in S1×[0, T ]
with initial condition z(·, 0) = v(·, 0). Thus, if z(·, 0) ≤ u(·, 0), a.e., then

v ≤ z ≤ u, a.e. in S1 × [0, T ],

where u is the solution of (2.6) with initial condition u(·, 0). If V (w, t) is a
super solution we obtain, by the same arguments

u ≤ z̃ ≤ V, a.e. in S1 × [0, T ].

Therefore
v(w, t) ≤ u(w, t) ≤ V (w, t),

almost everywhere in S1 × [0, T ].

Since the estimates above do not depend on the initial condition, we may
extend the result to [T, 2T ] and, by iteration, we can complete the proof of
the theorem. �

Remark 4.3. If we add the hypothesis (H5), with a < ∞, the comparison
result holds in the ball M = {L∞(S1 × [0, T ]), ‖ · ‖∞ ≤ a}.

In fact, it is enough to prove that G|M : M → M. But, from (H4), it
follows that

|(G|Mf)(w, t)| ≤ e−t|f(w, 0)| + a

∫ t

0

e−(t−s)ds.

Hence

‖(G|Mf)‖∞ ≤ e−t‖f‖∞ + a

∫ t

0

e−(t−s)ds

≤ ae−t + a

∫ t

0

e−(t−s)ds

= a.
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Therefore, G|M(f) ∈ M.

Theorem 4.4. Assume the hypotheses (H1) and (H5) with a < ∞. Then
the attractor A belongs to the ball ‖ · ‖∞ ≤ a in L∞(S1).

Proof Since the hypothesis (H5) is a particular case of (1.4) with k2 = 0
and k3 = a, it follows from Theorem 3.3 that the attractor is contained in

the ball B[0, 2a
√

2τ ] in L2(S1).

Let u(w, t) be a solution of (2.6) in A. Then, by the variation of constants
formula

u(w, t) = e−(t−t0)u(w, t0) +

∫ t

t0

e−(t−s)g(β(J ∗ u)(w, s) + βh)ds.

Since ‖u‖L2 ≤ 2a
√

2τ for all u ∈ A, we obtain for all (w, t) ∈ S1 × R
+

letting t0 → −∞

u(w, t) =

∫ t

−∞
e−(t−s)g(β(J ∗ u)(w, s) + βh)ds,

where the equality above is in the sense of L2(S1). Thus, using (H5) again,
we have

|u(w, t)| ≤
∫ t

−∞
e−(t−s)|g(β(J ∗ u)(w, s) + βh)|ds

≤
∫ t

−∞
ae−(t−s)ds

≤ a.

as claimed. �

5. Existence of a Lyapunov functional

In this section we exhibit a continuous “ Lyapunov’s functional” for the
flow of (2.6), restricted to the ball of radius a in L∞(S1), concluding that
this flow is gradient, in the sense of [5].

We claim that {L2(S1), ‖ · ‖∞ ≤ a} is an invariant set for the flow gen-
erated by (2.6) . In fact, if a = ∞, there is nothing to prove. Otherwise,
let

u(w, t) = e−tu(w, 0) +

∫ t

0

e−(t−s)g(βJ ∗ u(w, s) + βh)ds
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be the solution of (2.6) with initial condition u(w, 0) ∈ {L2(S1), ‖·‖∞ ≤ a}.
Then

|u(w, t)| ≤ e−t|u(w, 0)| +
∫ t

0

e−(t−s)|g(βJ ∗ u(w, s) + βh)|ds

≤ e−t|u(w, 0)| + a

∫ t

0

e−(t−s)ds.

Hence

‖u(·, t)‖∞ ≤ e−t‖u(·, 0)‖∞ + a

∫ t

0

e−(t−s)ds

≤ e−ta + a

∫ t

0

e−(t−s)ds

= a.

Define the functional F: (L2(S1), ‖u‖∞ ≤ a) → R by

F(u) =

∫

S1

[f(u(w)) − f(m)]dw +
1

4

∫

S1

∫

S1

J(w · z−1)[u(w) − u(z)]2dwdz,

(5.10)
where f is given in the hypothesis (H6).

Note that, if a < ∞, the functional in (5.10) is defined in the whole space

{L2(S1), ‖u‖∞ ≤ a}. This is not true for the similar functional

F̃(u) =

∫

R

[f(u(w)) − f(m+

β )]dw +
1

4

∫

R

∫

R

J(w − z)[u(w) − u(z)]2dwdz,

considered in [7], [8] and [11] with g ≡ tanh.

It is proved in [8], in the case of unbounded domain, g ≡ tanh and h = 0,

that the functional F̃ is lower semicontinuous in the weak L2

loc topology. In
our case, however, a stronger continuity property can be proved.

Theorem 5.1. Assume (H6) holds with a < ∞. Then the functional given
in (5.10) is continuous in the topology of L2(S1).

Proof Note that, if ‖u‖∞ ≤ a, there exists a positive constant K such
that

|f(u(w)) − f(m)| ≤ |f(u(w))| + |f(m)| ≤ K, for almost every w ∈ S1.

for any u ∈ L2(S1), with ‖u‖∞ ≤ a, let un a sequence converging to

u in the norm of L2(S1). We can extract a subsequence unk
, such that,

unk
(w) −→ u(w) a.e. in S1. Since from (H6), it follows that f is continuous,

f(unk
(w)) −→ f(u(w)) a.e. Thus

lim
k−→∞

[f(unk
(w)) − f(m)] = [f(u(w)) − f(m)], a.e.

São Paulo J.Math.Sci. 2, 1 (2008), 1–20
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and
lim

k−→∞
[unk

(w) − unk
(z)]2 = [u(w) − u(z)]2, a.e.

Now, we write
F(u) = F1(u) + F2(u),

where

F1 =

∫

S1

[f(u(w)) − f(m)]dw

and

F2(u) =
1

4

∫

S1

∫

S1

J(w · z−1)[u(w) − u(z)]2dwdz.

Since

|f(unk
(w)) − f(m)| ≤ K,

we can apply Lebesgue’s Dominated Convergence Theorem to obtain

lim
k−→∞

F1(unk
) = F1(u).

Similarly, as

|unk
(w) − unk

(z)|2 ≤ 4a2 ∈ L1(S1),

we have
lim

k−→∞
F2(unk

) = F2(u).

Therefore
lim

k−→∞
F(unk

) = F(u).

Thus F(un) is a sequence such that every subsequence has a subsequence
that converges to F(u), and we obtain

lim
n→∞

F(un) = F(u).

�

Theorem 5.2. Suppose that the hypotheses (H1), (H4) and (H5)-(H6),
with a < ∞, hold. Let u(·, t) be a solution of (2.6) with u(·, t) ≤ a. Then
F(u(·, t)) is differentiable with respect to t for t > 0 and

d

dt
F(u(·, t)) = −I(u(·, t)) ≤ 0,

where, for any u ∈ L2(S1) with ‖u‖∞ ≤ a,

I(u(·)) =

∫

S1

[(J ∗u)(w)+h−β−1g−1(u(w))][g(β(J ∗u)(w)+βh)−u(w)]dw.

Furthermore, the integrand in I(u(·)) is a non negative function and, u is
a critical point of F if only if u is an equilibrium of (2.6).
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Proof From (H1) and (H5), it follows that F(u(·, t)) is well defined for
all t ≥ 0. We assume first that, given t > 0, there exists ε > 0 such that
‖u(·, s)‖∞ ≤ a − ε, for s ∈ ∆ where ∆ is a closed finite interval containing
t. For s ∈ ∆ we write

F(u(·, s)) =

∫

S1

φ(w, s)dw, and I(u(·, s)) =

∫

S1

ι(w, s)dw.

As

∂φ

∂s
(w, s) =

[−u(w, s) − h + β−1g−1(u(w, s))][−u(w, s) + g(β((J ∗ u)(w, s) + h))]

+
1

2

∫

S1

J(w · z−1)[u(w, s) − u(z, s)]

[
∂u(w, s)

∂s
− ∂u(z, s)

∂s

]
dz,

∂φ(w,s)
∂s

is almost everywhere continuous and bounded in w for s ∈ ∆, that
is,

sup
s∈∆

∥∥∥∥
∂φ(·, s)

∂s

∥∥∥∥
L1

< ∞.

Therefore, we can derive under the integration sign obtaining

d

ds
F(u(·, s)) =

∫

S1

[−u(w, s) − h + β−1g−1(u(w, s))]
∂u(w, s)

∂s
dw

+
1

2

∫

S1

∫

S1

J(w · z−1)[u(w, s) − u(z, s)]

∗
[
∂u(w, s)

∂s
− ∂u(z, s)

∂s

]
dwdz,
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Since∫

S1

∫

S1

J(w · z−1)[u(w, s) − u(z, s)]

[
∂u(w, s)

∂s
− ∂u(z, s)

∂s

]
dwdz =

=

∫

S1

∫

S1

J(w · z−1)u(w, s)
∂u(w, s)

∂s
dwdz

−
∫

S1

∫

S1

J(w · z−1)u(w, s)
∂u(z, s)

∂s
dwdz

−
∫

S1

∫

S1

J(w · z−1)u(z, s)
∂u(w, s)

∂s
dwdz

+

∫

S1

∫

S1

J(w · z−1)u(z, s)
∂u(z, s)

∂s
dwdz

= 2

∫

S1

∫

S1

J(w · z−1)u(w, s)
∂u(w, s)

∂s
dwdz

− 2

∫

S1

∫

S1

J(w · z−1)u(z, s)
∂u(w, s)

∂s
dwdz.

and ∫

S1

J(w · z−1)dz = 1,

it follows that

d

ds
F(u(·, s)) =

∫

S1

[
− u(w, s) − h + β−1g−1(u(w, s))

]
∂u(w, s)

∂s
dw

+

∫

S1

(∫

S1

J(w · z−1)dz

)
u(w, s)

∂u(w, s)

∂s
dw

−
∫

S1

(∫

S1

J(w · z−1)u(z, s)dz

)
∂u(w, s)

∂s
dw

=

∫

S1

[
− u(w, s) − h + β−1g−1(u(w, s))

]
∂u(w, s)

∂s
dw

+

∫

S1

[u(w, s) − (J ∗ u)(w, s)]
∂u(w, s)

∂s
dw

=

∫

S1

[
− (J ∗ u)(w, s) − h + β−1g−1(u(w, s))

]

∗ [−u(w, s) + g(β(J ∗ u(w, s) + h))]dw

= −I(u(·, s)).
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This proves the first part of theorem with the additional hypothesis that
‖u(·, s)‖∞ ≤ a − ε, for s ∈ ∆ and some ε > 0, where ∆ is a closed finite
interval containing t. We claim that this hypothesis actually holds for all
t > 0.

Let λ(w, t) be the solution of (2.6) such that λ(w, 0) = a for any w ∈ S1.
Then λ(w, t) = λ(t) where

dλ

dt
= −λ(t) + g(β(λ(t) + h)).

Since by hypothesis (H5), |g(x)| < a, ∀ x ∈ R, it follows easily that λ(t) < a
for any t > 0. Since u(w, 0) ≤ a, we obtain by the Comparison Theorem

u(w, t) ≤ λ(t) < a,

for almost every w ∈ S1 and t > 0 . Repeating the same argument,
starting from inequality u(w, 0) ≥ −a, for almost every w ∈ S1, we obtain
u(w, t) ≥ −λ(t) > −a, and thus

‖u(·, t)‖∞ < λ(t) < a, for all t > 0

and the claim follows by continuity.

To conclude the proof, it is enough to show that u is a critical point of
F if only if u is an equilibrium of (2.6). Let u(w) be a critical point of the
functional F, then I(u(·)) = 0. Since the integrand is non negative almost
everywhere, it follows that

[(J ∗ u(w)) + h − β−1g−1(u(w))][g(β(J ∗ u(w) + h)) − u(w)] = 0

almost everywhere. But the annihilation of any of these factors implies

g(β(J ∗ u(w) + h)) = u(w).

Reciprocally, if u is a equilibrium of (2.6), it is easy to see that
I(u(·)) = 0. �

As a immediate consequence of the existence of the functional F we
obtain the following result.

Corollary 5.3. There are no non trivial recurrent points under the flow
of (2.6).

Remark 5.4. The integrand in the functional F above is always non neg-
ative since J is positive and m is a global minim of f . Thus F is lower
bounded.

We recall that a Cr-semigroup, T (t), is gradient if each bounded positive
orbit is precompact and there exists a Lyapunov Functional for T (t), (see
[5]).

Proposition 5.5. Assume the hypotheses (H1), (H3), (H4) and (H5), (H6)
with a < ∞. Then the flow generated by equation (2.6) is gradient.
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Proof The precompacity of the orbits follows from the existence of the
global attractor. From Theorems 5.1 and 5.2, and Remark 5.4, we have
existence of a continuous Lyapunov functional. �

As a consequence of the existence of the Lyapunov functional, we have
the following characterization of the attractor (see [5] - Theorem 3.8.5).

Theorem 5.6. Assume the same assumptions of Proposition 5.5. Then
the attractor A is the unstable set of the equilibrium point set of T(t), that
is,

A = W u(E).
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