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Abstract. In this paper we present an upper bound for the decay of
correlation for the stationary stochastic process associated with the
Entropy Penalized Method. Let L(z,v) : T" x R™ — R be a C* La-
grangian of the form
1
L(z,v) = 5 o> = U(z) + (P,v).

We point out that we do not assume more differentiability of L accord-
ing the the dimension of the torus T".

1. Definitions and the set up of the problem

Let T™ be the n-dimensional torus. In this paper we assume that the
Lagrangian, L(z,v) : T" x RY — R has the form

Lia,v) = 5 o = U(@) + (Pv)

where U € C(T"), and P € R" is constant.
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We consider here the discrete time Aubry-Mather problem [4] and the
Entropy Penalized Mather method which provides a way to obtain approx-
imations by continuous densities of the Aubry-Mather measure. We refer
the reader to [4] and the last section of [5] for some of the main properties
of Aubry-Mather measures , subactions, Peierl’s barrier, etc...

The Entropy Penalized Mather problem (see [6] for general properties of
this problem) can be used to approximate Mather measures [2] by means
of absolutely continuous densities jic (x), when €, h — 0, both in the con-
tinuous case or in the discrete case. In [5] it is presented a Large Deviation
principle associated to this procedure. We briefly mention some definitions
and results.

Consider, for each value of € and h, the operators acting on continuous
functions ¢:

Gl#)(x) :== —ch In [/R e

_ hL(z,v)+¢(z+hv)
eh d’U s
N

and

Gl#)(x) := —ch In UR e

__hL(z—hv,v)+é(z—hv)
eh d’U
N

Denote by ¢ p the solution of G[den] = ¢en + Aep, and by (J_Sg,h the
solution of G[¢e n] = den + Aen- Let

be,n (@) +d¢ ()
eg,h('m) = e_ eh

By adding a suitable constant to ¢ j or ée,h, we can assume that 6. () is
a probability density on TV. From D. Gomes and E. Valdinoci, it is known
that the probability measure on TV x RN

_hL(z,'u)«sze’h(z+hv)7¢€,h(z)f)\€’h
,us,h(:Ea U) = He,h(x) € ch )

is a solution to the entropy penalized Mather problem:

win{ [ Do)dute) + esul

where the entropy S is given by

p(z,v)
Slu] = / x,v)In ———————dxdv,
[Iu] TN xRN Iu( ) fRN p(z, w)dw
and
M, = {MEM; gp(x+hv)—gp(x)d,uzO,cheC(TN)}. (1)
TN xRN
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Here M denotes the set of probability densities on TV x RY and we will
call p € My, a holonomic probability measure.

We will be interested in measures that minimize the functional bellow
(under the holonomic constrain)

L, Leo)du(e,) + eslyl )
TN xRN
Note that, for any probability u(x,v) by concavity of In implies

d
—S[u] = / w(z,v) In de dv <
TN xRN (@, v)

,w)d
n / (i, o) BY B0
TN xRN p(x,v)

This is the entropy penalized version of the discrete time Aubry-Mather
problem, see [4], where we look for probability measures p € Mj that
minimize the action

/ L(z,v)du(x,v) (3)
TN xRN

Definition 1: The forward (non-normalized) Perron operator £ is defined

_ L(z,v)

r—pr) =z— E(cp)(a:):/e < oz +hv)dv,

¢€’h . .
In [6] it is shown that £ has a unique eigenfunction e” %e with eigenvalue
As,h
e he

Definition 2: The backward operator N is given by

_ L(z—hv,v)

x—><,0(x):>x—>/\/(<p)(:n):/e < p(x—hv)dv,

‘is,h
In [6] it is shown that A has a unique eigenfunction e™ #e with eigen-
Ae,h,
value e” e

Definition 3: The operator
/ _hL(cv,v)«kd)Eyh(z+hv)7¢€,h(z)f/\€yh
e

g9(x) — F(g) (x) = e 9(x + hv) dv,
is the normalized forward Perron operator.
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From [6] we have that given a continuous function g : T" — R, then
F™(g) converges to the unique eigenfunction k as m — oco. We show in
this paper that for € and h fixed, the convergence is exponentially fast.

Our notation:
be,n (@) +0c p(x)
0=0.n(x)=¢e" <h ,
hL(z’v)+¢s,}L(z+h’v)7¢e,h(z)7/\s,h
7(337 U) = ’767}1(33, U) =e ch )
in such way that e = 0 () Ve n(x,v).

2. Reversed Markov Process and Adjoint Operator

In this section we define the reversed Markov process and compute the
adjoint of F in £2(#). We assume h = 1 from now on.

We can consider the stationary forward Markovian process X, according
to the initial probability 6(x) and transition y(x,v). For example

P(X € Ag) = / 0(z)dz,
z€T™NAg
P(Xp€ Ay, X1 € A1) = / 0(z)y(z,v) dz dv,
z€T?NAg, (z+v)EAL

and so on. Define the backward transfer operator F7* acting on continuous
functions f(z) by

F(f) (z) :/Q(x—v)e’(yaia)n—v,v) f(z —v)dv.

The backward transition kernel is given by
O —v)y(r —v,v)
Q(.’L’, 'l)) - 9(%)

The fact that for any z we have [ Q(z,v) dv =1 follows from Theorem 32
in [6]. We will show in Corollary [I] that # is an invariant measure for the
process with transition kernel ), more precisely, that

/gd@ = /.F*(g)d@,
for any g € L£2(d6).

Theorem 1. F* is the adjoint of F in £2(#), that is for all f,g € £2(0)
then

[rwFg@eiz = [ o7 st
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Proof. Consider f,g € £2(0), then

[ 9@ (7 )] (a)do =
_ / g(@) [/ bz = ”)Hzg ~ V) fo ) dv] 6(z) da
:/ o) [/ 0z — 0)v(x — v,0) f(z—v)dv] do
[t
/
x)[/ ~(,0) glz +v) dv] 0(z) do

L(z, v)+ode, 1 (z+v)— Pe, 1(z)— el
f(x )[/e E glx+v)dv] 0(z)dx

~ [ 1@ #(9) @) () dx,

where we use above the change of coordinates © — x — v and the fact that
1 is holonomic. O

O(x —v)y(z —v,v) fx —v)]dz] dv

glx +v) 0(x)y(z,v) f(x)dx] dv

\\\\

Corollary 1. Consider the inner product (-,-) in £2(f). Then F leaves
invariant the orthogonal space to the constant functions: {g|(g,1) =
[ g1df = 0}. Furthermore

/gd@ = /f*(g)d@

Proof. Note that F(1) = 1, therefore

/gld@ = /gf(l)d@ = /f*(g)d@

Thus if [ g1df = 0 it follows [ F*(g)df = 0. O

3. Spectral gap, exponential convergence and decay of corre-
lations

From [6] it is known that £ has a unique (normalized) eigenfunction
Pe.h eh
e~ ke corresponding to the largest eigenvalue e~ ke , in the next theorem

we prove the this eigenvalue is separated from the rest of the spectrum.
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Theorem 2. The largest eigenvalue of L is at a positive distance from the
rest of the spectrum.

Proof. We will prove the result for the normalized operator
hL(z,0)+¢, p(z+hv)—¢, p(2)=X p

9(x) = F(g) (z) = /6_ <k g(x + hv)dv.

Recall from [6] that the functions ¢ ,(z) and @ 5 (z) are differentiable. In
this way we consider a new Lagrangian (adding ¢e p(x+hv) — de () — Acp)
in such way £ = F. We also assume ¢ = 1 and h = 1 from now on.

Therefore,

o) — Flg) (x) = / &1 g 4 ) do,

the eigenvalue is 1, and, by the results in [6], the corresponding eigenspace
is one-dimensional and is generated by the constant functions.

Suppose there exist a sequence of f, € L£2(6), p € N. such that

}-(fp) = )‘p(fp)a

(fp,1) =0, A\, — 1 and ||fp|| = 1. If the operator is compact, then the
theorem follows from the classical argument: through a subsequence f, —
f, and since A\, — 1 we have F(f) = f. Furthermore, since (f,,1) = 0,
it follows (f,1) = 0, which is a contradiction. Therefore we proceed to
establish the compactness of the operator F.

To establish compactness, consider g € £2(f). We claim that f = F(g)
is in the Sobolev space H! (see [3] for definition and properties). Indeed,

for a fixed z, we will compute the derivative of f. Integrating by parts we
have

d d
= fl@) =+ (Flo) (@) =

- / (L g+ 0) e 00 — L, 0)[-2 e @D ] g +v) ) do

dz dz
— [(Ugmato+0)] €M) = L) [ e 2] gl +0)do

— [(Ugpe ™ gl +0) — Lao) [ e 2] gla+0)do

dx
_ / (e e0] — L) [ e H50)]) (o +0) do.
0)7

From the hypothesis about L, if g € £3(
(with the above derivative).

then indeed % f is also in £2(#)
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Note that, for v uniformly in a bounded set
d d

‘ @], =g

Therefore, f is in the Sobolev space H!.

gll2-

2

d —L(x,v d —L(z,v
<[[tgteten) - s g et

2 ‘

By iterating the procedure described above, we have that
g; = F(g) € H.

It is known that if j > &, where n is the dimension of the torus T", then
g; is continuous Hélder continuous[3]. Thus the operator F is compact and
g; is differentiable for a much more larger j. From the reasoning described
before, f, — f, and F(f) = f, (f,1) =0 and f is differentiable. It is easy
to see that the modulus of concavity of f is bounded (the iteration by F
does not decrease it). We can add a constant to f and by linearity of F we
also get a new fixed point for F (note that F(1) = 1). Therefore, we can
assume f = e~ 9 for some g.

In this way, we obtain a contradiction with the uniqueness in Theorem
26 in[0]. O

Suppose [ g(z)6(x)dz = 0. For €, h fixed, then it follows from above
that F™(g) — 0 with exponential velocity (according to the spectral gap).

Consider the backward stationary Markov process Y, according to the
transition (x,v) and initial probability 6 as above.

Theorem 3. Given f(z),g(x) with [ f(z)6(x)dz = [ g(z)0(x)dz = 0, it
follows

/ 9(Yo) f(Ya) dP — 0,

with exponential velocity.

Proof. Note that

/ 9(Yo) f(Y2)d P = / a(2) / Q(,v) f(z — v) dv) 0(z) dz =
/ o) [F*(F) (2))0(x)dz = / £(2) [Flg) (2)]0(x) da.

In the same way, for any n
[ st syar = [ 1@ (#() (@))6(0) do.

The exponential decay of correlation follows from this. O
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Theorem 4. Let f(z),g(z) € £2(0) be such that [ f(z)8(x)dz =
[ g(x)8(x)dz = 0. Then

/ 9(Xo) f(X,)dP — 0,
with exponential velocity.

Proof. Now, for analyzing the decay of the forward system, X,,, with tran-
sition 7(z,v), we have to consider the backwark operator F*, use the fact
that its exponential convergent, that is (F*)"(g) — 0, if [ g(z)0(z)dz = 0,
and the result follows in the same way. O
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