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Exponential decay of correlation for the
Stochastic Process associated to the Entropy
Penalized Method
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Abstract. In this paper we present an upper bound for the decay of
correlation for the stationary stochastic process associated with the
Entropy Penalized Method. Let L(x, v) : T

n
× R

n
→ R be a C1 La-

grangian of the form

L(x, v) =
1

2
|v|

2
− U(x) + 〈P, v〉.

We point out that we do not assume more differentiability of L accord-
ing the the dimension of the torus T

n.

1. Definitions and the set up of the problem

Let T
n be the n-dimensional torus. In this paper we assume that the

Lagrangian, L(x, v) : T
n × R

N → R has the form

L(x, v) =
1

2
|v|2 − U(x) + 〈P, v〉,

where U ∈ C1(Tn), and P ∈ R
n is constant.
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We consider here the discrete time Aubry-Mather problem [4] and the
Entropy Penalized Mather method which provides a way to obtain approx-
imations by continuous densities of the Aubry-Mather measure. We refer
the reader to [4] and the last section of [5] for some of the main properties
of Aubry-Mather measures , subactions, Peierl’s barrier, etc...

The Entropy Penalized Mather problem (see [6] for general properties of
this problem) can be used to approximate Mather measures [2] by means
of absolutely continuous densities µε,h(x), when ε, h → 0, both in the con-
tinuous case or in the discrete case. In [5] it is presented a Large Deviation
principle associated to this procedure. We briefly mention some definitions
and results.

Consider, for each value of ε and h, the operators acting on continuous
functions φ:

G[φ](x) := −εh ln

[∫

RN

e−
hL(x,v)+φ(x+hv)

εh dv

]
,

and

Ḡ[φ](x) := −εh ln

[∫

RN

e−
hL(x−hv,v)+φ(x−hv)

εh dv

]
.

Denote by φε,h the solution of G[φε,h] = φε,h + λε,h, and by φ̄ε,h the

solution of Ḡ[φε,h] = φ̄ε,h + λε,h. Let

θε,h(x) = e−
φ̄

ε,h
(x)+φ

ε,h
(x)

ε h

By adding a suitable constant to φε,h or φ̄ε,h, we can assume that θε,h(x) is

a probability density on T
N . From D. Gomes and E. Valdinoci, it is known

that the probability measure on T
N × R

N

µε,h(x, v) = θε,h(x) e−
hL(x,v)+φε,h(x+hv)−φε,h(x)−λε,h

εh ,

is a solution to the entropy penalized Mather problem:

min
Mh

{∫

TN×RN

L(x, v)dµ(x, v) + εS[µ]

}
,

where the entropy S is given by

S[µ] =

∫

TN×RN

µ(x, v) ln
µ(x, v)∫

RN µ(x,w)dw
dxdv,

and

Mh :=

{
µ ∈ M;

∫

TN×RN

ϕ(x + hv) − ϕ(x)dµ = 0,∀ϕ ∈ C(TN )

}
. (1)

São Paulo J.Math.Sci. 2, 1 (2008), 21–28



Correlation for the Stochastic Process associated to the Entropy Penalized Method 23

Here M denotes the set of probability densities on T
N ×R

N and we will
call µ ∈ Mh a holonomic probability measure.

We will be interested in measures that minimize the functional bellow
(under the holonomic constrain)

∫

TN×RN

L(x, v)dµ(x, v) + εS[µ]. (2)

Note that, for any probability µ(x, v) by concavity of ln implies

−S[µ] =

∫

TN×RN

µ(x, v) ln

∫
RN µ(x,w)dw

µ(x, v)
dx dv ≤

ln

∫

TN×RN

µ(x, v)

∫
RN µ(x,w)dw

µ(x, v)
dx dv = 0.

This is the entropy penalized version of the discrete time Aubry-Mather
problem, see [4], where we look for probability measures µ ∈ Mh that
minimize the action ∫

TN×RN

L(x, v)dµ(x, v) (3)

Definition 1: The forward (non-normalized) Perron operator L is defined

x → ϕ(x) ⇒ x → L (ϕ) (x) =

∫
e−

L(x,v)

ε ϕ(x + h v) d v,

In [6] it is shown that L has a unique eigenfunction e−
φε,h

h ε with eigenvalue

e−
λε,h

h ε

Definition 2: The backward operator N is given by

x → ϕ(x) ⇒ x → N (ϕ) (x) =

∫
e−

L(x−hv,v)

ε ϕ(x − h v) d v,

In [6] it is shown that N has a unique eigenfunction e−
φ̄

ε,h

h ε with eigen-

value e−
λε,h

h ε

Definition 3: The operator

g(x) → F(g) (x) =

∫
e−

hL(x,v)+φε,h(x+hv)−φε,h(x)−λε,h

εh g(x + hv) dv,

is the normalized forward Perron operator.
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From [6] we have that given a continuous function g : T
n → R, then

Fm(g) converges to the unique eigenfunction k as m → ∞. We show in
this paper that for ε and h fixed, the convergence is exponentially fast.

Our notation:

θ = θε,h(x) = e−
φ̄

ε,h
(x)+φ

ε,h
(x)

ε h ,

γ(x, v) = γε,h(x, v) = e−
hL(x,v)+φε,h(x+hv)−φε,h(x)−λε,h

εh ,

in such way that µε,h = θε,h(x)γε,h(x, v).

2. Reversed Markov Process and Adjoint Operator

In this section we define the reversed Markov process and compute the
adjoint of F in L2(θ). We assume h = 1 from now on.

We can consider the stationary forward Markovian process Xn according
to the initial probability θ(x) and transition γ(x, v). For example

P (X0 ∈ A0) =

∫

x∈Tn∩A0

θ(x)dx,

P (X0 ∈ A0,X1 ∈ A1) =

∫

x∈Tn∩A0, (x+v)∈A1

θ(x)γ(x, v) dx dv,

and so on. Define the backward transfer operator F∗ acting on continuous
functions f(x) by

F∗ (f) (x) =

∫
θ(x − v) γ(x − v, v)

θ(x)
f(x − v) dv.

The backward transition kernel is given by

Q(x, v) =
θ(x − v) γ(x − v, v)

θ(x)
.

The fact that for any x we have
∫

Q(x, v) dv = 1 follows from Theorem 32
in [6]. We will show in Corollary 1 that θ is an invariant measure for the
process with transition kernel Q, more precisely, that∫

gdθ =

∫
F∗(g)dθ,

for any g ∈ L2(dθ).

Theorem 1. F∗ is the adjoint of F in L2(θ), that is for all f, g ∈ L2(θ)
then ∫

f(x)Fg(x)θ(x)dx =

∫
g(x)F∗f(x)θ(x)dx.
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Proof. Consider f, g ∈ L2(θ), then

∫
g(x) [F∗(f) (x) ] θ(x)dx =

=

∫
g(x) [

∫
θ(x − v) γ(x − v, v)

θ(x)
f(x − v) dv ] θ(x) dx

=

∫
g(x) [

∫
θ(x − v) γ(x − v, v) f(x − v) dv ] dx

=

∫
[

∫
[g(x) θ(x − v) γ(x − v, v) f(x − v) ] dx ] dv

=

∫
[

∫
g(x + v) θ(x) γ(x, v) f(x) dx ] dv

=

∫
f(x) [

∫
γ(x, v) g(x + v) dv ] θ(x) dx

=

∫
f(x) [

∫
e−

L(x,v)+φε,1(x+v)−φε,1(x)−λε,1

ε g(x + v) dv ] θ(x) dx

=

∫
f(x) [F(g) (x) ] θ(x) dx,

where we use above the change of coordinates x → x− v and the fact that
µ is holonomic. �

Corollary 1. Consider the inner product 〈·, ·〉 in L2(θ). Then F leaves
invariant the orthogonal space to the constant functions: {g | 〈g, 1〉 =∫

g 1 dθ = 0}. Furthermore
∫

gdθ =

∫
F∗(g)dθ.

Proof. Note that F(1) = 1, therefore
∫

g1dθ =

∫
gF(1)dθ =

∫
F∗(g)dθ.

Thus if
∫

g1dθ = 0 it follows
∫
F∗(g)dθ = 0. �

3. Spectral gap, exponential convergence and decay of corre-
lations

From [6] it is known that L has a unique (normalized) eigenfunction

e−
φ

ε,h

h ε corresponding to the largest eigenvalue e−
λ

ε,h

h ε , in the next theorem
we prove the this eigenvalue is separated from the rest of the spectrum.
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Theorem 2. The largest eigenvalue of L is at a positive distance from the
rest of the spectrum.

Proof. We will prove the result for the normalized operator

g(x) → F(g) (x) =

∫
e−

hL(x,v)+φ
ε,h

(x+hv)−φ
ε,h

(x)−λ
ε,h

εh g(x + h v) dv.

Recall from [6] that the functions φε,h(x) and φ̄ε,h(x) are differentiable. In
this way we consider a new Lagrangian (adding φε,h(x+hv)−φε,h(x)−λε,h)
in such way L = F . We also assume ε = 1 and h = 1 from now on.

Therefore,

g(x) → F(g) (x) =

∫
e−L(x,v) g(x + v) dv,

the eigenvalue is 1, and, by the results in [6], the corresponding eigenspace
is one-dimensional and is generated by the constant functions.

Suppose there exist a sequence of fp ∈ L2(θ), p ∈ N. such that

F(fp) = λp(fp),

〈fp, 1〉 = 0, λp → 1 and ||fp|| = 1. If the operator is compact, then the
theorem follows from the classical argument: through a subsequence fp →
f , and since λp → 1 we have F(f) = f . Furthermore, since 〈fp, 1〉 = 0,
it follows 〈f, 1〉 = 0, which is a contradiction. Therefore we proceed to
establish the compactness of the operator F .

To establish compactness, consider g ∈ L2(θ). We claim that f = F(g)

is in the Sobolev space H1 (see [3] for definition and properties). Indeed,
for a fixed x, we will compute the derivative of f . Integrating by parts we
have

d

dx
f(x) =

d

dx
(F(g) (x)) =

=

∫
( [

d

dx
g(x + v)] e−L(x,v) − L(x, v) [

d

dx
e−L(x,v) ] g(x + v) ) dv

=

∫
( [

d

dv
g(x + v) ] e−L(x,v) − L(x, v) [

d

dx
e−L(x,v) ] g(x + v) ) dv

=

∫
( [

d

dv
e−L(x,v) ] g(x + v) − L(x, v) [

d

dx
e−L(x,v) ] g(x + v) ) dv

=

∫
( [

d

dv
e−L(x,v) ] − L(x, v) [

d

dx
e−L(x,v) ] ) g(x + v) dv.

From the hypothesis about L, if g ∈ L2(θ), then indeed d
dx

f is also in L2(θ)

(with the above derivative).
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Note that, for v uniformly in a bounded set
∥∥∥∥

d

dx
f

∥∥∥∥
2

≤
∥∥∥∥

d

dx
f

∥∥∥∥
∞

≤
∥∥∥∥ [

d

dv
e−L(x,v) ] − L(x, v) [

d

dx
e−L(x,v) ]

∥∥∥∥
2

‖g‖2.

Therefore, f is in the Sobolev space H1.

By iterating the procedure described above, we have that

gj = F j(g) ∈ Hj .

It is known that if j > n
2
, where n is the dimension of the torus T

n, then

gj is continuous Hölder continuous[3]. Thus the operator F is compact and
gj is differentiable for a much more larger j. From the reasoning described
before, fp → f , and F(f) = f , 〈f, 1〉 = 0 and f is differentiable. It is easy
to see that the modulus of concavity of f is bounded (the iteration by F
does not decrease it). We can add a constant to f and by linearity of F we
also get a new fixed point for F (note that F(1) = 1). Therefore, we can

assume f = e−g for some g.

In this way, we obtain a contradiction with the uniqueness in Theorem
26 in[6]. �

Suppose
∫

g(x) θ(x)dx = 0. For ε, h fixed, then it follows from above
that Fm(g) → 0 with exponential velocity (according to the spectral gap).

Consider the backward stationary Markov process Yn according to the
transition Q(x, v) and initial probability θ as above.

Theorem 3. Given f(x), g(x) with
∫

f(x) θ(x)dx =
∫

g(x) θ(x)dx = 0, it
follows ∫

g(Y0) f(Yn) dP → 0,

with exponential velocity.

Proof. Note that
∫

g(Y0) f(Y1) dP =

∫
g(x) (

∫
Q(x, v) f(x − v) dv) θ(x) dx =

∫
g(x) [F∗(f) (x) ] θ(x)dx =

∫
f(x) [F(g) (x) ] θ(x) dx.

In the same way, for any n
∫

g(Y0) f(Yn) dP =

∫
f(x) [Fn(g) (x) ] θ(x) dx.

The exponential decay of correlation follows from this. �
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Theorem 4. Let f(x), g(x) ∈ L2(θ) be such that
∫

f(x) θ(x)dx =∫
g(x)θ(x)dx = 0. Then

∫
g(X0) f(Xn) dP → 0,

with exponential velocity.

Proof. Now, for analyzing the decay of the forward system, Xn, with tran-
sition γ(x, v), we have to consider the backwark operator F∗, use the fact

that its exponential convergent, that is (F∗)n(g) → 0, if
∫

g(x) θ(x)dx = 0,
and the result follows in the same way. �
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