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Abstract. In this paper we use the Wigner transform to study proper-
ties of solutions to the Schrödinger equation. In particular, we present
an elementary proof of the time decay inequalities for the free particle
and harmonic oscillator. Furthermore, we estimate certain localized
integral quantities in phase space, involving the Wigner transform of
solutions to the Schrödinger equation.

1. Introduction

The Wigner transform has been used by several authors to study the
Schrödinger equation: as a fundamental tool to study the semiclassical
limit [4], [5] and, by using multiplier techniques [3], to prove dispersive-
type estimates. See also [1]. In this paper we establish certain phase space
localization-type estimates for the Wigner transform of solutions to the
Schrödinger equation.

This paper has the following structure. Firstly, we review the basic
properties of the Wigner transform and obtain the transport equation that
results from its application to the Schrödinger equation. Then, we discuss
some explicit examples for which the Wigner transform yields elementary
proofs of time-decay estimates for the fundamental solution of the corre-
sponding Schrödinger equation: the free particle and the harmonic oscil-
lator. In section 4 we develop an abstract approach to the study of the
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Wigner equation and prove estimates for the evolution of certain integral
quantities that involve the Wigner transform of solutions of the Schrödinger
equation, localized in phase space by cutoff functions transported by the
corresponding Hamiltonian flow.

2. A review of the Wigner transform

In this section we provide a fast overview of the basic properties of the
Wigner transform and its connection to the Schrödinger equation.

2.1. Definitions and basic properties. A thorough and careful presen-
tation of all these facts can be found in [2]. The Wigner transform W [f, g]
of two functions f, g ∈ S(Rn) is defined by the integral formula

W [f, g](x, ξ) =

∫

Rn

e−i ξ·y f
(
x+

y

2

)
ḡ

(
x− y

2

)
dy, (1)

for (x, ξ) ∈ R
n × R

n. This transform is clearly a continuous, sesquilinear

map W : S(Rn) × S(Rn) → S(R2n). By considering it as a linear operator
acting on tensor products f⊗ ḡ - simply a measure preserving linear change
of variables followed by the Fourier transform in one of the variables only -
this definition is naturally extended to a map S ′(Rn)× S ′(Rn) → S ′(R2n),

whose restriction to L2(Rn)×L2(Rn) maps into L2(R2n)∩C0(R
2n). From

Parseval’s identity for the Fourier transform one immediately obtains the
so called Moyal identity

〈W [f1, g1],W [f2, g2]〉 = (2π)n〈f1, f2〉〈g1, g2〉, (2)

which implies

‖W [f, g]‖L2 = (2π)n/2‖f‖L2‖g‖L2 ,

whereas by applying Hölder’s inequality to (1) one gets

‖W [f, g]‖L∞(R2n) ≤ 2n‖f‖L2(Rn)‖g‖L2(Rn).

The Wigner transform applied to the Fourier transforms of f and g
satisfies the property

W [f̂ , ĝ](x, ξ) = (2π)n W [f, g](−ξ, x),
where our definitions of the Fourier transform, and its inverse, are

f̂(ξ) =

∫
e−iξ·xf(x) dx, f(x) =

1

(2π)n

∫
eiξ·xf̂(ξ) dξ.

An alternative representation for W , in terms of f̂ and ĝ, is therefore given
by

W [f, g](x, ξ) =
1

(2π)n

∫
eip·x f̂

(
ξ +

p

2

)
¯̂g
(
ξ − p

2

)
dp.
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It is also clear that W [f, g] = W [g, f ], so if f = g the Wigner transform
W [f, f ] is a real valued function which we denote simply by W [f ].

An important property is the following: integrating out either the posi-
tion or momentum yields the marginal probability distribution of the other
variable

|f(x)|2 =
1

(2π)n

∫

Rn

W [f ](x, ξ) dξ, and |f̂(ξ)|2 =

∫

Rn

W [f ](x, ξ) dx.

From any of these two marginal distributions, one obtains

‖f‖2

L2(Rn)
=

1

(2π)n

∫ ∫

R2n

W [f ](x, ξ) dξdx,

while from Moyal’s identity (2)

‖f‖2

L2(Rn)
=

1

(2π)n/2
‖W [f ]‖L2(R2n).

2.2. Schrödinger equation. Let ψ be a solution to the Schrödinger equa-
tion

i∂tψ = −1

2
∆ψ + V ψ, (3)

with V : R
n → R a real valued potential. Throughout the paper we assume

that V has the form

V (x) = P2(x) + b(x), x ∈ R
n,

where P2 is a polynomial of degree ≤ 2 and b ∈ S(Rn) is a perturbation.

Define κ by the formula

κ(x, ξ) =
i

(2π)n

∫

Rn

[
V

(
x+

y

2

)
− V

(
x− y

2

)]
e−i ξ·y dy (4)

=
i

πn

[
V̂ (2ξ)e2iξ·x − V̂ (−2ξ)e−2iξ·x

]
, (5)

where, if necessary, the Fourier transform is regarded in the sense of tem-
pered distributions, so that

κ ∗ξ W (x, ξ) =

∫

Rn

κ(x, η)W (x, ξ − η) dη

= i

∫

Rn

[
V

(
x+

y

2

)
− V

(
x− y

2

)]
ψ

(
x+

y

2

)
ψ̄

(
x− y

2

)
e−i ξ·y dy. (6)

Then W = W [ψ] satisfies the Wigner equation:

∂tW = −ξ · ∂xW − κ ∗ξ W. (7)

Introducing the operator A = −ξ · ∂x − κ∗ξ the Wigner equation (7) can
then be written in compact form as ∂tW = AW .
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The following lemma then holds:

Lemma 1. For any φ ∈ S(R2n) we have∫
κ ∗ξ φ dx dξ = 0. (8)

Proof. Using (5) we can write∫
κ ∗ξ φ dx dξ =

=
i

πn

∫∫∫ [
V̂ (2η)e2iη·x − V̂ (−2η)e−2iη·x

]
φ(x, ξ − η) dη dξ dx

=
i

πn

∫ (
V̂ (2η)

∫
F1φ (−2η, ξ) dξ − V̂ (−2η)

∫
F1φ (2η, ξ) dξ

)
dη,

where F1φ means the Fourier transform in the first variable of φ, only. And
obviously, this last integral is zero. �

This immediately yields the next result, which characterizes the action
of the operator A on test functions, and will be useful in Section 4.

Proposition 1. For all φ ∈ S(R2n)∫
Aφ(x, ξ) dx dξ = 0.

Furthermore, A is skew-symmetric, that is,

〈φ,Aψ〉 = −〈Aφ,ψ〉,
for all φ,ψ ∈ S(R2n).

Finally, the following quantities are conserved by the time evolution (7):
∫

R2n

Wdξdx,

∫

R2n

W 2dξdx,

∫

R2n

( |ξ|2
2

+ V (x)

)
Wdξdx. (9)

The first two, correspond to the conservation of ‖ψ‖2, whereas the third
means that the average total energy stays constant with the flow.

3. Exact time decay estimates

In this section, we present two examples where explicit computations are
possible: the free particle and the harmonic oscillator. In these, one can
use the Wigner transform to establish elementary proofs of well known time
decay inequalities for (3) since the Wigner equation (7) coincides precisely
with the classical transport equation

∂tW = −ξ · ∂xW + ∂xV · ∂ξW. (10)
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Proposition 2. Let ψ be the fundamental solution to the Schrödinger equa-
tion (3), with V (x) = αx2, with α = 0,±1. Then, for t > 0,

‖ψ(·, t)‖L∞

x
≤





1

(2πt)n/2
if α = 0,

1

(2π| sin t|)n/2
if α = 1,

1

(2π| sinh t|)n/2
if α = −1.

Proof. The Wigner equation for V (x) = αx2 is

Wt + ξ · ∂xW − αx · ∂ξW = 0. (11)

For the case α = 0, the free particle, we have the explicit representation
formula for W :

W (x, ξ, t) = W (x− ξt, ξ, 0).

This means that, for any test function φ,∫
φ(x, ξ)W (x, ξ, t) dx dξ =

∫
φ(x+ ξt, ξ)W (x, ξ, 0) dx dξ.

In the case α = +1 define

M(t) =

[
cos t sin t
− sin t cos t

]
, (12)

while, for α = −1, define

M(t) =

[
cosh t sinh t
− sinh t cosh t

]
. (13)

For these two cases, the solution satisfies
∫
φ(x, ξ)W (x, ξ, t) dx dξ =

∫
φ

(
M(t)

[
x
ξ

])
W (x, ξ, 0) dx dξ. (14)

Now, notice that if the initial data is given by f(x) = δ(x− x0) then we
have

W [f ](x, ξ) = δ(x− x0) ⊗ 1(ξ), (15)

where by 1(ξ) we mean the constant unit function in the ξ variable.
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Therefore, if ψ is the fundamental solution to the Schrödinger equation,
for the case α = 0 observe that, for any φ ∈ Cc(R

n), we get∫
φ(x)|ψ(x, t)|2dx =

=
1

(2π)n

∫
φ(x)

( ∫
W dξ

)
dx =

1

(2π)n

∫
φ(x)W (ξ, x, t) dxdξ

=
1

(2π)n

∫
φ(x+ ξt)δ(x) dxdξ =

1

(2π)n

∫
φ(ξt) dξ ≤ ‖φ‖L1

(2πt)n
,

therefore yielding

‖ψ(·, t)‖L∞

x
≤ 1

(2πt)n/2
.

For the case α = +1 we obtain, analogously,

1

(2π)n

∫
φ(x cos t+ ξ sin t)δ(x)dxdξ =

=
1

(2π)n

∫
φ(ξ sin t)dξ ≤ ‖φ‖L1

(2π| sin t|)n ,

whereas for α = −1 we have

1

(2π)n

∫
φ(x cosh t+ ξ sinh t)δ(x)dxdξ =

=
1

(2π)n

∫
φ(ξ sinh t)dξ ≤ ‖φ‖L1

(2π| sinh t|)n ,

from which we conclude that ‖ψ‖L∞

x
is bounded by 1

(2π| sin t|)n/2
and

1

(2π| sinh t|)n/2
, respectively for α = +1 and α = −1 �

4. Estimates for the Wigner equation

In this section we develop an abstract approach to the Wigner equation
(7), and prove some estimates for phase space integral quantities associated
to multiplication operators which localize the Wigner transform along the
corresponding classical Hamiltonian evolution.

4.1. Abstract approach to the Wigner equation. Recall that if an
operator B is differentiable, then there exists a linear operator Bt, the
derivative of B with respect to the parameter t, such that

d

dt
(Bψ) = Btψ +Bψt.
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Proposition 3. Let B and Ã be two operators, with BW having enough
decay at infinity, satisfying

Bt + [B, Ã] = 0.

Then
d

dt

∫
BW =

∫
[B,A− Ã]W,

and
d

dt

∫
|BW |2 = 2Re (〈BW, [B,A− Ã]W 〉).

Proof. For the first identity, observe that

d

dt

∫
BW =

∫
BtW +BAW =

∫
BtW +BAW −ABW =

∫
[B,A− Ã]W,

while, for the second, we have

d

dt

∫
|BW |2 =〈BW,BAW 〉 + 〈BAW,BW 〉 + 〈BW,BtW 〉 + 〈BtW,BW 〉

=〈BW, [B,A]W 〉 + 〈BW,ABW 〉 + 〈[B,A]W,BW 〉
+ 〈ABW,BW 〉 − 〈BW, [B, Ã]W 〉 − 〈[B, Ã]W,BW 〉

=〈BW, [B,A− Ã]W 〉 + 〈[B,A− Ã]W,BW 〉.
�

As Corollaries of these two indentities we have

Corollary 1. Under the same conditions as above∣∣∣∣
d

dt
‖BW‖L2

∣∣∣∣ ≤ ‖[B,A− Ã]W‖L2 .

Corollary 2. Let B be a constant operator that commutes with A. Then

d

dt

∫
BW = 0

d

dt

∫
|BW |2 = 0.

In particular if B = Ak we have d
dt

∫
AkW = 0, and d

dt

∫
|AkW |2 = 0.

Proof. Just make Ã = 0. �

In the case k = 0, the last corollary yields

d

dt

∫
W =

d

dt

∫
W 2 = 0.
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4.2. Commutator equations. Let us consider the classical approxima-

tion Ã to A, that is

Ã = −ξ · ∂x + ∂xV · ∂ξ. (16)

An elementary computation shows that Ã satisfies the properties that are
stated for the Wigner operator A in Proposition 1. Let B be a differential

operator of order m. Since Ã is a first-order differential operator, then

[B, Ã] has order at most m.

Suppose B satisfies Bt + [B, Ã] = 0. In the particular case of multiplica-
tion operators Bψ = φψ this condition is satisfied if φ is a solution to the
classical transport equation

φt = Ãφ = −ξ · ∂xφ+ ∂xV · ∂ξφ. (17)

Consider the transport equation (17). The explicit representation for-
mula for the solutions is

φ(x, ξ, t) = φ(Θ−1

t (x, ξ), 0),

where Θt is the flow generated by the Hamiltonian equations

ẋ = ξ ξ̇ = −∂xV. (18)

In particular, this implies that all Lp norms of φ are conserved. Further-
more, the smoothness of the solutions can be estimated from the initial
data and the flow map Θ.

4.3. Estimates for multiplication operators. Now we address the
problem of estimating the time-evolution of the norms of multiplication
operators acting on the Wigner transform. From now on we consider φ to

be a solution of the classical transport equation φt = Ãφ. If the Wigner

transform turns out to be also a solution to Wt = ÃW , i.e. if the Wigner
equation (7) reduces to (10) then

d

dt

∫
|W − φ|2 = −2

d

dt

∫
φW = 0,

and
d

dt

∫
φ2W 2 = 0.

Unfortunately, this only happens for the (very special) cases of the har-
monic oscillator or the free particle considered in the previous section. In
general these identities are false, and, therefore, one would like to obtain

quantitative estimates both for d
dt

∫
φW , which would control the evolution

of the L2 norm of the difference, and for d
dt

∫
φ2W 2, which is helpful in

São Paulo J.Math.Sci. 2, 1 (2008), 85–97
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tracking the localization of the Wigner transform, when it evolves accord-
ing to (7) but as seen from a “window” with Hamiltonian evolution, given
by φ.

Theorem 1. Let B be a multiplication operator BW = φW , with φ ∈
S(R2n), such that Bt + [B, Ã] = 0, i.e. satisfying (17). Then:

d

dt

∫
φW =

∫
−φ k ∗ξ W +W (∂xV · ∂ξφ). (19)

Furthermore, the right-hand side of (19) is bounded by∣∣∣∣
∫
φ k ∗ξ W −W (∂xV · ∂ξφ)

∣∣∣∣ ≤ Cb‖W‖L2‖∂2

ξξφ‖L2 ,

where the constant Cb depends on the perturbation b(x) of the basic qua-
dratic potential.

Proof. From Proposition 3 and Lemma 1 one easily obtains (19).

Then observe that∫∫
φ k ∗ξ W −W (∂xV · ∂ξφ) dξ dx

=
i

(2π)n

∫∫∫∫ [
V

(
x+

y

2

)
− V

(
x− y

2

)

−y · ∂xV (x)] e−i(ξ−η)·yW (x, η)φ(x, ξ) dξ dy dη dx

=
i

(2π)n

∫∫∫∫ ∫
1

0

∫
1

0

θ

4

∑

j,k

[
∂2

xj xk
V

(
x+

θδy

2

)

− ∂2
xj xk

V

(
x− θδy

2

)]
yj yke

−i(ξ−η)·y W (x, η)φ(x, ξ) dδ dθ dξ dy dη dx

= − i

(2π)n

∫∫∫∫ ∫
1

0

∫
1

0

θ

4

∑

j,k

[
∂2

xj xk
V

(
x+

θδy

2

)

− ∂2
xj xk

V

(
x− θδy

2

)]
e−i(ξ−η)·y W (x, η) ∂2

ξj ξk
φ(x, ξ) dδ dθ dξ dy dη dx.

Denote by

gj,k(x, z) = ∂2
xj xk

V (x+ z)−∂2
xj xk

V (x− z) = ∂2
xj xk

b(x+ z)−∂2
xj xk

b(x− z).
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Then, the right-hand side term of the previous identity can be written as

− i

(2π)n

∫∫∫∫ ∫
1

0

∫
1

0

θ

4

∑

j,k

gj,k

(
x,
θδy

2

)
e−i(ξ−η)·y

W (x, η) ∂2

ξj ξk
φ(x, ξ) dδ dθ dξ dy dη dx

= − i

(2π)n

∫∫∫ ∫
1

0

∫
1

0

θ

4

∑

j,k

(
θδ

2

)−n

Fz

(
gj,k

) (
x,

2(ξ − η)

θδ

)

W (x, η) ∂2

ξj ξk
φ(x, ξ) dδ dθ dξ dη dx

=

∫∫ ∑

j,k

W̃j,k(x, ξ) ∂
2

ξj ξk
φ(x, ξ) dξdx,

where

W̃j,k(x, ξ) =

− i

(2π)n

∫ ∫
1

0

∫
1

0

(
θδ

2

)−n

Fz

(
gj,k

) (
x,

2(ξ − η)

θδ

)
W (x, η)dδdθdη,

and Fz denotes the Fourier transform in the z variable,

Fz

(
gj,k

)
(x, ζ) = ζjζk

[
b̂(ζ)eix·ζ − b̂(−ζ)e−ix·ζ].

Since
(

θδ
2

)−n Fz

(
gj,k

) (
x, 2ξ

θδ

)
is bounded uniformly in L1

ξ , for all x, we

obtain ‖W̃‖L2 ≤ C‖W‖L2, and then the estimate follows. �

Theorem 2. Under the same hypotheses as in Theorem 1,

‖[B,A− Ã]W‖L2 ≤‖(∂xV · ∂ξφ+ κ ∗ξ φ)W‖L2

+ ‖(κ ∗ξ W )φ+ (κ ∗ξ φ)W − κ ∗ξ (φW )‖L2 .

Furthermore,

‖(κ ∗ξ W )φ+ (κ ∗ξ φ)W − κ ∗ξ (φW )‖L2

≤ C
(∥∥∥∂xb

(
x+

y

2

)
+ ∂xb

(
x− y

2

)
− 2∂xb(x)

∥∥∥
L∞

x,y

‖Fξ(∂ξφ)‖L1
z(L2

x)

+ ‖Fξ(∂
2

ξφ)‖L1
z(L∞

x,y)

)
‖W‖L2 ,

and
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‖(∂xV · ∂ξφ+ κ ∗ξ φ)W‖ ≤ C‖∂2

ξξφ‖L2‖W‖L2 ,

where Fξ is the partial Fourier transform in the ξ variable only, and z is
the dual variable to ξ.

Proof. First note that A− Ã = −κ ∗ξ −∂xV · ∂ξ. Then

[B,A− Ã]W = φ(A− Ã)W − (A− Ã)(φW ) =

= (∂xV · ∂ξφ)W − (κ ∗ξ W )φ+ κ ∗ξ (φW ),

and so

‖[B,A− Ã]W‖L2 ≤‖(∂xV · ∂ξφ)W + (κ ∗ξ φ)W‖L2

+ ‖(κ ∗ξ W )φ+ (κ ∗ξ φ)W − κ ∗ξ (φW )‖L2 .

Note that, by using a partial Fourier transform in the variable ξ, we have

‖(κ ∗ξ W )φ+ (κ ∗ξ φ)W − κ ∗ξ (φW )‖L2

x,ξ

=
1

(2π)
3n

2

‖(κ̂Ŵ ) ∗y φ̂+ (κ̂φ̂) ∗y Ŵ − κ̂(φ̂ ∗y Ŵ )‖L2
x,y

where the variable y is the dual variable corresponding to ξ. The con-
volutions on the right-hand side of the previous identity can be written
as ∫

Rn

[
κ̂(x, y − z)φ̂(x, z)Ŵ (x, y − z) + κ̂(x, z)φ̂(x, z)Ŵ (x, y − z)

−κ̂(x, y)φ̂(x, z)Ŵ (x, y − z)
]
dz

=

∫

Rn

[κ̂(x, y − z) − κ̂(x, y) + κ̂(x, z)] φ̂(x, z)Ŵ (x, y − z)dz.

Recall that κ̂(x, y) = i
(
V (x− y

2
) − V (x+ y

2
)
)
, therefore

κ̂(x, y − z) − κ̂(x, y) = i
(
∂xV (x+

y

2
) · z

2
+ ∂xV (x− y

2
) · z

2

)
+O(|z|2),

and
κ̂(x, z) = −i∂xV (x) · z +O(|z|2).
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Note that the O(|z|2) error term is uniform in x, y. Therefore,

‖(κ ∗ξ W )φ+ (κ ∗ξ φ)W − κ ∗ξ (φW )‖L2

x,ξ

(20)

. ‖
∫

Rn

i[∂xV (x+ y
2
) + ∂xV (x− y

2
) − 2∂xV (x)]

2

· z φ̂(x, z)Ŵ (x, y − z)dz‖L2
x,y

+

∥∥∥∥
∫

Rn

O(|z|2)φ̂(x, z)Ŵ (x, y − z)dz

∥∥∥∥
L2

x,y

.

First, observe that

∂xV
(
x+

y

2

)
+∂xV

(
x− y

2

)
−2∂xV (x) = ∂xb

(
x+

y

2

)
+∂xb

(
x− y

2

)
−2∂xb(x),

so that using the integral version of the Minkowski inequality and Plancherel

‖
∫

Rn

i[∂xV (x+ y
2
) + ∂xV (x− y

2
) − 2∂xV (x)]

2

· z φ̂(x, z)Ŵ (x, y − z)dz‖L2
x,y

≤ ‖
∫

Rn

‖∂xb
(
x+

y

2

)
+ ∂xb

(
x− y

2

)
− 2∂xb(x)‖L∞

y

· ‖Ŵ (x, y)‖L2
y
|∂̂ξφ(x, z)| dz‖L2

x

.

∥∥∥∂xb
(
x+

y

2

)
+ ∂xb

(
x− y

2

)
− 2∂xb(x)

∥∥∥
L∞

x,y

· ‖W‖L2

x,ξ

∫

Rn

‖∂̂ξφ(x, z)‖L2
x
dz.

As for the second term in (20), we denote by χ(x, y, z) = O(|z|2)φ̂(x, z)
and again use Minkowski and Plancherel. Then

‖
∫

Rn

O(|z|2)φ̂(x, z)Ŵ (x, y − z)dz‖L2
x,y

≤
∫

Rn

‖χ(x, y, z)Ŵ (x, y − z)‖L2
x,y
dz

≤
∫

Rn

‖χ(x, y, z)‖L∞

x,y
‖Ŵ (x, y)‖L2

x,y
dz

≤ C‖χ(x, y, z)‖L1
z(L∞

x,y)‖W (x, ξ)‖L2

x,ξ

.
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Thus,∥∥∥∥
∫

Rn

O(|z|2)φ̂(x, z)Ŵ (x, y − z)dz

∥∥∥∥
L2

x,y

≤ C‖∂̂2

ξφ‖L1
z(L∞

x,y)‖W‖L2

x,ξ

.

To prove the last estimate of the theorem, observe that

κ ∗ξ φ =
i

(2π)n

∫

R2n

[
V (x+

y

2
) − V (x− y

2
)
]
e−iη·yφ(x, ξ − η)dηdy

=
i

(2π)n

∫

R2n

∂xV (x) · ye−iη·yφ(x, ξ − η)dηdy

+
i

(2π)n

∫

R2n

χ(x, y)e−iη·yφ(x, ξ − η)dηdy,

where |χ(x, y)| ≤ C|y|2. Note that

i

(2π)n

∫

R2n

∂xV (x) · ye−iη·yφ(x, ξ − η)dηdy = −∂xV (x) · ∂ξφ(x, ξ).

Therefore it suffices to estimate the last term. Again using Plancherel, we
have

‖
∫

R2n

χ(x, y)e−iη·yφ(x, ξ − η)dηdy‖L2

x,ξ

=

∥∥∥∥
∫

Rn

χ(x, y)

|y|2 e−iξ·y|y|2φ̂(x,−y)dy
∥∥∥∥

L2

x,ξ

= (2π)(n/2)

∥∥∥∥
χ(x, y)

|y|2 |y|2φ̂(x,−y)
∥∥∥∥

L2
x,y

≤ C‖∂2
ξξφ‖L2

x,ξ

.

�

References

[1] T. Colin, “Smoothing effects for dispersive equations via a generalized Wigner
transform”, SIAM Journal on Mathematical Analysis 25, 6, (1994), pp. 1622-
1641.

[2] G. Folland, Harmonic Analysis in Phase Space, Princeton University Press,
Princeton, N.J., 1989.

[3] I. Gasser, P.A. Markowich and B. Perthame, “Dispersion and moment lemmas
revisited”, Journal of Differential Equations 156, (1999), pp. 254-281.

[4] P. Gérard, P.A. Markowich, N.J. Mauser and F. Poupaud, “Homogenization lim-
its and Wigner transforms”, Communications on Pure and Applied Mathematics
50, 4, (1997), pp. 323-379.

[5] P.L. Lions and T. Paul, “Sur les mesures de Wigner”, Revista Matemática
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