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Abstract. We describe how the multifractal analysis of dynamical sys-
tems can be used to compute the Hausdorff dimension of a large class
of sets in the real line, defined in terms of relations between the fre-
quencies of digits in some integer base. As an illustration we compute
the Hausdorff dimension of a class of sets in [0,1] that are defined in
terms of linear or quadratic relations between the frequencies of dig-
its. Although these relations are only prototypes of more general ones,
the computations follow the same procedure and are already rather
involved.

1. Introduction

Given an integer m > 1, for each number x ∈ [0, 1] we denote by
0.x1x2 · · · a base-m representation of x. It is easy to see that the rep-
resentation is unique except for countably many points. For each k ∈
{0, . . . ,m − 1}, x ∈ [0, 1], and n ∈ N we set

τk(x, n) = card {i ∈ {1, . . . , n} : xi = k},
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and

τk(x) = lim
n→∞

τk(x, n)

n
whenever the limit exists. The number τk(x) is called the frequency of the
digit k in the base-m representation of x. Consider the set

Fm(α0, . . . , αm−1) =
{

x ∈ [0, 1] : τk(x) = αk for k = 0, . . . ,m − 1
}

,

where αk ∈ [0, 1] for each k, and
∑m−1

k=0
αk = 1. Eggleston showed in [5]

that this set has Hausdorff dimension

dimHFm(α0, . . . , αm−1) = −
m−1
∑

k=0

αk logm αk (1)

(with the convention that 0 log 0 = 0). A related result was first obtained
by Besicovitch in [3] when m = 2. It follows immediately from (1) that
if αk ∈ (0, 1) for some k, then dimHFm(α0, . . . , αm−1) > 0, and thus the
set Fm(α0, . . . , αm−1) is nonempty and actually dense in [0, 1]. The work
of Eggleston was further generalized by Billingsley with a more unified
approach (see his book [4] for details and references). See also [2, 1] for the
discussion of more recent developments and for further references.

Our main aim is to illustrate how the theory of multifractal analysis of
dynamical systems can be used to compute the Hausdorff dimension of a
large class of sets in the real line. For definiteness, we consider sets in [0, 1]
that are defined in terms of general linear or quadratic relations between two
frequencies of digits (we note that in the case of the set Fm(α0, . . . , αm−1)
there are no relations between the frequencies). More precisely, we consider
a quadratic polynomial

Q(x, y) = ax2 + bxy + cy2 + dx + ey + f,

and given m > 2 we define the set

F =
{

x ∈ [0, 1] : Q(τ0(x), τ1(x)) = 0
}

.

It follows from a general approach based on the multifractal analysis of
dynamical systems, as described in [2], that the Hausdorff dimension of F
is given by

dimHF = −min

{

m−1
∑

k=0

αk logm αk : (α0, . . . , αm−1) ∈ G

}

, (2)

where

G =

{

(α0, . . . , αm−1) ∈ [0, 1]m : Q(α0, α1) = 0,
m−1
∑

k=0

αk = 1

}

.
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For simplicity of the exposition we always assume that b = 0, thus with the
polynomial Q already written in “normal form”. We note that the compu-
tations are already rather involved in this case. We consider separately the
linear case and the quadratic case, respectively in Sections 2 and 3. See also
the beginning of Section 3 for a related “geometric” discussion when b 6= 0.

2. The linear case

2.1. General formulas. When a = c = 0 and (d, e) 6= (0, 0) the relation
Q(x, y) = 0 describes a straight line. More concretely, Q(x, y) = dx+ey+f
and thus,

dimHF = −min

{

m−1
∑

k=0

αk logm αk : dα0 + eα1 + f = 0,

m−1
∑

k=0

αk = 1

}

. (3)

We have the following result.

Theorem 1. Assume that a = c = 0 and (d, e) 6= (0, 0). When F 6= ∅ we
have:

1. if de = 0 then setting κ = max{d, e},

dimHF =
f

κ
logm

−f

κ
− κ + f

κ
logm

κ + f

κ(m − 1)
;

2. if de 6= 0 then

dimHF = −min
{

K(α0) : α0,−A − Bα0 ∈ [0, 1]
}

, (4)

where A = f/e, B = d/e, and

K(α) = α logm α + (−A − Bα) logm(−A − Bα)

+ (1 − α + A + Bα) logm

1 − α + A + Bα

m − 2
.

(5)

Proof. Case d 6= 0, e = 0. Since F 6= ∅ we must have α0 = −f/d ∈ [0, 1],
and thus, by (3) we obtain

dimHF =
f

d
logm

−f

d
− min

m−1
∑

k=1

αk logm αk,

with the minimum taken over all α1, . . . , αm−1 ∈ [0, 1] such that
∑m−1

k=1
αk =

1− α0. Since the function x 7→ −x log x is strictly convex, the minimum is
attained only when α1 = · · · = αm−1 = (1 − α0)/(m − 1), and thus

dimHF =
f

d
logm

−f

d
− d + f

d
logm

d + f

d(m − 1)
.
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Case d = 0 and e 6= 0. Proceeding as above, since F 6= ∅ we must have
α1 = −f/e ∈ [0, 1], and thus,

dimHF =
f

e
logm

−f

e
− e + f

e
logm

e + f

e(m − 1)
.

Case de 6= 0. Note that

α1 = −A − Bα0. (6)

Using again the strict convexity of the function x 7→ −x log x, it follows
from (3) that dimHF = −minK(α0), with the minimum taken over all
α0 ∈ [0, 1] such that α0+α1 ∈ [0, 1]. The desired result follows from (6). �

To determine the minimum in (4) it helps to consider the derivative

K ′(α) = logm α − B logm(−A − Bα) + (B − 1) logm

1 + A + (B − 1)α

m − 2
.

The equation K ′(α0) = 0 is thus equivalent to

α0

(

1 + A + (B − 1)α0

m − 2

)B−1

= (−A − Bα0)
B . (7)

Furthermore

K ′′(α0) log m =
1

α0

+
(B − 1)2

1 + A + (B − 1)α0

+
B2

−A − Bα0

, (8)

and K ′′(α0) > 0 when the three denominators in (8) are in (0, 1), in which
case any solution α0 of the equation K ′(α0) = 0 is in fact the unique
solution. The remaining cases (corresponding to the boundary of [0, 1])
can be treated by direct substitution in (5) (for example, if A = 0, i.e.,
f = 0, then α0 = 0 and thus dimHF = log(m − 2)/ log m).

2.2. Examples. We now consider several values of B = d/e in order to
illustrate the variety of formulas for the Hausdorff dimension dimHF when
de 6= 0. This essentially amounts to solve equation (7). For example,
when B ∈ Q the problem is reduced to solve an algebraic equation. More
precisely, writing B = p/q with p ∈ Z, q ∈ N and (p, q) = 1, the degree D
of this equation is given by

D =







p if p > 0 and B ≥ 1,

q + 1 if p > 0 and B < 1,

|p| + q if p < 0.
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Example 1. Let B = 1. Then (7) yields α0 = −A/2. By (6) we must
have −A = α0 + α1 ∈ [0, 1] so that F 6= ∅. Therefore, α0 = α1 = −A/2
and

dimHF = A logm

−A

2
− (1 + A) logm

1 + A

m − 2
.

We now consider three examples that lead to quadratic equations.

Example 2. Let B = 2. Then (7) becomes

α0(1 + A + α0)

(m − 2)(A + 2α0)2
= 1. (9)

Setting

λ =
√

1 + A(2 + A)(9 − 4m), (10)

it follows from (9) that

α0 =
A(9 − 4m) + 1 ± λ

8m − 18
and α1 = − 1 ± λ

4m − 9
. (11)

Since 4m − 9 > 0, we must take the minus sign in (11). Furthermore, we
must have λ ≥ 1, and thus, by (10), −2 ≤ A ≤ 0. To verify that α0 ≥ 0,
we note that

λ ≤
√

1 + 2A(9 − 4m) + A2(9 − 4m)2 = 1 + A(9 − 4m).

Furthermore, since A ∈ [−2, 0] we can verify that α0 + α1 ≤ 1. Therefore,

dimHF = −K

(

−A

2
+

1 − λ

8m − 18

)

.

Example 3. Let B = −1. In this case (7) becomes

(m − 2)2α0(α0 − A) = (1 + A − 2α0)
2.

When m = 4 we obtain

α0 =
1

4
(1 + A)2 ≥ 0 and α1 =

1

4
(1 − A)2 ≥ 0.

So that F 6= ∅ we must have α0+α1 = (A2+1)/2 ≤ 1, and thus A ∈ [−1, 1].
In this case

dimHF = 1 − (1 − A)2

4
log2(1 − A) − (1 + A)2

4
log2(1 + A)

− 1 − A2

8
log2

1 − A2

4
.

If m ≥ 5 then λ =
√

A2m(m − 4) + 4 is real, and

α0 =
−4 + Am(m − 4) ± (m − 2)λ

2m(m − 4)
. (12)
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So that α0 ≥ 0 we must take the plus sign in (12). Therefore,

α1 =
−4 − Am(m − 4) + (m − 2)λ

2m(m − 4)
, α0 + α1 =

−4 + (m − 2)λ

m(m − 4)
.

In order that α0 + α1 ≤ 1 we must have A ∈ [−1, 1], in which case

dimHF = −K

(−4 + Am(m − 4) + (m − 2)λ

2m(m − 4)

)

. (13)

One can show that (13) also holds when m = 3.

Example 4. Let B = 1/2. Then (7) becomes

2α0(m − 2)1/2 = (−2A − α0)
1/2(2 + 2A − α0)

1/2.

Since α0 < −2A (or the second term in (5) wouldn’t be defined), we have

α0 = − 1 ± λ

4m − 9
, λ =

√

1 − 4A(1 + A)(4m − 9). (14)

So that α0 ≥ 0 we must take the plus sign in (14). Thus, we must have
λ ≤ 1 and A ∈ R \ (−1, 0). Moreover, so that α0 < −2A we must have
A > −1/(2(4m − 9)). Furthermore,

A ∈
(

−1

2
−

√
18 − 17m + 4m2

4m − 9
,−1

2
+

√
18 − 17m + 4m2

4m − 9

)

, (15)

so that λ ∈ R, and in order that

α1 =
−2A(4m − 9) + 1 − λ

4m − 9
≥ 0

we must have A < 1/(2(4m − 9)). This last value is easily shown to be
larger than the right endpoint in (15). Summarizing, we must have

A ∈
(

0,−1

2
+

√
18 − 17m + 4m2

4m − 9

)

. (16)

For these values of A it is easy to check that

α0 + α1 =
−2A(4m − 9) − 1 + λ

2(4m − 9)
≤ 1.

Therefore, A satisfies (16) if and only if F 6= ∅, in which case

dimHF = −K

(−1 + λ

4m − 9

)

.

We finally present an example that leads to a cubic equation.
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Example 5. Let B = −2 and A = 0. In this case (7) becomes

(−5 + 48m − 24m2 + 4m3)α3
0 − 27α2

0 + 9α0 − 1 = 0.

Since m > 2 we have −5 + 48m − 24m2 + 4m3 > 0, and thus,

α3
0 + a1α

2
0 + b1α0 + c1 = 0, (17)

where

a1 = −27

a
, b1 =

9

a
, c1 = −1

a
, a = −5 + 48m − 24m2 + 4m3.

Set

P =
3b1 − a2

1

3
=

36(m − 2)3

a2
,

Q =
2a3

1

27
− a1b1

3
+ c1 = −4(m − 2)3

a3
(4m3 − 24m2 + 48m − 59).

We can verify that the unique real zeros of ∆ := Q2/4 − P 3/27 (which

has degree 6 in m) are m = 2 + 3(3/4 ± 1/
√

2)1/3. Hence, if m ≥ 6,
then ∆ has always the same sign, which is clearly positive. When this
happens, equation (17) has a unique real solution and two complex conjugate
solutions.

If m = 3, then (17) has the unique real solution

α0 =
9 + 2

3
√

2 − 3
3
√

4

31
= 0.217 · · · .

Clearly α0 > 0 and 3α0 < 1. Since α1 = 2α0 we obtain α0, α1 > 0 and
α0 + α1 < 1. Therefore, dimHF = −K(α0). If m = 4, then (17) has the
unique real solution

α0 =
9 + 8

3
√

2 − 6
3
√

4

59
= 0.161 · · · ,

and again dimHF = −K(α0). Finally, if m = 5, then

dimHF = −K

(

1 + 2
3
√

2 − 3
√

4

15

)

.

On the other hand, if m ≥ 6, then (17) has the unique real solution

α0 =
−6αm3 + 36αm2 − 72αm + 21/3r2/3 + 9r1/3 + 48α

ar1/3
, (18)

where α = 22/3 and

r = 4m6 − 48m5 + 240m4 − 667m3

+ 1122m2 − 1092m +
√

(m − 2)6a2 + 472.
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When r = 0 we must have m = 2. Therefore, we have r > 0 for m ≥ 6.
By (18), α0 ≥ 0 if and only if

s := −6αm3 + 36αm2 − 72αm + 21/3r2/3 + 9r1/3 + 48α ≥ 0.

It is easy to check that s = 0 if and only if m = 2, and that for m ≥ 6 we
have s ≥ 0. It follows from (18) that α0 ≥ 0. Therefore, α1 = 2α0 ≥ 0.
Finally, we need to check that α0 ≤ 1/3. Clearly,

α0 − 1/3 = t/(3ar1/3),

where

t := 144α + 32r + 32 · 21/3r2 − (24m − 12m2 + 2m3)(9α + 2r).

So that α0 − 1/3 ≤ 0 we must have t ≤ 0. We can show that t = 0 if and
only if m = 2, and that t < 0 for m ≥ 3. Therefore

dimHF = −K

(

−6αm3 + 36αm2 − 72αm + 21/3r2/3 + 9r1/3 + 48α

ar1/3

)

.

3. The quadratic case

We can rewrite Q(x, y) in the form Q(x, y) = u∗Au + v∗u + f , where

u =

(

x
y

)

, A =

(

a b/2
b/2 c

)

, v =

(

d
e

)

.

Let λ =
√

(a − c)2 + b2. There exists a rotation matrix P by an angle
α such that with the new coordinates (z,w)∗ = P ∗u the polynomial Q
becomes

Q̃(z,w) = Q(P ∗u) = λ1z
2 + λ2w

2 + d̃z + ẽw + f = 0,

where

λ1 =
1

2
(a + c − λ), λ2 =

1

2
(a + c + λ),

and d̃ = d cos α − e sin α, ẽ = d sin α + e cos α. It follows from (2) that

dimHF = −min

{

R(z,w) + T (z,w) logm

T (z,w)

m − 2
: (z,w) ∈ P ∗∆

}

, (19)

where ∆ = {(x, y) ∈ [0, 1]2 : x + y ≤ 1}, and

R(z,w) = (z cos α + w sin α) logm(z cos α + w sin α)

+ (−z sin α + w cos α) logm(−z sinα + w cos α),

T (z,w) = 1 − z(cos α − sin α) − w(sin α + cos α).
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The formula in (19) is too involved to allow determining any “explicit” ex-
pression. But at least when m = 3 there is a simple “geometric” description
of dimHF . We first note that each triple (α0, α1, α2) is in the triangle

∆ =
{

(x, y, z) ∈ [0, 1]3 : x + y + z = 1
}

.

For simplicity of the exposition we assume in what follows that λ1λ2 > 0.
Then the equation Q(α0, α1) = 0 describes an ellipse E in the plane α0α1

which intersects the plane defined by ∆ in another ellipse E′ (for simplicity
we shall assume that E′ is contained in ∆). The Hausdorff dimension
dimHF can be described as follows. We consider the function H : ∆ → R
given by

H(α0, α1, α2) = −
2
∑

i=0

αi log3 αi.

Note that its level curves are obtained by solving the equation xx+yy+zz =
c for each c. We have dimHF = H(q) where q is any point in the ellipse
E′ that is in the level curve of H closest to the center of ∆. However, it is
in general impossible to obtain an explicit analytical expression using this
geometric description. In the following sections we obtain some particular
formulas when b = 0.

3.1. The parabolic case. We assume here that ac = 0 with (a, c) 6= 0.
We only consider the case a = 0 and c 6= 0 since the other one when a 6= 0
and c = 0 is analogous. We thus have

Q(x, y) = cy2 + dx + ey + f.

We make the change w = y + e/(2c) to obtain the quadratic polynomial

Q̃(x,w) = cw2 + dx + g, g = −e2

4c
+ f. (20)

Set

I = [e/(2c), 1 + e/(2c)], J = [−g,−d − g],

and

R(w) =
(

w − e

2c

)

log
(

w − e

2c

)

− cw2 + g

d
log

cw2 + g

d
,

T (w) = 1 − w +
e

2c
+

cw2 + g

d
.

We then have the following result.
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Theorem 2. When d = 0 and g/c ≤ 0, if e/(2c) ∈ [±α − 1,±α] then

setting α =
√

|g/c|,

dimHF = −
(

± α − e

2c

)

logm

(

± α − e

2c

)

−
(

1 ∓ α +
e

2c

)

logm

1 ∓ α + e/(2c)

m − 1
.

When d 6= 0 we have

dimHF = − 1

log m
min

{

R(w) + T (w) log
T (w)

m − 2
: (w,w2) ∈ I × J

}

.

Proof. Note that in the first case we must have q/c ≤ 0 so that F 6= ∅,

and that by (20) we have w = ±α with α =
√

|g/c|. This readily implies
the first statement (by the general formula in (2)). In the second case we

make the change of variables z = −dx−g. Then Q̃(x,w) = cw2−z and the

equation Q̃(x,w) = 0 describes a parabola. Again the statement follows
readily from (2). �

3.2. The elliptic case. We now assume that ac > 0. We make the change
of variables z = x + d/(2a), w = y + e/(2c) to obtain the quadratic poly-
nomial

Q̃(z,w) = az2 + cw2 − g, g = A2 + B2 − f, (21)

where A = d/(2a) and B = e/(2c). Set

I = [A, 1 + A], J = [B, 1 + B],

and

R(z,w) = (z − A) logm(z − A) + (w − B) logm(w − B),

T (z,w) = 1 − z + A − w + B.

Proceeding as above we obtain the following result.

Theorem 3. We have

dimHF = −min
{

R(z,w) + T (z,w) log
T (z,w)

m − 2
: (z,w) ∈ I × J

}

. (22)

We now briefly describe more explicitly the formula in (22).

Case g = 0. In this case the solution of Q̃(z,w) = 0 is z = w = 0. Then

A ≤ 0, B ≤ 0, 1 + A + B ≥ 0

if and only if F 6= ∅, in which case

dimHF = A logm(−A) + B logm(−B) − (1 + A + B) logm

1 + A + B

m − 2
.
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Case ga > 0. Then the equation Q̃(z,w) = 0 describes an ellipse and we can

write z = r cos t, w = s sin t, with t ∈ [0, 2π], r =
√

g/a, and s =
√

g/c. If

t ∈
[

min

{

cos−1 A

r
, sin−1 B

s

}

,max

{

cos−1 1 + A

r
, sin−1 1 + B

s

}]

, (23)

then F 6= ∅ and

dimHF = −min
{

(r cos t − A) logm(r cos t − A)

+ (s sin t − B) logm(s sin t − B)

+ (1 − r cos t + A − s sin t + B) logm

1 − r cos t + A − s sin t + B

m − 2

}

with the minimum taken over all t as in (23).

3.3. The hyperbolic case ac < 0. We continue to consider the change of
variables in (21). The Hausdorff dimension dimHF is still given by (22),
and thus we only describe explicit formulas in each particular case.

Case g = 0. In this case the solutions of Q̃(z,w) = 0 are z = ±
√

|c/a|w.
If F 6= ∅ then

dimHF = −min
{

(z − A) logm(z − A)

+ (±
√

|a/c|z − B) logm(±
√

|a/c|z − B)

+ (1 − z ∓
√

|a/c|z + A + B) logm

1 − z ∓
√

|a/c|z + A + B

m − 2

}

with the minimum taken over all z ∈ [A, 1 + A].

Example 6. Let |a| = |c|. Consider the functions K+ and K− given by

K±(z) = (z − A) logm(z − A) + (±z − B) logm(±z − B)

+ (1 − z ∓ z + A + B) logm

1 − z ∓ z + A + B

m − 2
.

We can easily verify that the unique zero of K− is

z =
A − B

2
, and hence, w = −z =

B − A

2
.

We must have z ≥ A, −z ≥ B and z + w ≤ A + B + 1. These conditions
are satisfied if and only if −1 ≤ A + B ≤ 0. In this case F 6= ∅. We set

D− = (A + B) logm

−A − B

2
− (1 + A + B) logm

1 + A + B

m − 2
.
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We now consider the function K+. The zeros of K ′
+ satisfy

(m − 2)2(A − z)(B − z)

(1 + A + B − 2z)2
= 1.

If m = 3 then

z =
4 + 3A + 3B ∓

√

4 − 3(A − B)2

6
.

In order that z is real we must have −2/
√

3 ≤ A−B ≤ 2/
√

3. Furthermore,
imposing that z + w = 2z ≤ 1 + A + B we obtain

1 ∓
√

4 − 3(A − B)2

6
≤ 0,

that is,

z =
4 + 3A + 3B −

√

4 − 3(A − B)2

6
with

√

4 − 3(A − B)2 ≥ 1,

which yields −1 ≤ A − B ≤ 1. It is then easy to check that z ≥ A and
z ≥ B, in which case F 6= ∅. We set D+ = −K+(z). If m = 4 then

z =
1

4
(1 + A2 + 2A + B2 + 2B − 2AB).

Imposing that z ≤ (1+A+B)/2 yields (A−B)2 ≤ 1, i.e., −1 ≤ A−B ≤ 1.
In this case z ≥ A and w = z ≥ B. Then F 6= ∅. We set again D+ =
−K+(z). If m ≥ 5 then

z =
−4 − 4Am − 4Bm + Am2 + Bm2 ∓ (m − 2)λ

2m(m − 4)

where

λ =
√

4 − 4A2m + 8ABm − 4B2m + A2m2 − 2ABm2 + B2m2

We must have z ≥ A, w = z ≥ B, and z ≤ (1 + A + B)/2. It follows from
the conditions z ≥ A and z ≥ B that

−4 + 4Am − 4Bm − Am2 + Bm2 ∓ (m − 2)λ

2m(m − 4)
≥ 0

and
−4 − 4Am + 4Bm + Am2 − Bm2 ∓ (m − 2)λ

2m(m − 4)
≥ 0.

Summing the two inequalities we obtain −4 ∓ (m − 2)λ ≥ 0, thus yielding

z =
−4 − 4Am − 4Bm + Am2 + Bm2 + (m − 2)λ

2m(m − 4)
and (m − 2)λ ≥ 4.
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Furthermore, from the condition z ≤ (1+A+B)/2 we obtain λ ≤ (m− 2),
that is −1 ≤ A − B ≤ 1. It is then easy to check that (m − 2)λ ≥ 4 is
automatically satisfied. Furthermore, z ≥ A, z ≥ B, and thus F 6= ∅.
We set once more D+ = −K+(z). We finally obtain that

dimHF = max{D−,D+}.

Case g 6= 0. For simplicity of the exposition we only consider the case
when a > 0 and c < 0. The other case is analogous. Then the equation

Q̃(z,w) = 0 describes a hyperbola and z = r ch t, w = s sh t, with t ∈ R,

r =
√

g/a, and s =
√

g/|c|. If

t ∈
[

min

{

ch−1 A

r
, sh−1 B

s

}

,max

{

ch−1 1 + A

r
, sh−1 1 + B

s

}]

(24)

then F 6= ∅ and

dimHF = −min
{

(r ch t − A) logm(r ch t − A)

+ (s sh t − B) logm(s sh t − B)

+ (1 − r ch t + A − s sh t + B) logm

1 − r ch t + A − s sh t + B

m − 2

}

with the minimum taken over all t as in (24).
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