# The inverse problem of variational calculus and the problem of mixed endpoint conditions 

Pedro Gonçalves Henriques


#### Abstract

P. A. Griffiths established the so-called mixed endpoint conditions for variational problems with non-holonomic constraints. We will present some results in this context and discuss the inverse problem of calculus of variations. Keywords:Inverse problem of calculus of variations.


## 1. Introduction

The study of Calculus of Variations for multiple integrals was first developed by Caratheodory [1929], while Weil-De Donder [1936], [1935] advanced a different theory later. The two approaches were unified by Lepage [19361942], Dedecker [1953-1977] and Liesen [1967] in a framework using the $n$-Grassmannian manifold of a $C^{\infty}$ manifold. Important contributions in the Calculus of Variations on smooth manifolds were made by R. Hermann [1966], H. Goldschmidt and S. Sternberg [1973] with their Hamilton-Cartan formalism, as well as by Ouzilou [1972], D. Krupka [1970-1975] and I. M. Anderson [1980]. The symplectic approach of P. L. Garcia and A. PérezRendón [1969-1978], the multisymplectic version of Kijowski and Tulczyjew [1979] based on the theory of Dedecker, the polysymplectic approach of C. Günther [1987], Edelen [1961] and Rund [1966] are also important references in this field. Here we deal with the broader problem of finding extrema of a functional on a set of $n$-dimensional integral manifolds of a Pfaffian differential system.

In 1983, Griffiths proposed a new approach to variational problems based on techniques from the theory of exterior differential systems. His work dealt with the problem of finding extrema for a functional $\phi$ defined on the set of one-dimensional integral manifolds of a differential system $\left(I^{*}, L^{*}\right)$.

[^0]This approach was established using intrinsic entities. In this work we present a general setting based on [25] (sections 2 to 8), and we deal with the inverse problem (section 9).

In 1887 Helmholtz addressed the following problem: given

$$
P_{i}=P_{i}\left(x, u^{j}, u_{x}^{j}, u_{x x}^{j}\right),
$$

is there a Lagrangian $L\left(x, u^{j}, u_{x}^{j}\right)$ such that

$$
E_{i}(L)=\partial L / \partial u^{i}-D_{x} \partial L / \partial u_{x}^{i}=P_{i}
$$

where

$$
D_{x}=\partial / \partial x+u_{x}^{i} \partial / \partial u^{i}+u_{x x}^{i} \partial / \partial u_{x}^{i} ?
$$

He found necessary conditions for $P_{i}$ to form an Euler-Lagrange system of equations (see (9.1), (9.2) and (9.3)). Some years later, these conditions where proved to be locally sufficient. I. M. Anderson [1992], [1980], P. J. Olver [1986], F. Takens [1979], W. M. Tulczyjew [1980] and A. M. Vinagradov [1984] generalized Helmholtz's conditions for both higher order systems of partial differential equations and multiple integrals.

## 2. Integral manifolds of a differential system and valued differential systems

We assume that a Pfaffian differential system $\left(I^{*}, L^{*}\right)$ is given on a realmanifold X by:
i) a subbundle $I^{*} \subset T^{*} X$,
ii) another subbundle $L^{*} \subset T^{*} X$ with $I^{*} \subset L^{*} \subset T^{*} X$,
such that the rank $\left(L^{*} / I^{*}\right)=n$ (with $n$ being a natural number).
An integral manifold of $\left(I^{*}, L^{*}\right)$ is given by an oriented connected compact $n$-dimensional smooth manifold $N$ (possibly with a piecewise smooth boundary $\partial N$ ) together with a smooth mapping

$$
f: N \rightarrow X
$$

satisfying

$$
\begin{equation*}
I_{f(x)}^{*}{ }^{\perp}=L_{f(x)}^{*}{ }^{\perp}+f_{*}(T N), \tag{2.1}
\end{equation*}
$$

for all $x \in N$, where $f_{*}: T_{x} N \rightarrow T_{f(x)} X$ is the differential of $f$ at $x$.
We denote by $V\left(I^{*}, L^{*}\right)$ the collection of integral manifolds $f$ of $\left(I^{*}, L^{*}\right)$.
A valued differential system is a triple $\left(I^{*}, L^{*}, \varphi\right)$, where $\left(I^{*}, L^{*}\right)$ is a Pfaffian differential system and $\varphi$ is an n -form on $X$.

We define the functional $\phi$ associated with $\left(I^{*}, L^{*}, \varphi\right)$ in $V\left(I^{*}, L *\right)$ by:

$$
\phi: V\left(I^{*}, L^{*}\right) \rightarrow R,
$$

$$
\begin{equation*}
f \rightarrow \phi[f]=\int f^{*} \varphi \tag{2.2}
\end{equation*}
$$

## 3. Local embeddability

The following definition is a general setting for the study of problems in the Calculus of Variations. In [25] we proved that there exist locally defined mappings that induce $\left(I^{*}, L^{*}\right)$ from the canonical system in $J^{1}\left(R^{n}, R^{s}\right)$ possibly with some constraints, establishing a local coorespondence between these differential systems. Let us assume that $d\left(C^{\infty}\left(X, L^{*}\right)\right) \subset$ $C^{\infty}\left(X, L^{*} \wedge T^{*} X\right)$, and let $d^{\prime}=\operatorname{dim} X ; \quad s=\operatorname{rank} I^{*}\left(d\left(C^{\infty}\left(X, L^{*}\right)\right)\right.$ is the set of images produced by the exterior derivative of $\left.C^{\infty}\left(X, L^{*}\right)\right)$. Using the Frobenius theorem, we can set for every $p \in X$ a chart coordinate system $\left\{u^{1}, \ldots, u^{s+n}, v^{1}, \ldots, v^{d^{\prime}-s-n}\right\}$ so that
i)

$$
\begin{equation*}
L^{*}=\operatorname{span}\left\{d u^{\alpha} \mid 1 \leq \alpha \leq s+n\right\}, \tag{3.1}
\end{equation*}
$$

ii)

$$
\begin{equation*}
L^{* \perp}=\operatorname{span}\left\{\left.\frac{\partial}{\partial v^{i}} \right\rvert\, 1 \leq i \leq d^{\prime}-s-n\right\} \tag{3.2}
\end{equation*}
$$

for an open subset $U$ of $X$ with $p \in U$.
Definition 3.1. Let $\left(I^{*}, L^{*}\right)$ be a Pfaffian differential system with

$$
d\left(C^{\infty}(X, L)\right) \subset C^{\infty}\left(X, L^{*} \wedge T^{*} X\right) .
$$

We say that $\left(I^{*}, L^{*}\right)$ is locally embeddable if for every $p \in X$ there exist an open neighborhood $U$ of $p$ and local coframes

$$
\begin{equation*}
C F=\left\{\theta_{1}, \ldots, \theta_{s}\right\} \tag{3.3}
\end{equation*}
$$

for $I^{*}$ and

$$
\begin{equation*}
C F^{\prime}=\left\{\theta_{1}, \ldots, \theta_{s}, d u^{\prime \prime s}+1, d u^{\prime \prime s}+n\right\} \tag{3.4}
\end{equation*}
$$

for $L_{U}^{*}$, satisfying the following conditions:

$$
\begin{equation*}
\delta\left(I_{U}^{*} \wedge \Omega\right) \subset T^{*} \wedge \Lambda^{n}\left(L_{U}^{*}\right) /\left(T^{*} U \wedge I_{U}^{*} \wedge \Lambda^{n-1}\left(L^{*}\right)\right) \tag{i}
\end{equation*}
$$

(ii) Ker $\delta$ is a constant rank subbundle of $I^{*} \wedge \Omega$,
where $\Omega=\operatorname{span}\left\{d u^{\prime \prime s+1} \wedge \ldots \wedge \widehat{d u^{\prime \prime s}+\beta} \wedge \ldots \wedge d u^{\prime \prime s+n}\right\} ; \widehat{d u^{\prime \prime s+\beta}}$-means deletion of the $s+b$ factor (for $n=1, \widehat{d u^{\prime \prime s+1}}=1$ ). We use $u^{\prime \prime}$ since we may have to reorder these coordinates.

The $\operatorname{map} \delta: I^{*} \wedge \Omega \rightarrow \Lambda^{n+1}\left(T^{*} U\right) / I_{u}^{*} \wedge\left(\Lambda^{n}(T * U)\right)$ is induced by

$$
d: C^{\infty}\left(U, I^{*} \wedge \Omega\right) \rightarrow C^{\infty}\left(U, \Lambda^{n+1}\left(T^{*} U\right)\right)
$$

on $I^{*} \wedge \Omega$.
This definition means that if $I^{*}$ has no Cauchy characteristics, the structure equations are locally:

$$
\begin{equation*}
d \theta^{i} \equiv \pi_{j}^{i} \wedge d u^{\prime \prime s+j}+A_{i^{\prime} \alpha}^{i j^{\prime}} \pi_{j^{\prime}}^{i^{\prime}} \wedge \theta^{\alpha}+B_{\alpha \beta}^{i} \theta^{\alpha} \wedge d u^{\prime \prime s+\beta} \bmod I \wedge I \tag{3.6}
\end{equation*}
$$

$1 \leq i, i^{\prime}, \alpha \leq s, 1 \leq j, j^{\prime}, \beta \leq n, I=C^{\infty}\left(X, I^{*}\right)$.

## 4. The Cartan system of $\Psi$

Let $\left(I^{*}, L^{*}, \varphi\right)$ be a valued differential system on $X$, and $W$ be the total space of $I^{*}$. Let $\chi$ be the canonical form on $T^{*} X$, and $i$ the inclusion map $W \stackrel{i}{\hookrightarrow} T^{*} X$.

Let us assume that there exists a local $n$-form $\omega$ inducing a nonzero section of $\Lambda^{n}\left(L^{*} / I^{*}\right)$ and has the following form:

$$
\begin{equation*}
\omega=\omega^{1} \wedge \ldots \wedge \omega^{n} \tag{4.1}
\end{equation*}
$$

We define:

$$
\begin{equation*}
\omega_{i}=(-1)^{i-1} \omega^{1} \wedge \ldots \wedge \widehat{\omega^{i}} \ldots \wedge \omega^{n} \tag{4.2}
\end{equation*}
$$

Let $W^{n}$ be the $n$-Cartesian power of $W$, and $Z$ be a subset of $W^{n}$ defined by $Z=\left\{z \in W^{n}: \pi^{\prime}(z) \in \Delta X^{n}\right\}$, where $\pi^{\prime}$ is the natural projection $\pi^{\prime}: W^{n} \rightarrow X^{n}$, and $\Delta X^{n}$ is the diagonal submanifold of $X^{n}$. The subset $Z$ is a vector subbundle over $X$ and $\operatorname{dim} Z=d+s n$. We define

$$
\begin{equation*}
\Psi=d \psi \tag{4.3}
\end{equation*}
$$

where $\psi$ is given by

$$
\begin{equation*}
\psi=\pi^{*} \varphi+\left(\pi^{j} \circ i^{\prime}\right)^{*}\left[i^{*}(\chi)\right] \wedge \pi^{*} \omega_{j} \tag{4.4}
\end{equation*}
$$

$\pi^{j}$ is the natural projection into the $j^{t h}$ component $\pi^{j}: W^{n} \rightarrow W, \mathrm{i}$ is the inclusion map $Z \rightarrow W^{n}$ and $\pi$ is the natural projection $\pi: Z \rightarrow X$.
Definition 4.1. Given the $n+1$-form $\Psi$, the Cartan system $C(\Psi)$ is the ideal generated by the set of $n$-forms

$$
\left.\{v\lrcorner \Psi \quad \text { where } \quad v \in C^{\infty}(Z, T Z)\right\}
$$

An integral manifold of $(C(\Psi), \omega)$ is given by an oriented connected compact $n$-dimensional smooth manifold $N$ (possibly with a piecewise smooth boundary $\partial N$ ) together with a smooth mapping

$$
f: N \rightarrow X
$$

satisfying:

$$
\begin{equation*}
f^{*} \theta=0 \quad \text { for every } \quad \theta \in C(\Psi) \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{*}(\omega) \neq 0 . \tag{4.6}
\end{equation*}
$$

A solution of $(C(\Psi), \omega)$ projected in $X$ will give an extremum of $\phi$.

## 5. The momentum space, prolongation of $\left(C(\Psi), \pi^{*} \omega\right)$ in the momentum space, non-degeneracy

The momentum space is constructed in the following way. Suppose we are given on $Z$ (see section 4):
(i) a closed $(n+1)$-form $\Psi$ with the associated Cartan system $C(\Psi)$,
(ii) $\pi^{* *}$ the pull back to $Z$ of the $\omega n$-form which induces a nonzero section on $\Lambda^{n}\left(L^{*} / I^{*}\right)$.
Integral elements of $\left(C(\Psi), \pi^{* *} \omega\right)$ are defined in a similar way as the integral elements of $\left(I^{*}, L^{*}\right)$. The set of integral elements $\left[x_{0}, E_{0}^{n}\right]$ gives a subset

$$
\left.V_{n}\left(C(\Psi), \pi^{*} \omega\right)\right) \subset G_{n}(Z) \quad\left(G_{n}(Z) \text { is the } n \text {-Grassmanian }\right) .
$$

Denoting by $\pi^{\prime \prime}$ the projection $G_{n}(Z) \rightarrow Z$ and assuming regularity at each step, one inductively defines:

$$
\begin{gather*}
Z_{1}=\pi^{\prime \prime}\left(V_{n}\left(C(\Psi), \pi^{*} \omega\right), V_{n}^{\prime}\left(C(\Psi), \pi^{*} \omega\right)\right)= \\
\left\{E \in V_{n}\left(C(\Psi), \pi^{*} \omega\right): E \text { tangent to } Z_{1}\right\},  \tag{5.1}\\
Z_{2}=\pi^{\prime \prime}\left(V_{n}^{\prime}\left(C(\Psi), \pi^{*} \omega\right), V_{n}^{\prime \prime}\left(C(\Psi), \pi^{*} \omega\right)\right)= \\
\left\{E \in V_{n}^{\prime}\left(C\left(\Psi, \pi^{*} \omega\right)\right): E \text { tangent to } Z_{2}\right\} . \tag{5.2}
\end{gather*}
$$

Definition 5.1. Suppose $\left(I^{*}, L^{*}, \varphi\right)$ is a valued differential system, with $\left(I^{*}, L^{*}\right)$ being a locally embeddable differential system and $\omega=\omega^{1} \wedge \ldots \wedge \omega^{n}$. If there exists a $k_{0} \in N$ such that $Z_{k_{0}}=Z_{k_{0}+1}=\ldots=Z_{k_{0}+n^{\prime}}\left(n^{\prime} \in N\right)$ in the above construction, with
(i) $Z_{k_{0}}$ being a manifold of dimension $(n+1) m+n$ for $m \in N$, and
(ii) $\left(C(\Psi), \pi^{*} \omega\right)_{Z_{k_{0}}}$ being a differential system in $Z_{k_{0}}$ with $r_{n}=0$ (Cartan number in Cartan-Kähler Theorem) for all $V_{n-1}\left(C(\Psi), \pi^{*} \omega\right)$; (for $n=1$ we follow [23] and replace this condition by $\psi \wedge \Psi^{n} \neq$ 0 on $Z_{k_{0}}$ ).
Then $\left(I^{*}, L^{*}, \varphi\right)$ is a non-degenerate valued differential system, and $Z=Y$ is called the momentum space.

We call $\left(C(\Psi), \pi^{*} \omega\right)_{Y}$ the prolongation of $\left(C(\Psi), \pi^{*} \omega\right)$ in the momentum space. By construction, the differential system $\left(C(\Psi), \pi^{*} \omega\right)_{Y}$ satisfies:
(i) the projection $\left(C(\Psi), \pi^{*} \omega\right) \rightarrow Y$ is surjective,
(ii) the integral manifolds of $\left(C(\Psi), \pi^{* *} \omega\right)$ on $Z$ coincide with those of $\left(C(\Psi), \pi^{*} \omega\right)$ on $Y$.

## 6. Well-posed valued differential systems

Definition 6.1. $\left(I^{*}, L^{*}, \varphi, P^{*}, M^{*}\right)$ is a well-posed valued differential system, if the following conditions are satisfied:
(i) $\left(I^{*}, L^{*}, \varphi\right)$ is a non-degenerate valued differential system (with $\operatorname{dim} Y=(n+1) m+n)$ and $\varphi=L \omega$ for a smooth function $L$ on $X$;
(ii) there exists a subbundle $P^{*}$ of $I^{*}$ of rank $m$ and a subbundle $M^{*}$ of $L^{*}$ of rank $m+n$, such that:
(a) $\begin{array}{lllll}I^{*} & \subset & L^{*} & \cup & T^{*} X \\ P^{*} & & \cup & M^{*}, & \end{array}$
(b) the locally given $n$-form $\omega$ also induces a nonzero section on $\Lambda^{n}\left(M^{*} / P^{*}\right)$,
(c) $\left.Y \subset\left(P^{*}\right)^{n}\right|_{\Delta X^{n}}$, with $Y$ a subbundle of $\left.\left(P^{*}\right)^{n}\right|_{\Delta X^{n}}$,
(iii) $\pi^{" *} M^{*}=\operatorname{span}\left\{\pi^{*} \theta \mid \theta \in C^{\infty}\left(X, M^{*}\right)\right\}$ is completely integrable on $Y$, where $\pi "=\pi \circ i$. As before $i$ denotes the inclusion mapping $Y \rightarrow Z$ and $\pi$ the projection $Z \rightarrow X$.

Let us assume that there exists a coframe $C F=\left\{\theta^{\alpha}, d u^{s+j}, \pi_{j^{\prime}}^{i^{\prime}}, \pi_{j}^{i^{\prime \prime}} \mid 1 \leq\right.$ $\left.\alpha \leq s, 1 \leq i^{\prime} \leq s_{l}, j^{\prime} \in L_{i^{\prime}}, s_{l+1} \leq i^{\prime \prime} \leq s, 1 \leq j \leq n\right\}$ for $T^{*} X$ with $L_{i^{\prime}} \subset\{k \in N, 1 \leq k \leq n\}$ such that

$$
\begin{equation*}
I^{*}=\operatorname{span}\left\{\theta^{\alpha} \mid 1 \leq \alpha \leq s\right\} ; \tag{i}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
L^{*}=\operatorname{span}\left\{\theta^{\alpha}, d u^{s+j} \mid 1 \leq \alpha \leq s, 1 \leq j \leq n\right\} ; \tag{6.1}
\end{equation*}
$$

(iii) $T^{*} X=L^{*} \oplus R^{*}(\oplus$ denotes a direct sum $)$ with $R^{*}=\operatorname{span}\left\{\pi_{j^{\prime}}^{i^{\prime}}, \pi_{j}^{i^{\prime \prime}} \mid 1 \leq\right.$ $\left.i^{\prime} \leq s_{l}, j^{\prime} \in L_{i^{\prime}}, s_{l+1} \leq i^{\prime \prime} \leq s, 1 \leq j \leq n\right\} ;$

$$
\begin{equation*}
d i_{j^{\prime \prime}}^{i^{\prime}} \equiv 0 \bmod I, \text { for } j^{\prime \prime} \notin L_{i^{\prime}} ; \tag{iv}
\end{equation*}
$$

$$
\begin{equation*}
d \theta_{j^{\prime}}^{i^{\prime}} \equiv \pi_{j^{\prime}}^{i^{\prime}} \wedge \omega \bmod I, \text { for } j^{\prime} \in L_{i^{\prime}} ; \tag{6.3}
\end{equation*}
$$

$$
\begin{equation*}
d \theta_{j}^{i^{\prime \prime}} \equiv \pi_{j}^{i^{\prime \prime}} \wedge \omega \bmod I, \text { when } 1 \leq j \leq n ; \tag{6.4}
\end{equation*}
$$

(vii) $\pi_{j^{\prime}}^{i^{\prime}}, \pi_{j}^{i \prime \prime}$ are linearly independent $\bmod L$.

We define $\theta_{j}^{\alpha} \doteq \theta^{\alpha} \wedge \omega_{j}$.
Let $d \varphi \equiv L_{i^{\prime \prime}}^{j} \wedge \pi_{j}^{i^{\prime \prime}}+L_{i^{\prime}}^{j^{\prime}} \wedge \pi_{j^{\prime}}^{i^{\prime}} \bmod I$ and $d L_{\nu}^{\alpha} \equiv L_{\nu \nu^{\prime}}^{\alpha \alpha^{\prime}} \pi_{\alpha^{\prime}}^{\nu^{\prime}} \bmod \pi L^{*}$ $1 \leq \alpha, \alpha^{\prime} \leq s \quad \nu \in L_{\alpha}$ and $\nu^{\prime} \in L_{\alpha^{\prime}}$.
Quadratic form $A$ : Let $\left(I^{*}, L^{*}, \varphi, P^{*}, M^{*}\right)$ be a well-posed valued differential system and $A$ be a quadratic form defined in $T^{*} X$ given by
$A(v, w)=L_{\nu \nu^{\prime}}^{\alpha \alpha^{\prime}} v_{\nu}^{\alpha} w_{\nu^{\prime}}^{\alpha^{\prime}}$, where $v=v_{\theta^{\alpha}} \partial / \partial \theta^{\alpha}+v_{\pi_{\alpha}^{\nu}} \partial / \partial \pi_{\alpha}^{\nu}$ and
$w=w_{\theta^{\alpha}} \partial / \partial \theta^{\alpha}+w_{\pi_{\alpha}^{\prime}} \partial / \partial \pi_{\alpha}^{\nu}$. This quadratic form plays an important role in establishing necessary conditions for a local extremum.
6.1. Generalized Lagrange Problem. Let us describe the following problem:
Generalized Lagrange Problem. Let $X=J^{1}\left(R^{n}, R^{m}\right)$ (the 1 jet manifold), with the canonical system $I^{*}$ defined on $X$ (i.e. $I^{*}=\operatorname{span}\left\{\theta^{\alpha}=\right.$ $\left.\left.d y^{\alpha}-y_{x^{i}}^{\alpha} d x^{i}\right\}\right)$. Let $\varphi=L \omega$ with $\omega=d x^{1} \wedge \ldots \wedge d x^{n}$. We choose $x^{1}, \ldots, x^{n}$ to be coordinates for $R^{n}$, and $y^{1}, \ldots, y^{m}$ to be coordinates for $R^{m}$.

We proved in [26] that a Lagrange problem for $n=1 \operatorname{with} \operatorname{Ldet} L_{\nu \nu^{\prime}}^{\alpha \alpha^{\prime}} \neq$ 0 , and with constraints not envolving more than one variable $\dot{y}$ in each equation of restriction is a well posed valued differential system.

## 7. The Euler-Lagrange differential system for a well-posed valued differential system

When we compute the first variation of $\phi$, we find an integral over $N$ and another over the boundary $\partial N$. The volume integral will vanish for projections of integral manifolds of the Cartan system $\left(C(\Psi), \pi^{*} \omega\right)$ into $X$. Choosing suitably the set of boundary conditions we can make the integral over the boundary to vanish as well, providing stationary integral manifolds for generalized Lagrange problems (see [25]).

### 7.1. The Euler-Lagrange differential system.

Definition 7.1. Let $\left(I^{*}, L^{*}, \varphi\right)$ be a valued differential system. The Cartan system $\left(C(\Psi), \pi^{*} \omega\right)$ is called the Euler-Lagrange differential system associated with $\left(I^{*}, L^{*}, \varphi\right)$.

Assuming that $\left(I^{*}, L^{*}, \varphi\right)$ is non-degenerate, we now consider the restriction to $Y$ of the Euler-Lagrange differential system associated with $\left(I^{*}, L^{*}, \varphi\right)$. The following proposition is easy to prove (see [25]):
Proposition 7.1. If $g$ is an integral manifold of $\left(C(\Psi), \pi^{*} \omega\right)$, then $\pi \circ g \in$ $V\left(I^{*}, L^{*}\right)$, where $\pi$ is the natural projection $\pi: Z \rightarrow X$.

We denote by $\left(V\left(C(\Psi), \pi^{*} \omega\right)\right.$ the set of integral manifolds of $\left.\left(C(\Psi), \pi^{*} \omega\right)\right)$.

## 8. Examples

Example 1. Strings [41], [42]
Let $X=J^{1}\left(N, R^{m}\right), N$ being a two-dimensional manifold. In this case $I^{*}=\operatorname{span}\left\{d x^{\alpha}-x^{\prime \alpha} d \sigma-\dot{x}^{\alpha} d \tau \mid 0 \leq \alpha \leq m-1, x^{\alpha}\right\}$ are coordinates in $R^{m}$, and $\sigma, \tau$ are coordinates of $N, \quad x^{\prime \alpha}=\frac{\partial x^{\alpha}}{\partial \sigma}, \quad \dot{x}^{\alpha}=\frac{\partial x^{\alpha}}{\partial \tau}$. In $R^{m}$ we take a metric defined in $T R^{m}$ by $g^{00}=-g^{11}=1,1 \leq i \leq m$ and $g^{i j}=0$ for $i \neq j$. The set $X$ is given by: $X=\left\{x \in X_{0} \mid(\dot{x} \cdot \dot{x}) \geq 0\right.$ and $\left.\left(x^{\prime} \cdot x^{\prime}\right) \leq 0\right\}$ (where $(\cdot)$ denotes the inner product with respect to the metric $g$ ). The form $\omega$ is $\omega=d \sigma \wedge d \tau$. We have

$$
\begin{equation*}
\varphi=L \omega=\left[\left(x^{\prime} \cdot \dot{x}\right)^{2}-(\dot{x} \cdot \dot{x})\left(x^{\prime} \cdot x^{\prime}\right)\right]^{1 / 2} d \sigma \wedge d \tau . \tag{8.1}
\end{equation*}
$$

Note: $L$ is a function of $\dot{x}$ and $x^{\prime}$ only.
First variation of $\phi$.. Let $\phi=\int f^{*}(\varphi)$, where $f \in V\left(I^{*}, L^{*}\right)$. Then

$$
\begin{equation*}
\left.\left.\delta \phi=\int f^{*}(v\lrcorner d \varphi+d(v\lrcorner \varphi\right)\right), \tag{8.2}
\end{equation*}
$$

where $v(\sigma, \tau)=\left.F_{*}(\partial / \partial t)(t, \sigma, \tau)\right|_{t=0},(\sigma, \tau) \in N, t \in[0,1]$ and $F$ is the one parameter variation of $f$ i.e, $\left.F(t, \sigma, \tau)\right|_{t=t_{1}} \in V\left(I^{*}, L^{*}\right)$ for all $0 \leq t_{1} \leq 1$. Hence the Lie derivative of $d x^{\alpha}-x^{\prime \alpha} d \sigma-\dot{x}^{\alpha} d \tau$ by $v$ along $f(N)$ vanishes, $\left.\left.\left(d(v\lrcorner\left(d x^{\alpha}-x^{\prime \alpha} d \sigma-\dot{x}^{\alpha} d \tau\right)\right)+(v\lrcorner\left(-d x^{\prime \alpha} \wedge d \sigma-d \dot{x}^{\alpha} \wedge d \tau\right)\right)\right)\left.\right|_{f(N)}=0$.

The form $\Psi_{Z}$ is given by

$$
\begin{gather*}
\Psi_{Z}=\left(L_{\dot{x}^{\alpha}}-\dot{\lambda}_{\alpha}\right) \pi^{*}\left(d \dot{x}^{\alpha} \wedge \omega\right)+\left(L_{x^{\prime \alpha}}-\lambda_{\alpha}^{\prime}\right) \pi^{*}\left(d x^{\prime \alpha} \wedge \omega\right)+ \\
\left(d \dot{\lambda}_{\alpha} \wedge \pi^{*} d \sigma-d \lambda_{\alpha}^{\prime} \wedge \pi^{*} d \tau\right) \wedge \pi^{*} d x^{\alpha}+\left(-\dot{x}^{\alpha} d \dot{\lambda}_{\alpha}-x^{\prime \alpha} d \lambda_{\alpha}^{\prime}\right) \wedge \pi^{*} \omega \tag{8.3}
\end{gather*}
$$

The Cartan system in $Z$ is:
(i)

$$
\begin{equation*}
\left.\partial / \partial \dot{\lambda}_{\alpha}\right\lrcorner \Psi_{Z}=-\pi^{*}\left(\left(d x^{\alpha}-\dot{x}^{\alpha} d \tau\right) \wedge \pi * d \sigma\right)=0, \tag{8.4}
\end{equation*}
$$

$$
\begin{equation*}
\left.\partial / \partial \lambda_{\alpha}^{\prime}\right\lrcorner \Psi_{Z}=-\pi^{*}\left(\left(d x^{\alpha}-x^{\prime \alpha} d \tau\right) \wedge \pi * d \sigma\right)=0, \tag{ii}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\left.\partial / \partial \dot{x}^{\alpha}\right\lrcorner \Psi_{Z}=-\pi^{*}\left(L_{\dot{x}^{\alpha}}-\dot{\lambda}_{\alpha}\right) \omega=0 \tag{8.5}
\end{equation*}
$$

(iv)

$$
\begin{equation*}
\left.\partial / \partial x^{\prime \alpha}\right\lrcorner \Psi_{Z}=-\pi^{*}\left(L_{x^{\prime \alpha}}-\lambda_{\alpha}^{\prime}\right) \omega=0 \tag{8.6}
\end{equation*}
$$

(v)

$$
\begin{equation*}
\left.\partial / \partial x^{\alpha}\right\lrcorner \Psi_{Z}=-\pi^{*} d \dot{\lambda}_{\alpha} \wedge \pi^{*} d \sigma-d \lambda_{\alpha}^{\prime} \wedge \pi^{*} d \tau=0 . \tag{8.7}
\end{equation*}
$$

Hence

$$
\begin{equation*}
Z_{1}=Z \mid L_{\dot{x}^{\alpha}-\dot{\lambda}_{\alpha}}, L_{x^{\prime \alpha}-\lambda_{\alpha}^{\prime}} . \tag{8.9}
\end{equation*}
$$

Note that from (i) and (ii) we have $\theta^{\alpha}=0$;
from (iii), (iv) and (v) we have $E[L] \omega=\left(\partial L / \partial x^{\alpha}-D_{\sigma} \partial L / \partial x^{\prime \alpha}-\right.$ $\left.D_{\tau} \partial L / \partial \dot{x}^{\alpha}\right) \omega=0$ for $D_{\tau}=\partial / \partial \tau+\dot{x}^{\alpha} \partial / \partial x^{\alpha}+\ddot{x}^{\alpha} \partial / \partial \dot{x}^{\alpha}$ and $D_{\sigma}=$ $\partial / \partial \sigma+x^{\prime \alpha} \partial / \partial x^{\alpha}+x^{\prime \prime \alpha} \partial / \partial x^{\prime \alpha}$.

The generalized momenta are given by

$$
\begin{align*}
& \dot{\lambda}_{\alpha}=\frac{x^{\prime \alpha}\left(x^{\prime} \cdot \dot{x}\right)-\left(x^{\prime} \cdot x^{\prime}\right) \dot{x}^{\alpha}}{\left[\left(x^{\prime} \cdot \dot{x}\right)^{2}-(\dot{x} \cdot \dot{x})\left(x^{\prime} \cdot x^{\prime}\right)\right]^{1 / 2}},  \tag{8.10}\\
& \lambda_{\alpha}^{\prime}=\frac{\dot{x}^{\alpha}\left(x^{\prime} \cdot \dot{x}\right)-(\dot{x} \cdot \dot{x}) x^{\prime \alpha}}{\left[\left(x^{\prime} \cdot \dot{x}\right)^{2}-(\dot{x} \cdot \dot{x})\left(x^{\prime} \cdot x^{\prime}\right)\right]^{1 / 2}} . \tag{8.11}
\end{align*}
$$

Let $R^{2 m} \mid(\dot{x} \cdot \dot{x}) \geq 0,\left(x^{\prime} \cdot x^{\prime}\right) \leq 0 \quad \xrightarrow{F^{\prime}} \quad R^{2 m}$ be given by

$$
F^{\prime}\left(\dot{x}^{\alpha}, x^{\prime \alpha}\right)=\left(\lambda_{\alpha}^{\prime}\left(\dot{x}^{\alpha}, x^{\prime \alpha}\right), \dot{\lambda}_{\alpha}\left(\dot{x}^{\alpha}, x^{\prime \alpha}\right)\right) .
$$

In this case $F^{\prime}$ has an inverse in $R^{2 m} \mid(\dot{x} \cdot \dot{x}) \geq 0,\left(x^{\prime} \cdot x^{\prime}\right) \leq 0$ and $F^{\prime-1}$ is given by:

$$
\begin{align*}
\dot{x}^{\alpha} & =\frac{\lambda_{\alpha}^{\prime}\left(\lambda^{\prime} \cdot \dot{\lambda}\right)-\left(\lambda^{\prime} \cdot \lambda^{\prime}\right) \dot{\lambda}_{\alpha}}{\left[\left(\lambda^{\prime} \cdot \dot{\lambda}\right)^{2}-(\dot{\lambda} \cdot \dot{\lambda})\left(\lambda^{\prime} \cdot \lambda^{\prime}\right)\right]^{1 / 2}},  \tag{8.12}\\
x^{\prime \alpha} & =\frac{\dot{\lambda}_{\alpha}\left(\lambda^{\prime} \cdot \dot{\lambda}\right)-(\dot{\lambda} \cdot \dot{\lambda}) \lambda_{\alpha}^{\prime}}{\left[\left(\lambda^{\prime} \cdot \dot{\lambda}\right)^{2}-(\dot{\lambda} \cdot \dot{\lambda})\left(\lambda^{\prime} \cdot \lambda^{\prime}\right)\right]^{1 / 2}} . \tag{8.13}
\end{align*}
$$

The Cartan system in $Z_{1}^{\prime}=Z_{1} \mid(\dot{\lambda} \cdot \dot{\lambda}) \geq 0,\left(\lambda^{\prime} \cdot \lambda^{\prime}\right) \leq 0$ is given by (i),(ii), (iv) and (v) of the Cartan system in $Z$. Let $Y=Z_{1}^{\prime}$. The prolongation of $\left(C(\Psi), \pi^{*} \omega\right)$ ends at $Z_{1}^{\prime}$. The dimension of $Y$ is $\operatorname{dim} Y=3 m+2$. Every point in $Y$ is a zero-dimensional integral element of $\left(C(\Psi), \pi^{*} \omega\right)$, and $r_{1}=2 m+1$. The Cartan system is in involution at $x$ if $\left.\operatorname{det} C(v)\right|_{X_{0}} \neq 0$, and

$$
C(v)=\left[\begin{array}{cc}
<v, d \tau>I & <v, d \sigma>I  \tag{8.14}\\
m \times m & m \times m \\
A & B \\
m \times m & m \times m
\end{array}\right]
$$

for every $v \neq 0$ along $E^{1}$, with $\left[x_{0}, E^{1}\right]$ being any integral element of $\left(C(\Psi), \pi^{*} \omega\right)$, where

$$
\begin{equation*}
A=<v, d \sigma>L_{\dot{x}^{\alpha} \dot{x}^{\beta}}-<v, d \tau>L_{x^{\prime \alpha} \dot{x}^{\beta}} \tag{8.15}
\end{equation*}
$$

and

$$
\begin{equation*}
B=<v, d \sigma>L_{\dot{x}^{\alpha} x^{\prime \beta}}-<v, d \tau>L_{x^{\prime \alpha} x^{\prime \beta}}, \text { with } 0 \leq \beta \leq m-1 . \tag{8.16}
\end{equation*}
$$

Let us define the energy momentum current $P=\left(P^{0}, \ldots, P^{m-1}\right)$ on the surface $\gamma=\left\{x^{\alpha}(\sigma, \tau), \sigma, \tau \mid 0 \leq \alpha \leq m-1\right\}$ by

$$
\begin{equation*}
P^{\alpha}=\int \dot{P^{\alpha}} d \tau+P^{\prime \alpha} d \sigma \tag{8.17}
\end{equation*}
$$

where $\dot{P}^{\alpha}=-L_{\dot{x}^{\alpha}}, P^{\prime \alpha}=-L_{x^{\prime \alpha}}$.
Case 1. Open strings. Let $N=[0, \pi] \times\left[t_{1}, t_{2}\right],\left(t_{1}, t_{2}\right) \in R^{2}, t_{1}<t_{2}$. We will impose the following constraints on variations of $f \in V\left(I^{*}, L^{*}\right)$ :
a)

$$
\begin{equation*}
\left.g^{*}(v\lrcorner \pi^{*} \omega\right)_{\partial N}=0, \tag{8.18}
\end{equation*}
$$

b)

$$
\begin{equation*}
\left.g^{*}(v\lrcorner \pi^{*}\left(d x^{\alpha}-\dot{x}^{\alpha} d \tau-x^{\prime \alpha} d \sigma\right)\right)_{B}=0 \tag{8.19}
\end{equation*}
$$

where $B=[0, \pi] \times t_{1} \cup[0, \pi] \times t_{2}$,
c)

$$
\begin{equation*}
\lambda_{\alpha}^{\prime}=0 \text { on } g(A) \text { where } A=N \backslash B . \tag{8.20}
\end{equation*}
$$

In this case, $G$ is any smooth lift of $F$ to $Y$ with $\left.G\right|_{t=0}=g,(\pi \circ g=f)$, and $v$ is a vector field defined along $g$ with $v=\left.G_{*}(\partial / \partial t)\right|_{t=0}$. The constraint c) forces the boundary term in the first variation of $\phi(f)$ vanish.

Case 2. Closed strings. Let $N=S_{1} \times\left[t_{1}, t_{2}\right]$, with $S_{1}$ being the unit circle. Its coordinate $\sigma \in[0,2 \pi]$, and $\left(t_{1}, t_{2}\right) \in R^{2}, t_{1}<t_{2}$. We will replace the constraints on variations of $f \in V\left(I^{*}, L^{*}\right)$ of the previous case with the following:
a)

$$
\begin{equation*}
\left.g^{*}(v\lrcorner \pi^{*} \omega\right)_{\partial N}=0, \tag{8.21}
\end{equation*}
$$

b)

$$
\begin{equation*}
\left.g^{*}(v\lrcorner \pi^{*}\left(d x^{\alpha}-\dot{x}^{\alpha} d \tau-x^{\prime \alpha} d \sigma\right)\right)_{B}=0 \tag{8.22}
\end{equation*}
$$

where $B=S_{1} \times t_{1} \cup[0, \pi] \times t_{2}$.
The quadratic form A.. The cone $X^{\prime}=X \mid(\dot{x} \cdot \dot{x}) \geq 0,\left(x^{\prime} \cdot x^{\prime}\right) \leq 0$ is convex. $F^{\prime}$ has an inverse in $X^{\prime}$ with $F^{\prime}: X{ }^{\prime \prime}{ }^{F^{-1}} R^{2 m}$ where $X^{\prime \prime}=$ $R^{2 m} \mid(\dot{\lambda} \cdot \dot{\lambda}) \geq 0,\left(\lambda^{\prime} \lambda^{\prime}\right) \leq 0$. Hence the matrix

$$
A^{\prime}=\left[\begin{array}{ll}
L_{\dot{x}^{\alpha} \dot{x}^{\beta}} & L_{\dot{x}^{\alpha} x^{\prime \beta}}  \tag{8.23}\\
L_{x^{\prime} \dot{x}^{\beta}} & L_{x^{\prime \alpha} x^{\prime \beta}}
\end{array}\right]
$$

has an inverse. Therefore, the eigenvalues of $A^{\prime}$ do not vanish on $X^{\prime}$. Thus, it suffices to know the eigenvalues of $A^{\prime}$ at an interior point of $X^{\prime}$ to determine the number of positive eigenvalues of $A^{\prime}$ in every point of $X^{\prime}$.

Let

$$
\begin{gathered}
a=\left\{\dot{x}^{0}=1, \dot{x}^{i}=0, x^{\prime 1}=1, x^{\prime j}=0 \quad \text { with } \quad 1 \leq i \leq m-1, j=0\right. \\
\text { or } 2 \leq j \leq m-1\} .
\end{gathered}
$$

Then

$$
\begin{equation*}
L_{\dot{x}^{0} x^{\prime 1}}(a)=-L_{\dot{x}^{1} x^{\prime 0}}(a)=-L_{\dot{x}^{i} x^{\prime i}}(a)=L_{x^{\prime \prime} x^{\prime i}}(a)=1,2 \leq i \leq m-1, \tag{8.24}
\end{equation*}
$$

and all the other elements of $A^{\prime}$ are zero. We conclude that the matrix has $m$-positive eigenvalues and m-negative eigenvalues in $X^{\prime}$ and the quadratic form $A$ is neither positive nor negative definite.
Example 2. Let $X_{0}=J^{1}\left(R^{2}, R^{m}\right), N \subset R^{2}$, with $N$ being a two-dimensional manifold with boundary. Let also $I^{*}=\operatorname{span}\left\{d x^{\alpha}-x^{\prime \alpha} d \sigma-\dot{x}^{\alpha} d \tau \mid 1 \leq \alpha \leq m\right\}, x^{\alpha}$ are coordinates in $R^{m}$ and $x^{\prime \alpha}=\frac{\partial x^{\alpha}}{\partial \sigma}, \dot{x}^{\alpha}=\frac{\partial x^{\alpha}}{\partial \tau}$. Moreover, let

$$
\begin{equation*}
\varphi=L \omega=\left[\sum_{\alpha=1}^{m}\left(x^{\prime \alpha}\right)^{2}+\left(\dot{x}^{\alpha}\right)^{2}\right] d \sigma \wedge d \tau \tag{8.25}
\end{equation*}
$$

The Cartan system in $Z$ is

$$
\begin{equation*}
\left.\partial / \partial \dot{\lambda}_{\alpha}\right\lrcorner \Psi_{Z}=-\pi^{*}\left(\left(d x^{\alpha}-\dot{x}^{\alpha} d \tau\right) \wedge \pi * d \sigma\right)=0, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left.\partial / \partial \lambda_{\alpha}^{\prime}\right\lrcorner \Psi_{Z}=-\pi^{*}\left(\left(d x^{\alpha}-x^{\prime \alpha} d \tau\right) \wedge \pi * d \sigma\right)=0, \tag{8.26}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\left.\partial / \partial \dot{x}^{\alpha}\right\lrcorner \Psi_{Z}=-\pi^{*}\left(2 \dot{x}^{\alpha}-\dot{\lambda}_{\alpha}\right) \omega=0 \tag{8.27}
\end{equation*}
$$

(iv)

$$
\begin{equation*}
\left.\partial / \partial x^{\prime \alpha}\right\lrcorner \Psi_{Z}=-\pi^{*}\left(2 x^{\prime \alpha}-\lambda_{\alpha}^{\prime}\right) \omega=0 \tag{8.28}
\end{equation*}
$$

(v)

$$
\begin{equation*}
\left.\partial / \partial x^{\alpha}\right\lrcorner \Psi_{Z}=-\pi^{*} d \dot{\lambda}_{\alpha} \wedge \pi^{*} d \sigma-d \lambda_{\alpha}^{\prime} \wedge \pi^{*} d \tau=0 . \tag{8.29}
\end{equation*}
$$

Hence

$$
\begin{equation*}
Z_{1}=Z \mid L_{\dot{x}^{\alpha}}=\dot{\lambda}_{\alpha}, L_{x^{\prime \alpha}}=\lambda_{\alpha}^{\prime} . \tag{8.30}
\end{equation*}
$$

The prolongation ends at $Z_{1}$ with $\left(C(\Psi), \pi^{*} \omega\right)$ on $Z_{1}$ given by (8.26), (8.27) and (8.30). It is easy to prove that $\left(C(\Psi), \pi^{*} \omega\right)$ in $Y$ is in involution and $\left(I^{*}, L^{*}, \varphi, I^{*}, L^{*}\right)$ is a well-posed valued differential system.

Boundary conditions. The constraints on one-parameter variations $F$ of $f$ in $V\left(I^{*}, L^{*}\right)$ are:
a)

$$
\begin{equation*}
\left.g^{*}(v\lrcorner \pi^{*} \omega\right)_{\partial N}=0, \tag{8.32}
\end{equation*}
$$

b)

$$
\begin{equation*}
\left.g^{*}(v\lrcorner \pi^{*}\left(d x^{\alpha}-\dot{x}^{\alpha} d \tau-x^{\prime \alpha} d \sigma\right)\right)_{\partial N}=0 . \tag{8.33}
\end{equation*}
$$

In this case, too, $G$ is any smooth lift of $F$ to $Y$ with $\left.G\right|_{t=0}=g,(\pi \circ g=f)$, and $v$ is a vector field defined along $g$ with $v=\left.G\right|_{t=0 *}(\partial / \partial t)$.
The quadratic form A.. A simple computation yields

$$
\begin{equation*}
L_{\dot{x}^{\alpha} \dot{x}^{\beta}}=2 \delta_{\alpha \beta}, L_{\dot{x}^{\alpha} x^{\prime \beta}}=0, L_{x^{\prime \alpha} x^{\prime \beta}}=2 \delta_{\alpha \beta} . \tag{8.34}
\end{equation*}
$$

Thus, the quadratic form $A$ is positive definite.
Example 3. Let $X_{0}=J^{1}\left(R^{2}, R^{m}\right)$. We associate coordinates $\sigma, \tau$ to $R^{2}, x^{i}$, $1 \leq i \leq m$ to $R^{m}$, and $x^{\prime i}=\frac{\partial x^{i}}{\partial \sigma}, \dot{x}^{i}=\frac{\partial x^{i}}{\partial \tau}$. Let $X=X_{0} \mid g_{1}=0$, where $g_{1}\left(\dot{x}^{1}, x^{2}\right)=\dot{x}^{1}-x^{2}=0$. Let $N=B_{1}$ be a ball with radius 1 centered at $(0,0)$. Then

$$
\begin{equation*}
x^{1}(t, b)-x^{1}(a, b)=\int_{a}^{t} \frac{\partial x^{1}}{\partial \tau} d \tau=\int_{a}^{t} x^{2} d \tau \tag{8.35}
\end{equation*}
$$

where $a \leq 0$ and $a^{2}+b^{2}=1$.
Boundary condition $h_{A^{\prime}}$. We have the following system for $v=\left.F_{*}(\partial / \partial t)(t, x)\right|_{t=0}$ where $F$ is a one-parameter variation of $f$ :

$$
\begin{gather*}
\frac{\partial v_{x^{1}}}{\partial \tau}-v_{\dot{x}^{1}}=0,  \tag{8.36}\\
\frac{\partial v_{x^{1}}}{\partial \sigma}-v_{x^{\prime 1}}=0,  \tag{8.37}\\
\frac{\partial v_{x^{1}}}{\partial \tau}-v_{x^{2}}=0,  \tag{8.38}\\
\frac{\partial v_{x^{1}}}{\partial \sigma}-v_{x^{\prime 1}}=0 . \tag{8.39}
\end{gather*}
$$

Let $A^{\prime}=\left\{(\tau, \sigma) \in R^{2} \mid(\tau)^{2}+(\sigma)^{2}=1\right.$ and $\left.\tau \leq 0\right\} . A^{\prime}$ is nowhere characteristic for (8.38) and the values of $v_{x^{1}}$ at $A^{\prime}$ and $v_{x^{2}}$ in $N$ determine uniquely a solution in $N$ for the system of equations. Let $h_{A^{\prime}}^{1}: A^{\prime} \rightarrow R$ and $h_{\partial N}^{j}: \partial N \rightarrow R \quad(2 \leq j \leq m)$ be a smooth function. Assume $f \in V\left(I^{*}, L^{*}\right)$, and let $I^{*}, L^{*}$ be as before. Then, $f$ satisfies the boundary condition $\left[h_{A^{\prime}}\right]$ if

$$
\begin{equation*}
x_{A^{\prime}}^{1}=h_{A^{\prime}}^{1} \quad \text { and } \quad x_{\partial N}^{j}=h_{\partial N}^{j} . \tag{8.40}
\end{equation*}
$$

In this case,

$$
\begin{equation*}
\phi[f]=\int f^{*} \varphi, \text { where } f \in V\left(I^{*}, L^{*},\left[h_{A^{\prime}}^{1}\right]\right) \tag{8.41}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi=L w=\left[\left(x^{\prime 1}\right)^{2}+\sum_{j}\left(\dot{x}^{j}\right)^{2}+\sum_{j}\left(x^{\prime j}\right)^{2}\right] d \sigma \wedge d \tau \tag{8.42}
\end{equation*}
$$

Momentum space. The Cartan system in $Z$ is:

$$
\begin{equation*}
\left.\partial / \partial \dot{\lambda}_{i}\right\lrcorner \Psi_{Z}=-\pi^{*}\left(\left(d x^{i}-\dot{x}^{i} d \tau\right) \wedge \pi * d \sigma\right)=0 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left.\partial / \partial \lambda_{i}^{\prime}\right\lrcorner \Psi_{Z}=-\pi^{*}\left(\left(d x^{i}-x^{\prime i} d \tau\right) \wedge \pi^{*} d \sigma\right)=0 \tag{8.43}
\end{equation*}
$$

$$
\begin{equation*}
\left.\partial / \partial \dot{x}^{j}\right\lrcorner \Psi_{Z}=-\pi^{*}\left(2 \dot{x}^{j}-\dot{\lambda}_{j}\right) \omega=0 \tag{8.44}
\end{equation*}
$$

(iv)

$$
\begin{equation*}
\left.\partial / \partial x^{\prime i}\right\lrcorner \Psi_{Z}=-\pi^{*}\left(2 x^{\prime i}-\lambda_{i}^{\prime}\right) \omega=0, \tag{8.45}
\end{equation*}
$$

(v)

$$
\begin{equation*}
\left.\partial / \partial x^{i}\right\lrcorner \Psi_{Z}=-\pi^{*} d \dot{\lambda}_{i} \wedge \pi^{*} d \sigma-d \lambda_{i}^{\prime} \wedge \pi^{*} d \tau=0 . \tag{8.46}
\end{equation*}
$$

From (8.46) and (8.47) we also have $Y=Z_{1}=\left.Z\right|_{2 \dot{x}^{j}=\dot{\lambda}_{j}, 2 x^{\prime i}=\lambda_{i}^{\prime} .}$. This Cartan system $\left(C(\Psi), \pi^{*} \omega\right)$ is non-degenerate. Let us transfer the boundary condition to $Q_{i}=\left.Y\right|_{\pi^{*} L_{i}}$, where $L_{i}^{*}=\operatorname{span}\left\{d x^{i}-\dot{x}^{i} d \tau-x^{i} d \sigma, d \sigma, d \tau\right\}$. Then, $f \in V\left(I^{*}, L^{*}\right)$ satisfies the boundary condition $h_{A^{\prime}}$, if for any lift $g$ of $f$ to $Y$ we have:

$$
\begin{equation*}
\left.\left(\omega_{1}^{\prime} \circ g\right)\right|_{A^{\prime}}=h_{A^{\prime}}^{1} \quad \text { and }\left.\quad\left(\omega_{j}^{\prime} \circ g\right)\right|_{\partial N}=h_{\partial N}^{j} \tag{8.48}
\end{equation*}
$$

where $h_{A^{\prime}}^{1}: A^{\prime} \rightarrow Q_{1}$ with $\pi_{1} \circ h_{A^{\prime}}^{1}=h_{A^{\prime}}^{1}$ and the projection
$\pi_{i}: Q_{i} \rightarrow R$ given by $\pi_{i}(q)=x^{i}(q)$.
Furthermore, $g$ is a solution to the Euler-Lagrange system satisfying the mixed boundary condition $\left[h_{A^{\prime}}\right]$, if $g$ satisfies (8.43), (8.44) and (8.47), and

$$
\begin{gather*}
v\lrcorner\left(\dot{\lambda}_{i} \pi^{*}\left[d x^{i}-\dot{x}^{i} d \tau-x^{\prime i} d \sigma\right] \wedge d \tau+\right. \\
\left.\lambda_{i}^{\prime} \pi^{*}\left[d x^{i}-\dot{x}^{i} d \tau-x^{\prime i} d \sigma\right] \wedge d \sigma\right)_{g\left(\partial N \backslash A^{\prime}\right)} \equiv 0 \tag{8.49}
\end{gather*}
$$

for any element, $v=\left.F_{*}(\partial / \partial t)(t, x)\right|_{t=0}$ where $F$ is a one parameter variation of $\pi \circ g$ satisfying $\left.v_{x^{1}}\right|_{A^{\prime}=0}$ and $\left.v_{x^{2}}\right|_{N=0}$.

Finally, the quadratic form $A$ is positive definite.

## 9. Inverse problem for calculus of variations

Example 4. In 1887, Helmholtz solved the following problem:
It is given $P_{i}=P_{i}\left(x, u^{j}, u_{x}^{j}, u_{x x}^{j}\right)$. Is there a Lagrangian $L\left(x, u^{j}, u_{x}^{j}\right)$ such that $E_{i}(L)=\partial L / \partial u^{i}-D_{x} \partial L / \partial u_{x}^{i}=P_{i}$, where $D_{x}=\partial / \partial x+u_{x}^{i} \partial / \partial u^{i}+$ $u_{x x}^{i} \partial / \partial u_{x}^{i}$ ? He found the following necessary conditions for $P_{i}$ :

$$
\begin{equation*}
\partial P_{i} / \partial u_{x x}^{j}=\partial P_{j} / \partial u_{x x}^{i}, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\partial P_{i} / \partial u_{x}^{j}=\partial P_{j} / \partial u_{x}^{i}+2 D_{x} \partial P_{j} / \partial u_{x x}^{i}, \tag{ii}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\partial P_{i} / \partial u^{j}=\partial P_{j} / \partial u^{i}-D_{x} \partial P_{j} / \partial u_{x}^{i}+D_{x x} \partial P_{j} / \partial u_{x x}^{i} . \tag{9.2}
\end{equation*}
$$

This problem led to the following studies ([2]):
(i) - the derivation and analysis of Helmholtz conditions as necessary and (locally) sufficient conditions for a differential operator to coincide with the Euler-Lagrange operator for some Lagrangian;
ii) - the characterization of the obstructions to the existence of global variational principles for different operators defined on manifolds;
iii) - the invariant inverse problem for different operators with symmetry; and
(iv) - the variational multiplier problem wherein variational principles are found, not for a given differential operator, but rather for the differential equations determined by that operator.
That is: find a matrix $B=\left[B_{i}^{j}\right]$ such that $B_{i}^{j} P_{j}=E_{i}(L)$ for some $L$ with $B$ being non-singular.

Let $E \rightarrow M$ be a fibered manifold. $J^{\infty}(E)$ is the infinite jet of $E$.
Let

$$
\begin{gather*}
\theta^{i}=d u^{i}-u_{x}^{i} d x  \tag{9.4}\\
\theta_{x}^{i}=d u_{x}^{i}-u_{x x}^{i} d x \tag{9.5}
\end{gather*}
$$

and

$$
\begin{align*}
& \Omega_{P}=P_{i} \theta^{i} \wedge d x+1 / 2\left[\partial P_{i} / \partial u_{x}^{j}-D_{x} \partial P_{i} / \partial u_{x x}^{j}\right] \theta^{i} \wedge \theta^{j} \\
&+1 / 2\left[\partial P_{i} / \partial u_{x x}^{j}+\partial P_{j} / \partial u_{x x}^{i}\right] \theta^{i} \wedge \theta_{x}^{j} . \tag{9.6}
\end{align*}
$$

If $P$ satisfies the Helmholtz conditions, then $d \Omega_{P}=0$. If the $H^{n+1}(E)-n+1$ de Rham cohomology group of $E$ is trivial. then $\Omega_{P}$ is exact. This fact implies that $P_{i}$ is globally variational. If $\theta_{L}=L d x+\partial L / \partial u_{x}^{i} \theta^{i}$,
then $d \theta_{L}=\Omega_{P}$. In 1913, Volterra showed that if $L=\int_{N} u^{i} P_{i}\left(x, t u^{j}, t u_{x}^{j}, t u_{x x}^{j}\right) d t$ where $N=[0,1]$, then

$$
\begin{equation*}
E_{i}(L)=P_{i} . \tag{9.7}
\end{equation*}
$$

Thus, we have a global solution for the inverse problem in the case of one independent variable and to equations $P_{i}=0$ of second order.

Vaingberg [1969] generalized this result; however his Lagrangian is usually of a much higher order than necessary.

In [2] we can find the following theorem.
Theorem 9.1. Let $P_{i}$ be a differential operator of order $2 k$

$$
\begin{equation*}
P_{i}=P_{i}\left(x, u^{j}, u_{1}^{j}, \ldots, u_{2 k}^{j}\right) \tag{9.8}
\end{equation*}
$$

Then $P_{i}$ is the Euler-Lagrange operator of a $k-t h$ order Lagrangian $L=$ $L\left(x, u^{j}, u_{1}^{j}, \ldots, u_{k}^{j}\right)$ if and only if the functions $P_{i}$ satisfy the higher order Helmholtz conditions, and the functions

$$
\begin{equation*}
p_{i}(t)=P_{i}\left(x, u^{j}, u_{1}^{j}, \ldots, u_{k}^{j}, t u_{k+1}^{j}, \ldots, t^{k} u_{2 k}^{j}\right) \tag{9.9}
\end{equation*}
$$

are polynomials in $t$ of degree less or equal to $k$.
Example 5. Let us now look to another example where we have a function of three independent variables $x, y$ and $z$, with a single dependent variable $u$. Let $T=T\left(x, y, z, u, u_{x}, u_{y}, u_{z}, u_{x x}, u_{x y},, \ldots, u_{z z}\right)$ be a second order operator.

$$
\begin{equation*}
E[L]=\partial L / \partial u-D_{x} \partial L / \partial u_{x}-D_{y} \partial L / \partial u_{y}-D_{z} \partial L / \partial u_{z} \tag{9.10}
\end{equation*}
$$

Let $v$ be a lift to the momentum space of an infinitesimal variation $F_{*}(\partial / \partial t)$ of $f=\pi \circ g$, where $g$ is a solution of $\left(C(\Psi), \pi^{*} \omega\right)$. The Lie-derivative of $\psi=\pi^{*} L \omega+\left(\pi^{j} \circ i^{\prime}\right)^{*}\left[i^{*}(\chi)\right] \wedge \pi^{*} \omega_{j}$ by $v$ is

$$
v\lrcorner d \psi+d(v\lrcorner \psi)=E[L](u) v^{1} \pi^{*}(d x \wedge d y \wedge d z)
$$

$$
\begin{equation*}
+d\left(\partial L / \partial u_{x} v^{1} \pi^{*}(d y \wedge d z)-\partial L / \partial u_{y} v^{1} \pi^{*}(d x \wedge d z)+\partial L / \partial u_{z} v^{1} \pi^{*}(d x \wedge d y)\right) \tag{9.11}
\end{equation*}
$$

Suppose that for some vector $w$ with $\pi_{*} w \in T_{f} V\left(I^{*}, L^{*}, \varphi,[h]\right)$
(i.e. $w\lrcorner d \theta+d(w\lrcorner \theta)$ for $\theta=d u-u_{x} d x-u_{y} d y-u_{z} d z$ and $\left.w\right\lrcorner\left.\theta\right|_{\partial N}=0$ ) we have $v\lrcorner d \psi+d(v\lrcorner \psi)=$

$$
\begin{gather*}
T[u] v^{1} \pi^{*}(d x \wedge d y \wedge d z)+d\left(\partial L / \partial u_{x} w^{1} \pi^{*}(d y \wedge d z)-\partial L / \partial u_{y} w^{1} \pi^{*}(d x \wedge d z)\right. \\
\left.+\partial L / \partial u_{z} w^{1} \pi^{*}(d x \wedge d y)\right) \tag{9.12}
\end{gather*}
$$

Then we have $T[u]=E[L](u)$
If we identify $e_{1}$ with $d y \wedge d z, e_{2}$ with $d z \wedge d x$ and $e_{3}$ with $d x \wedge d y$ at each point of the integral manifold of $\left(C(\Psi), \pi^{*} \omega\right)$, we can write

$$
\begin{equation*}
d\left(\partial L / \partial u_{x} v^{1} \pi^{*}(d y \wedge d z)-\partial L / \partial u_{y} v^{1} \pi^{*}(d x \wedge d z)\right. \tag{9.13}
\end{equation*}
$$

$$
\begin{equation*}
\left.+\partial L / \partial u_{z} v^{1} \pi^{*}(d x \wedge d y)\right)=\operatorname{Div} V[u] \pi^{*}(d x \wedge d y \wedge d z) \tag{9.14}
\end{equation*}
$$

where

$$
\begin{equation*}
V[u]=\partial L / \partial u_{x} v^{1} e_{1}+\partial L / \partial u_{y} v^{1} e_{2}+\partial L / \partial u_{z} v^{1} e_{3} . \tag{9.15}
\end{equation*}
$$

The divergence operator is defined in terms of the total derivatives $D_{x}, D_{y}$ and $D_{z}$.

We can conclude that $v\lrcorner d \psi+d(v\lrcorner \psi)=(E[L](u) v+\operatorname{DivV}[u]) \pi^{*}(d x \wedge$ $d y \wedge d z)$.

We have

$$
\begin{equation*}
E[L](u)=0 \quad \text { whenever } \quad L[u]=\operatorname{DivW}[u] . \tag{9.16}
\end{equation*}
$$

Suppose $T[u]=E[L](u)$. Then the first variation formula is

$$
\begin{equation*}
v\lrcorner d \psi+d(v\lrcorner \psi)=\left(T[u] v^{1}+\operatorname{Div} W[u]\right) \pi^{*}(d x \wedge d y \wedge d z) . \tag{9.17}
\end{equation*}
$$

By applying the Euler-Lagrange operator (i.e. $E\left[\alpha[u] \pi^{*}(d x \wedge d y \wedge d z)\right] \doteq$ $\left.\left.E[\alpha[u]] \pi^{*}(d x \wedge d y \wedge d z)\right]\right)$, we obtain

$$
\begin{equation*}
E[v\lrcorner d \psi+d(v\lrcorner \psi)]=E[T[u] v] \pi^{*}(d x \wedge d y \wedge d z), \text { since } E(\operatorname{DivW})(u)=0 . \tag{9.18}
\end{equation*}
$$

We have

$$
\begin{align*}
E[v\lrcorner d \psi+d(v\lrcorner \psi)] & =(v\lrcorner d E[L](u)+d(v\lrcorner d E[L](u))) \pi^{*}(d x \wedge d y \wedge d z)  \tag{9.19}\\
& =(v\lrcorner d T+d(v\lrcorner d T)) \pi^{*}(d x \wedge d y \wedge d z) . \tag{9.20}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\left.\left.E[T[u] v] \pi^{*}(d x \wedge d y \wedge d z)=(v\lrcorner d T+d(v\lrcorner d T\right)\right) \pi^{*}(d x \wedge d y \wedge d z) \tag{9.21}
\end{equation*}
$$

Let

$$
\begin{equation*}
\psi^{\prime}=\pi^{*} T \omega+\left(\pi^{j} o i^{\prime}\right)^{*}\left[i^{*}(\chi)\right] \pi^{*} \omega_{j}, \tag{9.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.v\lrcorner d \psi^{\prime}+d(v\lrcorner \psi^{\prime}\right)=E[T[u] v] \pi^{*}(d x \wedge d y \wedge d z) . \tag{9.23}
\end{equation*}
$$

If we define
$\left.\left.H(T)[v] \pi^{*}(d x \wedge d y \wedge d z)=v\right\lrcorner d \psi^{\prime}+d(v\lrcorner \psi^{\prime}\right)-E[T(u) v] \pi^{*}(d x \wedge d y \wedge d z)$,
then $H(T)=0$ if $T[u]$ is Euler-Lagrange. Helmholtz equations are:

$$
\begin{equation*}
\partial T / \partial u_{x}=D_{x} \partial T / \partial u_{x x}+1 / 2 D_{y} \partial T / \partial u_{x y}+1 / 2 D_{z} \partial T / \partial u_{x z}, \tag{i}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\partial T / \partial u_{y}=D_{y} \partial T / \partial u_{y y}+1 / 2 D_{x} \partial T / \partial u_{y x}+1 / 2 D_{z} \partial T / \partial u_{y z}, \tag{9.26}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\partial T / \partial u_{z}=D_{z} \partial T / \partial u_{z z}+1 / 2 D_{x} \partial T / \partial u_{z x}+1 / 2 D_{y} \partial T / \partial u_{z y} . \tag{9.27}
\end{equation*}
$$

We have a sequences of spaces

$$
\begin{align*}
& 0 \rightarrow R \rightarrow F[u]
\end{align*} \begin{array}{lllll}
\text { Grad } & \text { Curl } & \text { Div } & E & H  \tag{9.28}\\
\rightarrow V(u) & \rightarrow F(u) & \rightarrow F(u) & \xrightarrow[\rightarrow]{\rightarrow} V(u)
\end{array}
$$

that is cochain complex, the Euler-Lagrange complex. Since this complex is exact, the inverse problem is globally solved in this second example.
9.1. Variational Bicomplex. Let us introduce now a very important tool for a globalization of the inverse problem.
Definition 9.1. A p form $\omega$ on $J^{\infty}(E)$ is said to be of type $(r, s)$, where $r+s=p$, if at each point $x$ of $J^{\infty}(E)$

$$
\begin{equation*}
\omega\left(X_{1}, X_{2}, \ldots, X_{p}\right)=0 \tag{9.29}
\end{equation*}
$$

whenever either
(i) more than $s$ of the vectors $X_{1}, X_{2}, \ldots, X_{p}$ are $\pi_{M}^{\infty}$ vertical, or
(ii) more than $r$ of the vectors $X_{1}, X_{2}, \ldots, X_{p}$ annihilate all contact one forms.

Note: $\Omega^{r, s}$ denotes the space of type $(r, s)$ forms on $J^{\infty}(E)$.
(i) $\pi: E \rightarrow M$ be a fiber bundle.
(ii) Let us assume that there exists a transformation group $G$ acting on $E$, and
(iii) that there exists a set of differential equations on sections of $E$.

$$
\begin{gather*}
d=d_{H}+d_{V}, \\
d_{H}: \Omega^{r, s}\left(J^{\infty}(E)\right) \rightarrow \Omega^{r+1, s}\left(J^{\infty}(E)\right),  \tag{9.30}\\
d_{V}: \Omega^{r, s}\left(J^{\infty}(E)\right) \rightarrow \Omega^{r, s+1}\left(J^{\infty}(E)\right),  \tag{9.31}\\
d_{H}^{2}=0, \quad d_{H} d_{V}=-d_{V} d_{H}, \quad d_{V}^{2}=0 . \tag{9.32}
\end{gather*}
$$

In local coordinates

$$
\begin{gather*}
d_{H} f=\left[\partial f / \partial x^{i}+u \alpha_{i} \partial f / \partial u^{\alpha}+u_{i j}^{\alpha} \partial f / \partial u_{j}^{\alpha}+\ldots\right] d x^{i}  \tag{9.33}\\
d_{V} f=\partial f / \partial u^{\alpha} \theta^{\alpha}+\partial f / \partial u_{i}^{\alpha} \theta_{i}^{\alpha}+\ldots \tag{9.34}
\end{gather*}
$$

The sequences of spaces

$$
\begin{array}{rrrllllll} 
& & & & & \uparrow d_{V} & I \uparrow \delta_{V} & \\
0 & \rightarrow \Omega^{0,3} & \ldots & & \rightarrow \Omega^{n, 3} & \rightarrow F^{3} & \rightarrow 0 \\
& \uparrow d_{V} & d_{H} \uparrow d_{V} & \ldots & d_{H} \uparrow d_{V} & \overrightarrow{d_{H} \uparrow d_{V}} & I & \uparrow \delta_{V} & \\
0 & \rightarrow \Omega^{0,2} & \rightarrow \Omega^{1,2} & \ldots & \rightarrow \Omega^{n-1,2} & \rightarrow \Omega^{n, 2} & \rightarrow F^{2} & \rightarrow 0 \\
& \uparrow d_{V} & d_{H} \uparrow d_{V} & \ldots & d_{H} \uparrow d_{V} & d_{H} \uparrow d_{V} & I & \uparrow \delta_{V} & \\
0 & \rightarrow \Omega^{0,1} & \rightarrow \Omega^{1,1} & \ldots & \rightarrow \Omega^{n-1,1} & \rightarrow \Omega^{n, 1} & \rightarrow F^{1} & \rightarrow 0 \\
& \uparrow d_{V} & d_{H} \uparrow d_{V} & \ldots & d_{H} \uparrow d_{V} & d_{H} \uparrow d_{V} & & \\
0 & \rightarrow R & \rightarrow \Omega^{0,0} & \rightarrow \Omega^{1,0} & \ldots & \rightarrow \Omega^{n-1,0} & \rightarrow \Omega^{n, 0} & &
\end{array}
$$

is the Variational Bicomplex.
Therefore the generalization of (9.28) is:

$$
\begin{aligned}
& 0 \rightarrow R \rightarrow \Omega^{0,0} \xrightarrow{d_{H}} \Omega^{1,0} \xrightarrow{d_{H}} \quad \begin{array}{lllll}
\text { a }^{2,0} & \ldots & d_{H} & d_{H} \\
\ldots & \Omega^{n-1,0} & \rightarrow
\end{array} \\
& d_{H} \quad E \quad \delta_{V} \quad \delta_{V} \\
& \rightarrow \Omega^{n, 0} \rightarrow F^{1} \rightarrow F^{2} \rightarrow F^{3} .
\end{aligned}
$$

9.2. Lagrange problem with non-holonomic constraints. Let us recall from [26] the Lagrange problem with non-holonomic constraints. We showed that a well-posed variational problem with mixed endpoint conditions for $n=1$ is locally a Lagrange problem with non-holonomic constraints.

Proposition 9.1. Let us assume that a Lagrange problem with non-holononomic constraints $g^{\rho}\left(x, u^{j}, u_{x}^{j}\right)=0$, with $\operatorname{rank}\left[\partial g^{\rho} / \partial u_{x}^{j}\right]=m-l$ with $1 \leq$ $j \leq m$ and $1 \leq \rho \leq m-l, l \geq 0$ is given. If $\operatorname{det}\left[L_{\mu \nu}\right] \neq 0$ and $\operatorname{Ldet}\left[A_{\mu \nu}\right] \neq 0$ for all $\left(\lambda_{1}, \ldots, \lambda_{m-l}\right) \in R^{m-l}$, then $\left(I^{*}, L^{*}, \varphi, I^{*}, L^{*}\right)$ is a well-posed valued differential system, where $I^{*}=\operatorname{span}\left\{\theta^{\alpha} \mid 1 \leq \alpha \leq m\right\}$, and $L^{*}=$ span $\left\{\theta^{\alpha}, d x \mid 1 \leq \alpha \leq m\right\}$

$$
\begin{gather*}
\theta^{\rho}=g_{u_{x}^{\sigma}}^{\rho}\left(d u^{\sigma}-u_{x}^{\sigma} d x\right)+g_{u_{x}^{\mu}}^{\rho}\left(d u^{\mu}-u_{x}^{\mu} d x\right) \quad 1 \leq \sigma \leq m-l  \tag{9.35}\\
\theta^{\mu}=d u^{\mu}-u_{x}^{\mu} d x \quad m-l+1 \leq \mu, \nu \leq m \tag{9.36}
\end{gather*}
$$

In this setting we have

$$
\begin{gather*}
\theta^{\mu}=-d u_{x}^{\mu} \wedge d x  \tag{9.37}\\
d \theta^{\rho} \equiv-A_{\mu \alpha}^{\rho} d u_{x}^{\mu} \wedge \theta^{\alpha}-B_{\alpha}^{\rho} d x \wedge \theta^{\alpha} \bmod \left\{\theta^{\alpha} \wedge \theta^{\alpha^{\prime}} \mid 1 \leq \alpha, \alpha^{\prime} \leq m\right\}  \tag{9.38}\\
A_{\mu \rho^{\prime}}^{\rho}=g_{u_{x}^{\sigma} u_{x}^{\sigma^{\prime}}}^{\rho} a_{\rho^{\prime}}^{\sigma} a_{\rho^{\prime \prime}}^{\sigma^{\prime}} g_{u_{x}^{\mu}}^{\rho^{\prime \prime}}+g_{u_{x}^{\sigma} u_{x}^{\mu}}^{\rho} a_{\rho^{\prime}}^{\sigma}  \tag{9.39}\\
A_{\mu \nu}^{\rho}=g_{u_{x}^{\sigma} u_{x}^{\sigma^{\prime}}}^{\rho} a_{\rho^{\prime}}^{\sigma} g_{u_{x}^{\prime}}^{\rho^{\prime}} a_{\rho^{\prime \prime}}^{\sigma^{\prime}} g_{u_{x}^{\mu}}^{\rho^{\prime \prime}}-g_{u_{x}^{\sigma} u_{x}^{\mu}}^{\rho} a_{\rho^{\prime}}^{\sigma} g_{u_{x}^{\nu}}^{\rho^{\prime}}-g_{u_{x}^{\nu} u_{x}^{\sigma^{\prime}}}^{\rho} a_{\rho^{\prime}}^{\sigma^{\prime}} g_{u_{x}^{\mu}}^{\rho^{\prime}}+g_{u_{x}^{\nu} u_{x}^{\mu}}^{\rho},  \tag{9.40}\\
\left.B_{\sigma}^{\rho}=g_{u_{x}^{\sigma^{\prime} u_{x}^{\sigma^{\prime \prime}}}}^{\rho} a_{\sigma}^{\sigma^{\prime}} a_{\rho_{\rho^{\prime \prime}}^{\sigma^{\prime \prime}}}^{( } g_{x}^{\rho^{\prime \prime}}-g_{u_{x}^{\alpha}}^{\rho_{x}^{\prime \prime}} u_{x}^{\alpha}\right)+g_{u_{x}^{\sigma} u_{x}^{\alpha}}^{\rho} a_{\sigma}^{\sigma^{\prime}} u_{x}^{\alpha} \\
-g_{u_{x}^{\sigma^{\prime} x}}^{\rho} a_{\sigma}^{\sigma^{\prime}}+g_{u_{x}^{\sigma^{\prime}}}^{\rho} a_{\sigma}^{\sigma^{\prime}} \tag{9.41}
\end{gather*}
$$

$$
\begin{gather*}
-g_{u^{\prime}}^{\rho} a_{\sigma}^{\sigma^{\prime}} g_{u_{x}^{\mu}}^{\sigma}+g_{u_{x}^{\mu} u_{x}^{\sigma}}^{\rho} a_{\rho^{\prime}}^{\sigma}\left(g_{x}^{\rho^{\prime}}-g_{u_{x}^{\alpha}}^{\rho^{\prime}} u_{x}^{\alpha}\right)+g_{u_{x}^{\mu} u_{x}^{\sigma}}^{\rho} a_{\rho^{\prime}}^{\sigma} u_{x}^{\rho^{\prime}}+g_{u_{x}^{\mu} u_{x}^{\nu}}^{\rho} u_{x}^{\nu} .  \tag{9.42}\\
L_{\mu}=\left(\partial / \partial u_{x}^{\mu}-a_{\rho}^{\sigma} g_{u_{x}^{\mu}}^{\rho} \partial / \partial u_{x}^{\sigma}\right) L,  \tag{9.43}\\
L_{\mu \nu}=\left(\partial / \partial u_{x}^{\mu}-a_{\rho}^{\sigma} g_{u_{x}^{\mu}}^{\mu} \partial / \partial u_{x}^{\sigma}\right) L_{\mu}, \tag{9.44}
\end{gather*}
$$

and

$$
\begin{align*}
& A_{\mu \nu}\left(\lambda_{1}, \ldots, \lambda_{m-l}\right) \\
& =L_{\mu \nu}+\lambda_{\rho}\left(g_{u_{x}^{\sigma} u_{x}^{\sigma^{\prime}}}^{\rho} a_{\rho^{\prime}}^{\sigma} g_{u_{x}^{\nu}}^{\rho^{\prime}} a_{\rho^{\prime \prime}}^{\sigma^{\prime}} g_{u_{x}^{\alpha}}^{\rho^{\prime \prime}}-g_{u_{x}^{\sigma}}^{\rho} a_{x}^{\mu} a_{\rho^{\prime}}^{\sigma} g_{u_{x}^{\nu}}^{\rho^{\prime}}-g_{u_{x}^{\nu} u_{x}^{\sigma}}^{\rho} a_{\rho^{\prime}}^{\sigma} g_{u_{x}^{\alpha}}^{\rho^{\prime}}+g_{u_{x}^{\nu}}^{\rho} u_{x}^{\mu}\right), \tag{9.45}
\end{align*}
$$

$\left[a_{\rho}^{\sigma}\right]=\left[g_{u_{x}^{\rho}}^{\sigma}\right]^{-1}$ with $1 \leq \rho, \rho^{\prime}, \rho^{\prime \prime}, \sigma, \sigma^{\prime} \leq m-l$ and $m-l+1 \leq \mu, \nu \leq m$.

$$
\begin{align*}
\psi \equiv\left(L_{\mu}-\right. & \left.\lambda_{\mu}\right) \pi^{*}\left(d u_{x}^{\mu} \wedge d x\right)+\left(d \lambda_{\mu}-\left(A_{\mu}+\lambda_{\rho} B_{\mu}^{\rho}\right) \pi^{*} d x+\lambda_{\rho} A_{\mu \nu}^{\rho} \pi^{*} d u_{x}^{\nu}\right) \wedge \pi^{*} \theta^{\mu}  \tag{9.46}\\
& +\left(d \lambda_{\sigma}-\left(A_{\sigma}+\lambda_{\rho} B_{\sigma}^{\rho}\right) \pi^{*} d x+\lambda_{\rho} A_{\mu \sigma}^{\rho} \pi^{*} d u_{x}^{\mu}\right) \wedge \pi^{*} \theta^{\sigma} \\
& \bmod \left\{\pi^{*}\left(\theta^{\alpha} \wedge \theta^{\alpha^{\prime}}\right) \mid 1 \leq \alpha, \alpha^{\prime} \leq m\right\}, \tag{9.47}
\end{align*}
$$

with

$$
\begin{gather*}
A_{\mu}=L_{u^{\mu}}-L_{u_{x}^{\sigma^{\prime}}} a_{\rho^{\prime}}^{\sigma^{\prime}} g_{u_{x}^{\mu}}^{\rho^{\prime}}+L_{u_{x}^{\sigma^{\prime}}} a_{\rho^{\prime}}^{\sigma^{\prime}} g_{u^{\sigma}}^{\rho^{\prime}} a_{\rho^{\prime \prime}}^{\sigma} g_{u_{x}^{\mu}}^{\rho^{\prime \prime}}-L_{u^{\rho}} a_{\sigma}^{\rho} g_{u_{x}^{\mu}}^{\sigma}  \tag{9.48}\\
A_{\sigma}=L_{u^{\rho}} a_{\sigma}^{\rho}-L_{u_{x}^{\sigma^{\prime}}} a_{\rho^{\prime}}^{\sigma^{\prime}} g_{u^{\rho}}^{\rho^{\prime}} a_{\sigma}^{\rho} . \tag{9.49}
\end{gather*}
$$

The Cartan system is

$$
\begin{gather*}
\pi^{*} \theta^{\alpha} \quad(1 \leq \alpha \leq m),  \tag{9.50}\\
\left(L_{\mu}-\lambda_{\mu}\right) \pi^{*} d x \quad(m-l+1 \leq \mu \leq m),  \tag{9.51}\\
\left(d \lambda_{\mu}-\left(A_{\mu}+\lambda_{\rho} B_{\mu}^{\rho}\right) \pi^{*} d x+\lambda_{\rho} A_{\mu \nu}^{\rho} \pi^{*} d u_{x}^{\nu}\right) \quad(m-l+1 \leq \mu \leq m),  \tag{9.52}\\
\left(d \lambda_{\sigma}-\left(A_{\sigma}+\lambda_{\rho} B_{\sigma}^{\rho}\right) \pi^{*} d x+\lambda_{\rho} A_{\mu \sigma}^{\rho} \pi^{*} d u_{x}^{\mu}\right) \quad(1 \leq \sigma \leq m-l) . \tag{9.53}
\end{gather*}
$$

Proposition 9.2. Let $\left(I^{*}, L^{*}\right)$ be a locally embeddable differential system defined in $X=J^{1}\left(R, R^{m}\right) \mid g^{\rho}\left(x, u^{j}, u_{x}^{j}\right)=0, \operatorname{rank}\left[\partial g^{\rho} / \partial u_{x}^{j}\right]=m-l, 1 \leq$ $j \leq m$ and $1 \leq \rho \leq m-l, l \geq 0$, where $I^{*}=\operatorname{span}\left\{\theta^{\alpha} \mid 1 \leq \alpha \leq m\right\}$ and $L^{*}=\operatorname{span}\left\{\theta^{\alpha}, d x \mid 1 \leq \alpha \leq m\right\}$,

$$
\begin{gather*}
\theta^{\rho}=g_{u_{x}^{\sigma}}^{\rho}\left(d u^{\sigma}-u_{x}^{\sigma} d x\right)+g_{u_{x}^{\mu}}^{\rho}\left(d u^{\mu}-u_{x}^{\mu} d x\right) \quad 1 \leq \sigma, \rho \leq m-l  \tag{9.54}\\
\theta^{\mu}=d u^{\mu}-u_{x}^{\mu} d x \quad m-l+1 \leq \mu, \nu \leq m \tag{9.55}
\end{gather*}
$$

Let $Q_{i}=Q_{i}\left(x, u^{j}, u_{x}^{j}, u_{x x}^{\mu}, \lambda_{\rho} \lambda_{\rho_{x}}\right), 1 \leq i \leq m$, with $Q_{i}\left(x, u^{j}, u_{x}^{j}, t u_{x x}^{\mu}, \lambda_{\rho} \lambda_{\rho_{x}}\right)$ being polynomial in $t$ of degree less or equal to 1 , and

$$
\begin{gather*}
P_{\mu}=Q_{\mu}+\lambda_{\rho} B_{\mu}^{\rho}-\lambda_{\rho} A_{\mu \nu}^{\rho} \frac{d u_{x}^{\nu}}{d x}  \tag{9.56}\\
R_{\sigma}=Q_{\sigma}-\lambda_{\sigma x}+\lambda_{\rho} B_{\sigma}^{\rho}-\lambda_{\rho} A_{\mu \sigma}^{\rho} \frac{d u_{x}^{\mu}}{d x} \tag{9.57}
\end{gather*}
$$

and

$$
\begin{equation*}
R_{\mu}=P_{\mu}+D_{x}\left(\partial P_{\mu} / \partial u_{x x}^{\mu}\right) \tag{9.58}
\end{equation*}
$$

Furthermore, let us assume that the functions $P_{\mu}$ satisfy the Helmholtz conditions, that the functions $R_{\alpha}$ do not depend on $\lambda_{\rho}$ and $\left(\lambda_{\rho}\right)_{x}$ coordinates, and the 1 -form $\Theta=R_{\alpha}\left(x, u^{j}, u_{x}^{\mu}, u_{x x}^{\mu}\right) \theta^{\alpha}$ is closed $\bmod R$, where $R=C^{\infty}\left(Z, R^{*}\right), Z=J^{2}\left(R, R^{m}\right) \mid g^{\rho}\left(x, u^{j}, u_{x}^{j}\right)=0$ with coordinates $\left\{x, u^{j}, u_{x}^{\mu}, u_{x x}^{\mu}\right\}$ and $R^{*}=\operatorname{span}\left\{d x, d u_{x}^{\mu}, d u_{x x}^{\mu}\right\}$. Then, $Q_{i}$ is locally a EulerLagrange operator for a Lagrangian $L\left(x, u^{j}, u_{x}^{\mu}\right)$.

Proof: From Theorem 9.1 we know that a function $F\left(x, u^{j}, u_{x}^{j}\right)$ can be found that does not depend on $u_{x x}^{\nu}$, such that $E_{\mu}(F)=\partial F / \partial u^{\mu}-$ $D_{x} \partial F / \partial u_{x}^{\mu}=P_{\mu}$ (note that if $R_{\mu}$ does not depend on $\lambda_{\rho}$, then neither does $P_{\mu}$ ).

Therefore,

$$
\begin{equation*}
\partial P_{\mu} / \partial u_{x x}^{\nu}=F_{\mu \nu} \tag{9.59}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{\mu \nu}=\left(\partial / \partial u_{x}^{\mu}-a_{\rho}^{\sigma} g_{u_{x}^{\mu}}^{\rho} \partial / \partial u_{x}^{\sigma}\right) F_{\nu} \tag{9.60}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{\mu}=\left(\partial / \partial u_{x}^{\mu}-a_{\rho}^{\sigma} g_{u_{x}^{\mu}}^{\rho} \partial / \partial u_{x}^{\sigma}\right) F . \tag{9.61}
\end{equation*}
$$

The $R_{\mu}$ functions satisfy

$$
\begin{equation*}
R_{\mu}=\left(\partial / \partial u^{\mu}-a_{\rho}^{\sigma} g_{u^{\mu}}^{\rho} \partial / \partial u_{x}^{\sigma}\right) F \tag{9.62}
\end{equation*}
$$

Hence, if the $\Theta$-form is closed $\bmod R$, then locally

$$
\begin{equation*}
R_{\sigma}=\left(\partial / \partial u^{\sigma}-a_{\rho}^{\sigma^{\prime}} g_{u^{\sigma}}^{\rho} \partial / \partial u_{x}^{\sigma^{\prime}}\right) F \tag{9.63}
\end{equation*}
$$

Finally, we make $F=L$.

In addition, if the domain of the $R_{\alpha}$ functions is simply connected and

$$
\begin{align*}
\Omega_{P}=P_{\mu} \theta^{\mu} & \wedge d x+1 / 2\left[\partial P_{\mu} / \partial u_{x}^{j}-D_{x} \partial P_{\mu} / \partial u_{x x}^{j}\right] \theta^{\mu} \wedge \theta^{j} \\
& +1 / 2\left[\partial P_{\mu} / \partial u_{x x}^{j}+\partial P_{j} / \partial u_{x x}^{\mu}\right] \theta^{\mu} \wedge \theta_{x}^{j} . \tag{9.64}
\end{align*}
$$

is exact, then we have a global solution for the inverse problem.
Example 6. Let $X$ be the $J^{1}\left(R, R^{3}\right) \mid g\left(v, y, z, v_{x}, y_{x}, z_{x}\right)=0$, where

$$
\begin{equation*}
g\left(v, y, z, v_{x}, y_{x}, z_{x}\right)=m v v_{x}-m g z_{x}+R \sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}} . \tag{9.65}
\end{equation*}
$$

Let

$$
\begin{equation*}
Q_{1}=-\lambda_{\rho_{x}}-\frac{\sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}}{m v^{3}}=0 \tag{9.66}
\end{equation*}
$$

and

$$
\begin{align*}
& Q_{2}=-\frac{R y_{x}}{m v^{3}}-\frac{v\left(1+z_{x}^{2}\right) y_{x x}-y_{x} z_{x} z_{x x}-v_{x} y_{x} \sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}}{v^{2}\left(\sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}\right)^{3}} \\
& -\lambda_{1}\left(\frac{R\left(1+z_{x}^{2}\right) y_{x x}}{\left(\sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}\right)^{3}}+\frac{R z_{x} y_{x} z_{x x}}{\left(\sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}\right)^{3}}\right)=0  \tag{9.67}\\
& Q_{3}=-\frac{\sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}}{m v^{3}}\left(m g-\frac{R z_{x}}{\sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}}\right) \\
& \quad-\frac{v\left(1+y_{x}^{2}\right) z_{x x}-y_{x} z_{x} y_{x x}-v_{x} z_{x} \sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}}{v^{2}\left(\sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}\right)^{3}} \\
& -\lambda_{1} \frac{R\left(1+y_{x}^{2}\right) z_{x x}}{\left(\sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}\right)^{3}}+\frac{R z_{x} y_{x} y_{x x}}{\left(\sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}\right)^{3}}=0 . \tag{9.68}
\end{align*}
$$

Hence,

$$
\begin{align*}
P_{2}= & -\frac{R y_{x}}{m v^{3}}-\frac{v\left(1+z_{x}^{2}\right) y_{x x}-y_{x} z_{x} z_{x x}-v_{x} y_{x} \sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}}{v^{2}\left(\sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}\right)^{3}}  \tag{9.69}\\
& P_{3}=-\frac{\sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}}{m v^{3}}\left(m g-\frac{R z_{x}}{\sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}}\right) \\
+ & \frac{v\left(1+y_{x}^{2}\right) z_{x x}-y_{x} z_{x} y_{x x}-v_{x} z_{x} \sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}}{v^{2}\left(\sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}\right)^{3}} \tag{9.70}
\end{align*}
$$

and

$$
\begin{gather*}
R_{1}=-\frac{\sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}}{m v^{3}},  \tag{9.71}\\
R_{2}=-\frac{R y_{x}}{m v^{3} \sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}},  \tag{9.72}\\
R_{3}=-\frac{\sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}}{m v^{3}}\left(m g-\frac{R z_{x}}{\sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}}\right) . \tag{9.73}
\end{gather*}
$$

It is easy to verify that $P_{2}$ and $P_{3}$ satisfy Helmholtz conditions, and that the 1 -form $\Theta=R_{1} \theta^{1}+R_{2} \theta^{2}+R_{3} \theta^{3}$ is closed mod $R$, with $R^{*}=$ span $\left\{d x, d y_{x}, d z_{x}\right\}$ and $R=C^{\infty}\left(X, R^{*}\right)$. The Lagrangian for this example is $L=\frac{\sqrt{1+\left(y_{x}\right)^{2}+\left(z_{x}\right)^{2}}}{v}$.

## References

[1] I. M. Anderson, Natural variational principles on Riemannian manifolds, Ann. of Math., 120 (1984), 329-370.
[2] - Introduction to the variational bicomplex, Contemporary Mathematics, 132 (1992), 51-73.
[3] -, On the existence of global variational principles, Amer. J. Math., 102 (1980), 781-868
[4] R. Bryant, S. S. Chern, R. Gardner and P. Griffiths, Essays on exterior differential systems, Springer-Verlag, New York, 1990.
[5] C. Caratheodory, Variationsrechnung bei mehrfachen Integralen, Acta Szeged 4 (1929).
[6] E. Cartan, Les systémes differentielles exterieurs et leurs applications géométriques, Herman, Paris, (1945).
[7] P. Dedecker, Calcul des variations, formes differentielles et champs geodésiques. Colloques. Internat. du C.N.R.S, Strasbourg, (1953).
[8] -, Calcul des variations et topologie algebraique Mem. Soc. Roy. Sc. Liége 4-e série, XIX, fase I (1957).
[9] -, On the generalization of symplectic geometry to muliple integrals in the calculus of variations, Lecture Notes in Math., Vol. 570, Springer, Berlin and New York, 1977.
[10] Th. De Donder, Téorie invariantive du calcul de variations, Gauthier-Villars, Paris, 1935.
[11] D. G. B. Edelen, The invariance group for Hamiltonian systems of partial differential equations, Arch.Rational Mech. Anal., 5(1961), 95-176.
[12] —, Nonlocal variations and local invariance of fields, American Elsevier. New York, 1969.
[13] H. I. Eliasson, Variational integrals in fiber bundles, Proc. Sympos. Pure Math., Vol. 16, Amer. Math. Soc., Providence, RI (1970), 67-89.
[14] G. B. Folland, Introduction to partial differential equations, Mathematical Notes 17, Princeton University Press, Princeton, 1976.

São Paulo J.Math.Sci. 2, 1 (2008), 239-262
[15] P. L. Garcia, The Poincaré-Cartan invariant in the calculus of variations, Sympos. Math., 14 (1974), 219-227.
[16] -, Gauge algebras, curvature and symplectic structure. J. Differential Geometry, 12 (1977), 209-246.
[17] -, Critical principal connections and gauge invariance, Rep. Math. Phys., 13 (1978), 337-344.
[18] —, Tangent structure of Yang-Mills equations and Hodge Theory, Lecture Notes in Math., Vol. 775, Springer, Berlin and New York, 1980.
[19] P. L. Garcia, A. Pérez-Rendón, Symplectic approach to the theory of quantized fields I, Comm. Math Phys., 13 (1969), 24-44.
[20] -, Symplectic approach to the theory of quantized fields. II, Arch. Rational Mech. Anal., 43 (1971), 101-124.
[21] -, Reducibility of the symplectic structure of minimal interactions, Lecture Notes in Math., Vol. 676, Springer, Berlin and New York, 1978, 409-433.
[22] H. Goldschmidt, S. Sternberg, The Hamilton-Cartan formalism in the calculus of variations, Ann. Inst. Fourier (Grenoble), 23 (1973), 203-267.
[23] P. Griffiths, Exterior differential systems and the calculus of variations, Birkäuser Boston, Basel, Stuttgart, 1983.
[24] C. Günther, The polysymplectic Hamiltonian formalism in the field theory and calculus of variations I: The local case, J. Differential Geometry, 25 (1987), 23-53.
[25] P. G. Henriques, Calculus of variations in the context of exterior differential systems, Differential Geometry and its Applications (North-Holland), 3 (1993), 331-372
[26] -, Well-posed variational problem with mixed endpoint conditions, Differential Geometry and its Applications (North-Holland), 3 (1993), 373-393.
[27] - The Noether theorem and the reduction procedure for the variational calculus in the context of differential systems, C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 987-992.
[28] R. Hermann, Differential geometry and the calculus of varitions, Academic Press, New York, 1968.
[29] J. Kijowski, W. M. Tulczyjew, A symplectic framework for field theories, Lecture Notes in Math., Vol 107, Springer, Berlin and New York, 1979.
[30] D. Krupka, Lagrange theory in fibered manifolds, Rep. Math. Phys, 2 (1970), 121-133.
[31] -, A geometric theory of ordinary first order variational problems in fibered manifolds I: Critical sections, J. Math Anal. Appl., 49 (1975), 180-206.
[32] -, A geometric theory of ordinary first order variational problems in fibered manifolds II: Invariance, J. Math Anal. Appl. 49, (1975), 469-476.
[33] T. Lepage, Sur les champs geodésiques des integrals multiples, Bull. Acad. Roy. Belg, CI. Sc. , 5.éme série 22 (1936).
[34] -, Sur les champs geodésiques des integrals multiples, Bull. Acad. Roy. Belg, CI. Sc. , 5.éme série 27 (1941).
[35] -, Champs stationnaires, champs geodésiques et formes integrables I, II. Bull. Acad. Roy. Belg, CI. Sc., 5.éme série 28 (1942).
[36] A. Liesen, Feldtheorie in der Variatonrechnung mehfacher Integrale, Math Annalen I-171 (1967), 194-218, II-171 (1967), 273-292.
[37] P. J. Olver, Euler operators and conservation laws of BBM equation, Math. Proc. Cam. Phil. Soc., 85 (1979), 143-160.
[38] -, Applications of Lie groups to differential equations, Springer-Verlag, New York, 1986.
[39] R. Ouzilou, Expression symplectic des problems variationnels, Sympos. Math 14 (1972), 85-98.
[40] H. Rund, The Hamilton-Jacobi theory in the calculus of variations, Van Nostrand, Princeton, NJ, 1966.
[41] J. Scherk, An introduction to the theory of dual models and strings, Rev Mod. Physics 47 (1975) 123-164.
[42] J. H. Schwarz, Superstring theory, Physics Report 89 (North Holland Publishing Company), 3 (1982) 223-322.
[43] I. Stakgold, Green's functions and boundary value problems, A. Wiley, 1979.
[44] F. Takens, Symmetries, conservation laws and variational principles, Lectures Notes in Mathematics, Vol. 597, Springer-Verlag, New York, (1977), 581-603.
[45] -, A global version of the inverse problem to the calculus of variations, J. Differential Geometry, 14 (1979), 543-562.
[46] W. M. Tulczyjew, The Euler-Lagrange resolution, Lecture Notes in Mathematics, Vol. 836, Springer-Verlag, New York, (1980), 22-48.
[47] —, Cohomology of the Lagrange complex, Ann. Scuola. Norm. Sup. Pisa (1988), 217-227.
[48] A. M. Vinagradov, the C-spectral sequence, Lagrangian formalism and conservation laws I, II, J. Math Anal. Appl 100 (1984), 1-129.
[49] -, Symmetries and conservation laws of partial differential equations: basic notions and results, Acta Appl. Math., 15 (1989), 3-22.
[50] -, Scalar differential invariants, diffieties and characteristic classes, Mechanics, Analysis and Geometry: 200 Years after Lagrange, M. Francavglia(ed), Elsevier Amsterdam, (1991), 379-416.
[51] H. Weyl, Geodesic fields in the calculus of variations for multiple integrals, Annals of Math., 36 (1935), 607-629.


[^0]:    Supported by the Center for Mathematical Analysis, Geometry, and Dynamical Systems.

