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The inverse problem of variational calculus and
the problem of mixed endpoint conditions

Pedro Gonçalves Henriques

Abstract. P. A. Griffiths established the so-called mixed endpoint
conditions for variational problems with non-holonomic constraints.
We will present some results in this context and discuss the inverse
problem of calculus of variations.
Keywords:Inverse problem of calculus of variations.

1. Introduction

The study of Calculus of Variations for multiple integrals was first devel-
oped by Caratheodory [1929], while Weil-De Donder [1936], [1935] advanced
a different theory later. The two approaches were unified by Lepage [1936-
1942], Dedecker [1953-1977] and Liesen [1967] in a framework using the
n-Grassmannian manifold of a C∞ manifold. Important contributions in
the Calculus of Variations on smooth manifolds were made by R. Hermann
[1966], H. Goldschmidt and S. Sternberg [1973] with their Hamilton-Cartan
formalism, as well as by Ouzilou [1972], D. Krupka [1970-1975] and I. M.
Anderson [1980]. The symplectic approach of P. L. Garcia and A. Pérez-
Rendón [1969-1978], the multisymplectic version of Kijowski and Tulczy-
jew [1979] based on the theory of Dedecker, the polysymplectic approach
of C. Günther [1987], Edelen [1961] and Rund [1966] are also important
references in this field. Here we deal with the broader problem of finding
extrema of a functional on a set of n-dimensional integral manifolds of a
Pfaffian differential system.

In 1983, Griffiths proposed a new approach to variational problems based
on techniques from the theory of exterior differential systems. His work
dealt with the problem of finding extrema for a functional φ defined on the
set of one-dimensional integral manifolds of a differential system (I∗, L∗).
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240 Pedro Gonçalves Henriques

This approach was established using intrinsic entities. In this work we
present a general setting based on [25] (sections 2 to 8), and we deal with
the inverse problem (section 9).

In 1887 Helmholtz addressed the following problem: given

Pi = Pi(x, u
j , uj

x, u
j
xx),

is there a Lagrangian L(x, uj , uj
x) such that

Ei(L) = ∂L/∂ui −Dx∂L/∂u
i
x = Pi

where
Dx = ∂/∂x+ ui

x∂/∂u
i + ui

xx∂/∂u
i
x?

He found necessary conditions for Pi to form an Euler-Lagrange system
of equations (see (9.1), (9.2) and (9.3)). Some years later, these condi-
tions where proved to be locally sufficient. I. M. Anderson [1992], [1980],
P. J. Olver [1986], F. Takens [1979], W. M. Tulczyjew [1980] and A. M.
Vinagradov [1984] generalized Helmholtz’s conditions for both higher order
systems of partial differential equations and multiple integrals.

2. Integral manifolds of a differential system and valued dif-
ferential systems

We assume that a Pfaffian differential system (I∗, L∗) is given on a real-
manifold X by:

i) a subbundle I∗ ⊂ T ∗X,
ii) another subbundle L∗ ⊂ T ∗X with I∗ ⊂ L∗ ⊂ T ∗X,

such that the rank (L∗/I∗) = n (with n being a natural number).

An integral manifold of (I∗, L∗) is given by an oriented connected com-
pact n-dimensional smooth manifold N (possibly with a piecewise smooth
boundary ∂N) together with a smooth mapping

f : N → X

satisfying

I∗f(x)

⊥
= L∗

f(x)

⊥
+ f∗(TN), (2.1)

for all x ∈ N, where f∗ : TxN → Tf(x)X is the differential of f at x.

We denote by V (I∗, L∗) the collection of integral manifolds f of (I∗, L∗).

A valued differential system is a triple (I∗, L∗, ϕ), where (I∗, L∗) is a
Pfaffian differential system and ϕ is an n-form on X.

We define the functional φ associated with (I∗, L∗, ϕ) in V (I∗, L∗) by:

φ : V (I∗, L∗) → R,
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f → φ[f ] =

∫

f∗ϕ. (2.2)

3. Local embeddability

The following definition is a general setting for the study of problems in
the Calculus of Variations. In [25] we proved that there exist locally defined

mappings that induce (I∗, L∗) from the canonical system in J1(Rn, Rs)
possibly with some constraints, establishing a local coorespondence be-
tween these differential systems. Let us assume that d(C∞(X,L∗)) ⊂
C∞(X,L∗ ∧ T ∗X), and let d′ = dimX; s = rankI∗ (d(C∞(X,L∗)) is
the set of images produced by the exterior derivative of C∞(X,L∗)). Us-
ing the Frobenius theorem, we can set for every p ∈ X a chart coordinate

system {u1, ..., us+n, v1, ..., vd′−s−n} so that

i)
L∗ = span{duα|1 ≤ α ≤ s+ n}, (3.1)

ii)

L∗⊥ = span{ ∂

∂vi
|1 ≤ i ≤ d′ − s− n} (3.2)

for an open subset U of X with p ∈ U.

Definition 3.1. Let (I∗, L∗) be a Pfaffian differential system with

d(C∞(X,L)) ⊂ C∞(X,L∗ ∧ T ∗X).

We say that (I∗, L∗) is locally embeddable if for every p ∈ X there exist an
open neighborhood U of p and local coframes

CF = {θ1, ..., θs} (3.3)

for I∗ and
CF ′ = {θ1, ..., θs, du

′′s + 1, du′′s + n} (3.4)

for L∗
U , satisfying the following conditions:

(i)

δ(I∗U ∧ Ω) ⊂ T ∗ ∧ Λn(L∗
U )/(T ∗U ∧ I∗U ∧ Λn−1(L∗)) (3.5)

(ii) Ker δ is a constant rank subbundle of I∗ ∧ Ω,

where Ω = span{du′′s+1∧ ...∧ d̂u′′s+β ∧ ...∧du′′s+n}; d̂u′′s+β -means deletion

of the s+ b factor (for n = 1, d̂u′′s+1 = 1). We use u′′ since we may have
to reorder these coordinates.
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The map δ : I∗ ∧ Ω → Λn+1(T ∗U)/I∗u ∧ (Λn(T ∗ U)) is induced by

d : C∞(U, I∗ ∧ Ω) → C∞(U,Λn+1(T ∗U))

on I∗ ∧ Ω.

This definition means that if I∗ has no Cauchy characteristics, the struc-
ture equations are locally:

dθi ≡ πi
j ∧ du′′s+j +Aij′

i′απ
i′

j′ ∧ θα +Bi
αβθ

α ∧ du′′s+βmodI ∧ I (3.6)

1 ≤ i, i′, α ≤ s, 1 ≤ j, j′, β ≤ n, I = C∞(X, I∗).

4. The Cartan system of Ψ

Let (I∗, L∗, ϕ) be a valued differential system on X, and W be the total
space of I∗. Let χ be the canonical form on T ∗X, and i the inclusion map
W i

↪→T
∗X.

Let us assume that there exists a local n-form ω inducing a nonzero
section of Λn(L∗/I∗) and has the following form:

ω = ω1 ∧ ... ∧ ωn. (4.1)

We define:

ωi = (−1)i−1ω1 ∧ ... ∧ ̂ωi... ∧ ωn. (4.2)

Let W n be the n-Cartesian power of W, and Z be a subset of W n defined
by Z = {z ∈ W n : π′(z) ∈ ∆Xn}, where π′ is the natural projection
π′ : W n → Xn, and ∆Xn is the diagonal submanifold of Xn. The subset
Z is a vector subbundle over X and dimZ = d+ sn. We define

Ψ = dψ (4.3)

where ψ is given by

ψ = π∗ϕ+ (πj ◦ i′)∗[i∗(χ)] ∧ π∗ωj . (4.4)

πj is the natural projection into the jth component πj : W n →W , i’ is the
inclusion map Z →W n and π is the natural projection π : Z → X.

Definition 4.1. Given the n + 1-form Ψ, the Cartan system C(Ψ) is the
ideal generated by the set of n-forms

{vyΨ where v ∈ C∞(Z, TZ)}.
An integral manifold of (C(Ψ), ω) is given by an oriented connected com-
pact n-dimensional smooth manifold N (possibly with a piecewise smooth
boundary ∂N) together with a smooth mapping

f : N → X

satisfying:

São Paulo J.Math.Sci. 2, 1 (2008), 239–262



Inverse problem of variational calculus and problem of mixed endpoint conditions 243

f∗θ = 0 for every θ ∈ C(Ψ) (4.5)

and
f∗(ω) 6= 0. (4.6)

A solution of (C(Ψ), ω) projected in X will give an extremum of φ.

5. The momentum space, prolongation of (C(Ψ), π∗ω) in the
momentum space, non-degeneracy

The momentum space is constructed in the following way. Suppose we
are given on Z (see section 4):

(i) a closed (n+ 1)-form Ψ with the associated Cartan system C(Ψ),

(ii) π
′∗ the pull back to Z of the ω n-form which induces a nonzero

section on Λn(L∗/I∗).

Integral elements of (C(Ψ), π′∗ω) are defined in a similar way as the
integral elements of (I∗, L∗). The set of integral elements [x0, E

n
0 ] gives a

subset

Vn(C(Ψ), π∗ω)) ⊂ Gn(Z) (Gn(Z) is the n-Grassmanian).

Denoting by π′′ the projection Gn(Z) → Z and assuming regularity at each
step, one inductively defines:

Z1 = π′′(Vn(C(Ψ), π∗ω), V ′
n(C(Ψ), π∗ω)) =

{E ∈ Vn(C(Ψ), π∗ω) : E tangent to Z1}, (5.1)

Z2 = π′′(V ′
n(C(Ψ), π∗ω), V ′′

n (C(Ψ), π∗ω)) =

{E ∈ V ′
n(C(Ψ, π∗ω)) : E tangent to Z2}. (5.2)

Definition 5.1. Suppose (I∗, L∗, ϕ) is a valued differential system, with

(I∗, L∗) being a locally embeddable differential system and ω = ω1∧ ...∧ωn.
If there exists a k0 ∈ N such that Zk0 = Zk0+1 = ... = Zk0+n′(n′ ∈ N) in
the above construction, with

(i) Zk0 being a manifold of dimension (n+ 1)m+ n for m ∈ N , and
(ii) (C(Ψ), π∗ω)Zk0

being a differential system in Zk0 with rn = 0 (Car-

tan number in Cartan-Kähler Theorem) for all Vn−1(C(Ψ), π∗ω);
(for n = 1 we follow [23] and replace this condition by ψ ∧ Ψn 6=
0 on Zk0).

Then (I∗, L∗, ϕ) is a non-degenerate valued differential system, and Z = Y
is called the momentum space.
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We call (C(Ψ), π∗ω)Y the prolongation of (C(Ψ), π∗ω) in the momentum
space. By construction, the differential system (C(Ψ), π∗ω)Y satisfies:

(i) the projection (C(Ψ), π∗ω) → Y is surjective,
(ii) the integral manifolds of (C(Ψ), π′∗ω) on Z coincide with those of

(C(Ψ), π∗ω) on Y .

6. Well-posed valued differential systems

Definition 6.1. (I∗, L∗, ϕ, P ∗,M∗) is a well-posed valued differential sys-
tem, if the following conditions are satisfied:

(i) (I∗, L∗, ϕ) is a non-degenerate valued differential system (with
dimY = (n+ 1)m+ n) and ϕ = Lω for a smooth function L on X;

(ii) there exists a subbundle P ∗ of I∗ of rank m and a subbundle M∗ of
L∗ of rank m+ n, such that:

(a)
I∗ ⊂ L∗ ⊂ T ∗X
∪ ∪
P ∗ ⊂ M∗,

(b) the locally given n-form ω also induces a nonzero section on
Λn(M∗/P ∗),

(c) Y ⊂ (P ∗)n|∆Xn , with Y a subbundle of (P ∗)n|∆Xn ,
(iii) π”∗M∗ =span{π∗θ|θ ∈ C∞(X,M∗)} is completely integrable on Y ,

where π” = π ◦ i. As before i denotes the inclusion mapping Y → Z
and π the projection Z → X.

Let us assume that there exists a coframe CF = {θα, dus+j , πi′

j′ , π
i′′

j |1 ≤
α ≤ s, 1 ≤ i′ ≤ sl, j

′ ∈ Li′ , sl+1 ≤ i′′ ≤ s, 1 ≤ j ≤ n} for T ∗X with
Li′ ⊂ {k ∈ N, 1 ≤ k ≤ n} such that

(i)
I∗ = span{θα|1 ≤ α ≤ s}; (6.1)

(ii)

L∗ = span{θα, dus+j|1 ≤ α ≤ s, 1 ≤ j ≤ n}; (6.2)

(iii) T ∗X = L∗⊕R∗ ( ⊕ denotes a direct sum) withR∗ = span{πi′

j′, π
i′′

j |1 ≤
i′ ≤ sl, j

′ ∈ Li′ , sl+1 ≤ i′′ ≤ s, 1 ≤ j ≤ n};
(iv)

dθi′

j′′ ≡ 0 mod I, for j” /∈ Li′ ; (6.3)

(v)

dθi′

j′ ≡ πi′

j′ ∧ ω mod I, for j′ ∈ Li′ ; (6.4)

(vi)

dθi′′

j ≡ πi′′

j ∧ ω mod I, when 1 ≤ j ≤ n; (6.5)
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(vii) πi′

j′ , π
i”
j are linearly independent mod L.

We define θα
j
.
= θα ∧ ωj.

Let dϕ ≡ Lj
i′′ ∧ πi′′

j + Lj′

i′ ∧ πi′

j′ mod I and dLα
ν ≡ Lαα′

νν′ πν′

α′ mod πL∗

1 ≤ α,α′ ≤ s ν ∈ Lα and ν ′ ∈ Lα′ .

Quadratic form A: Let (I∗, L∗, ϕ, P ∗,M∗) be a well-posed valued diffe-
rential system and A be a quadratic form defined in T ∗X given by

A(v,w) = Lαα′

νν′ vα
νw

α′

ν′ , where v = vθα∂/∂θα + vπν
α
∂/∂πν

α and

w = wθα∂/∂θα + wπν
α
∂/∂πν

α. This quadratic form plays an important role
in establishing necessary conditions for a local extremum.

6.1. Generalized Lagrange Problem. Let us describe the following
problem:

Generalized Lagrange Problem. Let X = J1(Rn, Rm) (the 1 jet man-
ifold), with the canonical system I∗ defined on X (i.e. I∗ = span{θα =

dyα − yα
xidx

i}). Let ϕ = Lω with ω = dx1 ∧ ... ∧ dxn. We choose x1, ..., xn

to be coordinates for Rn, and y1, ..., ym to be coordinates for Rm.

We proved in [26] that a Lagrange problem for n = 1 with LdetLαα′

νν′ 6=
0, and with constraints not envolving more than one variable ẏ in each
equation of restriction is a well posed valued differential system.

7. The Euler-Lagrange differential system for a well-posed
valued differential system

When we compute the first variation of φ, we find an integral over N
and another over the boundary ∂N . The volume integral will vanish for
projections of integral manifolds of the Cartan system (C(Ψ), π∗ω) into X.
Choosing suitably the set of boundary conditions we can make the integral
over the boundary to vanish as well, providing stationary integral manifolds
for generalized Lagrange problems (see [25]).

7.1. The Euler-Lagrange differential system.

Definition 7.1. Let (I∗, L∗, ϕ) be a valued differential system. The Cartan
system (C(Ψ), π∗ω) is called the Euler-Lagrange differential system associ-
ated with (I∗, L∗, ϕ).

Assuming that (I∗, L∗, ϕ) is non-degenerate, we now consider the re-
striction to Y of the Euler-Lagrange differential system associated with
(I∗, L∗, ϕ). The following proposition is easy to prove (see [25]):

Proposition 7.1. If g is an integral manifold of (C(Ψ), π∗ω), then π ◦ g ∈
V (I∗, L∗), where π is the natural projection π : Z → X.
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We denote by (V (C(Ψ), π∗ω) the set of integral manifolds of
(C(Ψ), π∗ω)).

8. Examples

Example 1. Strings [41], [42]

Let X = J1(N,Rm), N being a two-dimensional manifold. In this case
I∗ = span{dxα − x′αdσ − ẋαdτ |0 ≤ α ≤ m− 1, xα} are coordinates in Rm,
and σ, τ are coordinates of N, x′α = ∂xα

∂σ
, ẋα = ∂xα

∂τ
. In Rm we take a

metric defined in TRm by g00 = −g11 = 1, 1 ≤ i ≤ m and gij = 0 for i 6= j.
The set X is given by: X = {x ∈ X0|(ẋ · ẋ) ≥ 0 and (x′ · x′) ≤ 0} (where
(·) denotes the inner product with respect to the metric g). The form ω is
ω = dσ ∧ dτ. We have

ϕ = Lω = [(x′ · ẋ)2 − (ẋ · ẋ)(x′ · x′)]1/2dσ ∧ dτ. (8.1)

Note: L is a function of ẋ and x′ only.

First variation of φ.. Let φ =
∫

f∗(ϕ), where f ∈ V (I∗, L∗). Then

δφ =

∫

f∗(vydϕ + d(vyϕ)), (8.2)

where v(σ, τ) = F∗(∂/∂t)(t, σ, τ)|t=0 , (σ, τ) ∈ N, t ∈ [0, 1] and F is the one
parameter variation of f i.e, F (t, σ, τ)|t=t1 ∈ V (I∗, L∗) for all 0 ≤ t1 ≤ 1.
Hence the Lie derivative of dxα − x′αdσ− ẋαdτ by v along f(N) vanishes,
(d(vy(dxα − x′αdσ − ẋαdτ)) + (vy(−dx′α ∧ dσ − dẋα ∧ dτ)))|f(N) = 0.

The form ΨZ is given by

ΨZ = (Lẋα − λ̇α)π∗(dẋα ∧ ω) + (Lx′α − λ′α)π∗(dx′α ∧ ω)+

(dλ̇α ∧ π∗dσ − dλ′α ∧ π∗dτ) ∧ π∗dxα + (−ẋαdλ̇α − x′αdλ′α) ∧ π∗ω (8.3)

The Cartan system in Z is:

(i)

∂/∂λ̇αyΨZ = −π∗((dxα − ẋαdτ) ∧ π ∗ dσ) = 0, (8.4)

(ii)

∂/∂λ′αyΨZ = −π∗((dxα − x′αdτ) ∧ π ∗ dσ) = 0, (8.5)

(iii)

∂/∂ẋα
yΨZ = −π∗(Lẋα − λ̇α)ω = 0, (8.6)

(iv)

∂/∂x′αyΨZ = −π∗(Lx′α − λ′α)ω = 0, (8.7)

(v)

∂/∂xα
yΨZ = −π∗dλ̇α ∧ π∗dσ − dλ′α ∧ π∗dτ = 0. (8.8)
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Hence
Z1 = Z|Lẋα−λ̇α

, Lx′α−λ′
α
. (8.9)

Note that from (i) and (ii) we have θα = 0;

from (iii), (iv) and (v) we have E[L]ω = (∂L/∂xα − Dσ∂L/∂x
′α −

Dτ∂L/∂ẋ
α)ω = 0 for Dτ = ∂/∂τ + ẋα∂/∂xα + ẍα∂/∂ẋα and Dσ =

∂/∂σ + x′α∂/∂xα + x′′α∂/∂x′α.

The generalized momenta are given by

λ̇α =
x′α(x′ · ẋ) − (x′ · x′)ẋα

[(x′ · ẋ)2 − (ẋ · ẋ)(x′ · x′)]1/2
, (8.10)

λ′α =
ẋα(x′ · ẋ) − (ẋ · ẋ)x′α

[(x′ · ẋ)2 − (ẋ · ẋ)(x′ · x′)]1/2
. (8.11)

Let R2m|(ẋ · ẋ) ≥ 0, (x′ · x′) ≤ 0 F ′

→ R2m be given by

F ′(ẋα, x′α) = (λ′α(ẋα, x′α), λ̇α(ẋα, x′α)).

In this case F ′ has an inverse in R2m|(ẋ · ẋ) ≥ 0, (x′ · x′) ≤ 0 and F ′−1

is given by:

ẋα =
λ′α(λ′ · λ̇) − (λ′ · λ′)λ̇α

[(λ′ · λ̇)2 − (λ̇ · λ̇)(λ′ · λ′)]1/2
, (8.12)

x′α =
λ̇α(λ′ · λ̇) − (λ̇ · λ̇)λ′α

[(λ′ · λ̇)2 − (λ̇ · λ̇)(λ′ · λ′)]1/2
. (8.13)

The Cartan system in Z ′
1 = Z1|(λ̇ · λ̇) ≥ 0, (λ′ ·λ′) ≤ 0 is given by (i),(ii),

(iv) and (v) of the Cartan system in Z. Let Y = Z ′
1
. The prolongation of

(C(Ψ), π∗ω) ends at Z ′
1. The dimension of Y is dimY = 3m+2. Every point

in Y is a zero-dimensional integral element of (C(Ψ), π∗ω), and r1 = 2m+1.
The Cartan system is in involution at x if detC(v)|X0 6= 0, and

C(v) =







< v, dτ > I < v, dσ > I
m×m m×m
A B

m×m m×m






(8.14)

for every v 6= 0 along E1, with [x0, E
1] being any integral element of

(C(Ψ), π∗ω), where

A =< v, dσ > Lẋαẋβ− < v, dτ > Lx′αẋβ (8.15)

and

B =< v, dσ > Lẋαx′β− < v, dτ > Lx′αx′β , with 0 ≤ β ≤ m− 1. (8.16)
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Let us define the energy momentum current P = (P 0, ..., Pm−1) on the
surface γ = {xα(σ, τ), σ, τ |0 ≤ α ≤ m− 1} by

Pα =

∫

Ṗαdτ + P ′αdσ (8.17)

where Ṗα = −Lẋα , P ′α = −Lx′α .

Case 1. Open strings. Let N = [0, π] × [t1, t2], (t1, t2) ∈ R2, t1 < t2. We
will impose the following constraints on variations of f ∈ V (I∗, L∗) :

a)
g∗(vyπ∗ω)∂N = 0, (8.18)

b)

g∗(vyπ∗(dxα − ẋαdτ − x′αdσ))B = 0 (8.19)

where B = [0, π] × t1 ∪ [0, π] × t2,
c)

λ′α = 0 on g(A) where A = N \B. (8.20)

In this case, G is any smooth lift of F to Y with G|t=0 = g, (π ◦ g = f),
and v is a vector field defined along g with v = G∗(∂/∂t)|t=0. The constraint
c) forces the boundary term in the first variation of φ(f) vanish.

Case 2. Closed strings. Let N = S1 × [t1, t2], with S1 being the unit

circle. Its coordinate σ ∈ [0, 2π], and (t1, t2) ∈ R2, t1 < t2. We will replace
the constraints on variations of f ∈ V (I∗, L∗) of the previous case with the
following:

a)
g∗(vyπ∗ω)∂N = 0, (8.21)

b)

g∗(vyπ∗(dxα − ẋαdτ − x′αdσ))B = 0 (8.22)

where B = S1 × t1 ∪ [0, π] × t2.

The quadratic form A.. The cone X ′ = X|(ẋ · ẋ) ≥ 0, (x′ · x′) ≤ 0

is convex. F ′ has an inverse in X ′ with F ′ : X”F−1

→ R2m where X ′′ =

R2m|(λ̇ · λ̇) ≥ 0, (λ′λ′) ≤ 0. Hence the matrix

A′ =

[

Lẋαẋβ Lẋαx′β

Lx′αẋβ Lx′αx′β

]

(8.23)

has an inverse. Therefore, the eigenvalues of A′ do not vanish on X ′.
Thus, it suffices to know the eigenvalues of A′ at an interior point of X ′ to
determine the number of positive eigenvalues of A′ in every point of X ′.
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Let

a = {ẋ0 = 1, ẋi = 0, x′1 = 1, x′j = 0 with 1 ≤ i ≤ m− 1, j = 0

or 2 ≤ j ≤ m− 1}.
Then

Lẋ0x′1(a) = −Lẋ1x′0(a) = −Lẋix′i(a) = Lx′ix′i(a) = 1, 2 ≤ i ≤ m− 1,
(8.24)

and all the other elements of A′ are zero. We conclude that the matrix has
m-positive eigenvalues and m-negative eigenvalues in X ′ and the quadratic
form A is neither positive nor negative definite.

Example 2. Let X0 = J1(R2, Rm), N ⊂ R2, with N being a two-dimen-
sional manifold with boundary. Let also
I∗ = span{dxα − x′αdσ − ẋαdτ |1 ≤ α ≤ m}, xαare coordinates in Rm and

x′α = ∂xα

∂σ
, ẋα = ∂xα

∂τ
. Moreover, let

ϕ = Lω = [

m
∑

α=1

(x′α)2 + (ẋα)2]dσ ∧ dτ. (8.25)

The Cartan system in Z is

(i)

∂/∂λ̇αyΨZ = −π∗((dxα − ẋαdτ) ∧ π ∗ dσ) = 0, (8.26)

(ii)

∂/∂λ′αyΨZ = −π∗((dxα − x′αdτ) ∧ π ∗ dσ) = 0, (8.27)

(iii)

∂/∂ẋα
yΨZ = −π∗(2ẋα − λ̇α)ω = 0, (8.28)

(iv)

∂/∂x′αyΨZ = −π∗(2x′α − λ′α)ω = 0, (8.29)

(v)

∂/∂xα
yΨZ = −π∗dλ̇α ∧ π∗dσ − dλ′α ∧ π∗dτ = 0. (8.30)

Hence
Z1 = Z|Lẋα = λ̇α, Lx′α = λ′α. (8.31)

The prolongation ends at Z1 with (C(Ψ), π∗ω) on Z1 given by (8.26), (8.27)
and (8.30). It is easy to prove that (C(Ψ), π∗ω) in Y is in involution and
(I∗, L∗, ϕ, I∗, L∗) is a well-posed valued differential system.
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Boundary conditions. The constraints on one-parameter variations F of
f in V (I∗, L∗) are:

a)
g∗(vyπ∗ω)∂N = 0, (8.32)

b)

g∗(vyπ∗(dxα − ẋαdτ − x′αdσ))∂N = 0. (8.33)

In this case, too, G is any smooth lift of F to Y with G|t=0 = g, (π ◦g = f),
and v is a vector field defined along g with v = G|t=0∗(∂/∂t).

The quadratic form A.. A simple computation yields

Lẋαẋβ = 2δαβ , Lẋαx′β = 0, Lx′αx′β = 2δαβ . (8.34)

Thus, the quadratic form A is positive definite.

Example 3. Let X0 = J1(R2, Rm). We associate coordinates σ, τ to R2, xi,

1 ≤ i ≤ m to Rm, and x′i = ∂xi

∂σ
, ẋi = ∂xi

∂τ
. Let X = X0|g1 = 0, where

g1(ẋ
1, x2) = ẋ1 − x2 = 0. Let N = B1 be a ball with radius 1 centered at

(0, 0). Then

x1(t, b) − x1(a, b) =

∫ t

a

∂x1

∂τ
dτ =

∫ t

a

x2dτ, (8.35)

where a ≤ 0 and a2 + b2 = 1.

Boundary condition hA′ .. We have the following system for
v = F∗(∂/∂t)(t, x)|t=0 where F is a one-parameter variation of f :

∂vx1

∂τ
− vẋ1 = 0, (8.36)

∂vx1

∂σ
− vx′1 = 0, (8.37)

∂vx1

∂τ
− vx2 = 0, (8.38)

∂vx1

∂σ
− vx′1 = 0. (8.39)

Let A′ = {(τ, σ) ∈ R2|(τ)2 + (σ)2 = 1 and τ ≤ 0}. A′ is nowhere char-
acteristic for (8.38) and the values of vx1 at A′ and vx2 in N determine

uniquely a solution in N for the system of equations. Let h1

A′ : A′ → R and

hj
∂N : ∂N → R (2 ≤ j ≤ m) be a smooth function. Assume f ∈ V (I∗, L∗),

and let I∗, L∗ be as before. Then, f satisfies the boundary condition [hA′ ]
if

x1

A′ = h1

A′ and xj
∂N = hj

∂N . (8.40)
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In this case,

φ[f ] =

∫

f∗ϕ, where f ∈ V (I∗, L∗, [h1

A′ ]), (8.41)

and

ϕ = Lw = [(x′1)2 +
∑

j

(ẋj)2 +
∑

j

(x′j)2]dσ ∧ dτ. (8.42)

Momentum space. The Cartan system in Z is:

(i)

∂/∂λ̇iyΨZ = −π∗((dxi − ẋidτ) ∧ π ∗ dσ) = 0, (8.43)

(ii)

∂/∂λ′iyΨZ = −π∗((dxi − x′idτ) ∧ π∗dσ) = 0, (8.44)

(iii)

∂/∂ẋj
yΨZ = −π∗(2ẋj − λ̇j)ω = 0, (8.45)

(iv)

∂/∂x′iyΨZ = −π∗(2x′i − λ′i)ω = 0, (8.46)

(v)

∂/∂xi
yΨZ = −π∗dλ̇i ∧ π∗dσ − dλ′i ∧ π∗dτ = 0. (8.47)

From (8.46) and (8.47) we also have Y = Z1 = Z|
2ẋj=λ̇j ,2x′i=λ′

i
. This

Cartan system (C(Ψ), π∗ω) is non-degenerate. Let us transfer the boundary

condition to Qi = Y |π∗Li
, where L∗

i = span{dxi−ẋidτ−x′idσ, dσ, dτ}. Then,
f ∈ V (I∗, L∗) satisfies the boundary condition hA′ , if for any lift g of f to
Y we have:

(ω′
1 ◦ g)|A′ = h1

A′ and (ω′
j ◦ g)|∂N = hj

∂N , (8.48)

where h1

A′ : A′ → Q1 with π1 ◦ h1

A′ = h1

A′ and the projection

πi : Qi → R given by πi(q) = xi(q).

Furthermore, g is a solution to the Euler-Lagrange system satisfying the
mixed boundary condition [hA′ ], if g satisfies (8.43), (8.44) and (8.47), and

vy(λ̇iπ
∗[dxi − ẋidτ − x′idσ] ∧ dτ+

λ′iπ
∗[dxi − ẋidτ − x′idσ] ∧ dσ)g(∂N\A′) ≡ 0 (8.49)

for any element, v = F∗(∂/∂t)(t, x)|t=0 where F is a one parameter varia-
tion of π ◦ g satisfying vx1 |A′=0 and vx2 |N=0.

Finally, the quadratic form A is positive definite.
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9. Inverse problem for calculus of variations

Example 4. In 1887, Helmholtz solved the following problem:

It is given Pi = Pi(x, u
j , uj

x, u
j
xx). Is there a Lagrangian L(x, uj , uj

x) such

that Ei(L) = ∂L/∂ui − Dx∂L/∂u
i
x = Pi, where Dx = ∂/∂x + ui

x∂/∂u
i +

ui
xx∂/∂u

i
x? He found the following necessary conditions for Pi :

(i)

∂Pi/∂u
j
xx = ∂Pj/∂u

i
xx, (9.1)

(ii)

∂Pi/∂u
j
x = ∂Pj/∂u

i
x + 2Dx∂Pj/∂u

i
xx, (9.2)

(iii)

∂Pi/∂u
j = ∂Pj/∂u

i −Dx∂Pj/∂u
i
x +Dxx∂Pj/∂u

i
xx. (9.3)

This problem led to the following studies ([2]):

(i) - the derivation and analysis of Helmholtz conditions as necessary
and (locally) sufficient conditions for a differential operator to coin-
cide with the Euler-Lagrange operator for some Lagrangian;

ii) - the characterization of the obstructions to the existence of global
variational principles for different operators defined on manifolds;

iii) - the invariant inverse problem for different operators with symmetry;
and

(iv) - the variational multiplier problem wherein variational principles
are found, not for a given differential operator, but rather for the
differential equations determined by that operator.

That is: find a matrix B = [Bj
i ] such that Bj

iPj = Ei(L) for some L
with B being non-singular.

Let E →M be a fibered manifold. J∞(E) is the infinite jet of E.

Let
θi = dui − ui

xdx (9.4)

θi
x = dui

x − ui
xxdx (9.5)

and
ΩP = Piθ

i ∧ dx+ 1/2[∂Pi/∂u
j
x −Dx∂Pi/∂u

j
xx]θi ∧ θj

+1/2[∂Pi/∂u
j
xx + ∂Pj/∂u

i
xx]θi ∧ θj

x. (9.6)

If P satisfies the Helmholtz conditions, then dΩP = 0. If the
Hn+1(E)−n+1 de Rham cohomology group of E is trivial. then ΩP is exact.

This fact implies that Pi is globally variational. If θL = Ldx + ∂L/∂ui
xθ

i,
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then dθL = ΩP . In 1913, Volterra showed that if

L =
∫

N
uiPi(x, tu

j , tuj
x, tu

j
xx)dt where N = [0, 1], then

Ei(L) = Pi. (9.7)

Thus, we have a global solution for the inverse problem in the case of
one independent variable and to equations Pi = 0 of second order.

Vaingberg [1969] generalized this result; however his Lagrangian is usu-
ally of a much higher order than necessary.

In [2] we can find the following theorem.

Theorem 9.1. Let Pi be a differential operator of order 2k

Pi = Pi(x, u
j , uj

1
, ..., uj

2k). (9.8)

Then Pi is the Euler-Lagrange operator of a k − th order Lagrangian L =

L(x, uj , uj
1
, ..., uj

k) if and only if the functions Pi satisfy the higher order
Helmholtz conditions, and the functions

pi(t) = Pi(x, u
j , uj

1
, ..., uj

k , tu
j
k+1

, ..., tkuj
2k) (9.9)

are polynomials in t of degree less or equal to k.

Example 5. Let us now look to another example where we have a function
of three independent variables x, y and z, with a single dependent variable u.
Let T = T (x, y, z, u, ux, uy, uz, uxx, uxy, , ..., uzz) be a second order operator.

E[L] = ∂L/∂u−Dx∂L/∂ux −Dy∂L/∂uy −Dz∂L/∂uz (9.10)

Let v be a lift to the momentum space of an infinitesimal variation F∗(∂/∂t)
of f = π ◦ g, where g is a solution of (C(Ψ), π∗ω). The Lie-derivative of

ψ = π∗Lω + (πj ◦ i′)∗[i∗(χ)] ∧ π∗ωj by v is

vydψ + d(vyψ) = E[L](u)v1π∗(dx ∧ dy ∧ dz)
+d(∂L/∂uxv

1π∗(dy ∧ dz)− ∂L/∂uyv
1π∗(dx∧ dz) + ∂L/∂uzv

1π∗(dx∧ dy)).
(9.11)

Suppose that for some vector w with π∗w ∈ TfV (I∗, L∗, ϕ, [h])
(i.e. wydθ+ d(wyθ) for θ = du− uxdx− uydy− uzdz and wyθ|∂N = 0) we
have vydψ + d(vyψ) =

T [u]v1π∗(dx ∧ dy ∧ dz) + d(∂L/∂uxw
1π∗(dy ∧ dz) − ∂L/∂uyw

1π∗(dx ∧ dz)
+∂L/∂uzw

1π∗(dx ∧ dy)). (9.12)

Then we have T [u] = E[L](u)

If we identify e1 with dy∧dz, e2 with dz∧dx and e3 with dx∧dy at each
point of the integral manifold of (C(Ψ), π∗ω), we can write

d(∂L/∂uxv
1π∗(dy ∧ dz) − ∂L/∂uyv

1π∗(dx ∧ dz) (9.13)
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+∂L/∂uzv
1π∗(dx ∧ dy)) = DivV [u]π∗(dx ∧ dy ∧ dz), (9.14)

where
V [u] = ∂L/∂uxv

1e1 + ∂L/∂uyv
1e2 + ∂L/∂uzv

1e3. (9.15)

The divergence operator is defined in terms of the total derivatives Dx,Dy

and Dz.

We can conclude that vydψ + d(vyψ) = (E[L](u)v + DivV [u])π∗(dx ∧
dy ∧ dz).

We have

E[L](u) = 0 whenever L[u] = DivW [u]. (9.16)

Suppose T [u] = E[L](u). Then the first variation formula is

vydψ + d(vyψ) = (T [u]v1 +DivW [u])π∗(dx ∧ dy ∧ dz). (9.17)

By applying the Euler-Lagrange operator (i.e. E[α[u]π∗(dx ∧ dy ∧ dz)] .
=

E[α[u]]π∗(dx ∧ dy ∧ dz)]), we obtain

E[vydψ + d(vyψ)] = E[T [u]v]π∗(dx ∧ dy ∧ dz), since E(DivW )(u) = 0.
(9.18)

We have

E[vydψ+ d(vyψ)] = (vydE[L](u)+ d(vydE[L](u)))π∗ (dx∧ dy∧ dz) (9.19)

= (vydT + d(vydT ))π∗(dx ∧ dy ∧ dz). (9.20)

Therefore

E[T [u]v]π∗(dx ∧ dy ∧ dz) = (vydT + d(vydT ))π∗(dx ∧ dy ∧ dz). (9.21)

Let
ψ′ = π∗Tω + (πjoi′)∗[i∗(χ)]π∗ωj, (9.22)

and
vydψ′ + d(vyψ′) = E[T [u]v]π∗(dx ∧ dy ∧ dz). (9.23)

If we define

H(T )[v]π∗(dx ∧ dy ∧ dz) = vydψ′ + d(vyψ′) − E[T (u)v]π∗(dx ∧ dy ∧ dz),
(9.24)

then H(T ) = 0 if T [u] is Euler-Lagrange. Helmholtz equations are:

(i)

∂T/∂ux = Dx∂T/∂uxx + 1/2Dy∂T/∂uxy + 1/2Dz∂T/∂uxz, (9.25)

(ii)

∂T/∂uy = Dy∂T/∂uyy + 1/2Dx∂T/∂uyx + 1/2Dz∂T/∂uyz , (9.26)

(iii)

∂T/∂uz = Dz∂T/∂uzz + 1/2Dx∂T/∂uzx + 1/2Dy∂T/∂uzy. (9.27)
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We have a sequences of spaces

Grad Curl Div E H
0 → R → F [u] → V (u) → V (u) → F (u) → F (u) → V (u)

(9.28)
that is cochain complex, the Euler-Lagrange complex. Since this complex is
exact, the inverse problem is globally solved in this second example.

9.1. Variational Bicomplex. Let us introduce now a very important tool
for a globalization of the inverse problem.

Definition 9.1. A p form ω on J∞(E) is said to be of type (r, s), where
r + s = p, if at each point x of J∞(E)

ω(X1,X2, ...,Xp) = 0, (9.29)

whenever either

(i) more than s of the vectors X1,X2, ...,Xp are π∞M vertical, or
(ii) more than r of the vectors X1,X2, ...,Xp annihilate all contact one

forms.

Note: Ωr,s denotes the space of type (r, s) forms on J∞(E).

(i) π : E →M be a fiber bundle.
(ii) Let us assume that there exists a transformation group G acting on

E, and
(iii) that there exists a set of differential equations on sections of E.

d = dH + dV ,

dH : Ωr,s(J∞(E)) → Ωr+1,s(J∞(E)), (9.30)

dV : Ωr,s(J∞(E)) → Ωr,s+1(J∞(E)), (9.31)

d2
H = 0, dHdV = −dV dH , d2

V = 0. (9.32)

In local coordinates

dHf = [∂f/∂xi + uαi∂f/∂u
α + uα

ij∂f/∂u
α
j + ...]dxi (9.33)

dV f = ∂f/∂uαθα + ∂f/∂uα
i θ

α
i + ... (9.34)

The sequences of spaces

↑ dV I ↑ δV
0 → Ω0,3 ... → Ωn,3 → F 3 → 0

↑ dV dH ↑ dV ... dH ↑ dV dH ↑ dV I ↑ δV
0 → Ω0,2 → Ω1,2 ... → Ωn−1,2 → Ωn,2 → F 2 → 0

↑ dV dH ↑ dV ... dH ↑ dV dH ↑ dV I ↑ δV
0 → Ω0,1 → Ω1,1 ... → Ωn−1,1 → Ωn,1 → F 1 → 0

↑ dV dH ↑ dV ... dH ↑ dV dH ↑ dV

0 → R → Ω0,0 → Ω1,0 ... → Ωn−1,0 → Ωn,0
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256 Pedro Gonçalves Henriques

is the Variational Bicomplex.

Therefore the generalization of (9.28) is:

dH dH ... dH dH

0 → R → Ω0,0 → Ω1,0 → Ω2,0 ... → Ωn−1,0 →

dH E δV δV
→ Ωn,0 → F 1 → F 2 → F 3.

9.2. Lagrange problem with non-holonomic constraints. Let us re-
call from [26] the Lagrange problem with non-holonomic constraints. We
showed that a well-posed variational problem with mixed endpoint con-
ditions for n = 1 is locally a Lagrange problem with non-holonomic con-
straints.

Proposition 9.1. Let us assume that a Lagrange problem with non-holono-

nomic constraints gρ(x, uj , uj
x) = 0, with rank[∂gρ/∂uj

x] = m− l with 1 ≤
j ≤ m and 1 ≤ ρ ≤ m− l, l ≥ 0 is given. If det[Lµν ] 6= 0 and Ldet[Aµν ] 6= 0

for all (λ1, ..., λm−l) ∈ Rm−l, then (I∗, L∗, ϕ, I∗, L∗) is a well-posed valued
differential system, where I∗ = span {θα|1 ≤ α ≤ m}, and L∗ = span
{θα, dx|1 ≤ α ≤ m}

θρ = gρ
uσ

x
(duσ − uσ

xdx) + gρ

u
µ
x
(duµ − uµ

xdx) 1 ≤ σ ≤ m− l, (9.35)

θµ = duµ − uµ
xdx m− l + 1 ≤ µ, ν ≤ m. (9.36)

In this setting we have

θµ = −duµ
x ∧ dx, (9.37)

dθρ ≡ −Aρ
µαdu

µ
x ∧ θα −Bρ

αdx ∧ θα mod{θα ∧ θα′ |1 ≤ α,α′ ≤ m}, (9.38)

Aρ
µρ′ = gρ

uσ
xuσ′

x

aσ
ρ′a

σ′

ρ′′g
ρ′′

u
µ
x

+ gρ

uσ
xu

µ
x
aσ

ρ′ , (9.39)

Aρ
µν = gρ

uσ
xuσ′

x

aσ
ρ′g

ρ′

uν
x
aσ′

ρ′′g
ρ′′

u
µ
x
− gρ

uσ
xu

µ
x
aσ

ρ′g
ρ′

uν
x
− gρ

uν
xuσ′

x

aσ′

ρ′ g
ρ′

u
µ
x

+ gρ

uν
xu

µ
x
, (9.40)

Bρ
σ = gρ

uσ′

x uσ′′

x

aσ′

σ a
σ′′

ρ′′ (g
ρ′′

x − gρ′′

uα
x
uα

x) + gρ
uσ

xuα
x
aσ′

σ u
α
x

−gρ

uσ′

x x
aσ′

σ + gρ

uσ′

x

aσ′

σ , (9.41)

Bρ
µ = −gρ

uσ
xuσ′

x

aσ
ρ′g

ρ′

u
µ
x
aσ′

ρ′′(g
ρ′′

x − gρ′′

uα
x
uα

x) − gσ
uσ′

x uα
x

aσ′

σ g
ρ

u
µ
x
uα

x + gρ

uσ′

x x
aσ′

σ g
σ
u

µ
x

+ gρ
uµ
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−gρ

uσ′a
σ′

σ g
σ
u

µ
x

+ gρ

u
µ
xuσ

x
aσ

ρ′(g
ρ′

x − gρ′

uα
x
uα

x) + gρ

u
µ
xuσ

x
aσ

ρ′u
ρ′

x + gρ

u
µ
xuν

x
uν

x. (9.42)

Lµ = (∂/∂uµ
x − aσ

ρg
ρ

u
µ
x
∂/∂uσ

x)L, (9.43)

Lµν = (∂/∂uµ
x − aσ

ρg
ρ

u
µ
x
∂/∂uσ

x)Lµ, (9.44)

and
Aµν(λ1, ..., λm−l)

= Lµν +λρ(g
ρ

uσ
xuσ′

x

aσ
ρ′g

ρ′

uν
x
aσ′

ρ′′g
ρ′′

u
µ
x
−gρ

uσ
xu

µ
x
aσ

ρ′g
ρ′

uν
x
−gρ

uν
xuσ

x
aσ

ρ′g
ρ′

u
µ
x
+gρ

uν
x
uµ

x), (9.45)

[aσ
ρ ] = [gσ

u
ρ
x
]−1 with 1 ≤ ρ, ρ′, ρ′′, σ, σ′ ≤ m− l and m− l + 1 ≤ µ, ν ≤ m.

(9.46)

ψ ≡ (Lµ−λµ)π∗(duµ
x∧dx)+(dλµ−(Aµ +λρB

ρ
µ)π∗dx+λρA

ρ
µνπ

∗duν
x)∧π∗θµ

+ (dλσ − (Aσ + λρB
ρ
σ)π∗dx+ λρA

ρ
µσπ

∗duµ
x) ∧ π∗θσ

mod{π∗(θα ∧ θα′

)|1 ≤ α,α′ ≤ m},
(9.47)

with

Aµ = Luµ − Luσ′

x
aσ′

ρ′ g
ρ′

u
µ
x

+ Luσ′

x
aσ′

ρ′ g
ρ′

uσaσ
ρ′′g

ρ′′

u
µ
x
− Luρaρ

σg
σ
u

µ
x

(9.48)

Aσ = Luρaρ
σ − Luσ′

x
aσ′

ρ′ g
ρ′

uρaρ
σ. (9.49)

The Cartan system is

π∗θα (1 ≤ α ≤ m), (9.50)

(Lµ − λµ)π∗dx (m− l + 1 ≤ µ ≤ m), (9.51)

(dλµ − (Aµ + λρB
ρ
µ)π∗dx+ λρA

ρ
µνπ

∗duν
x) (m− l + 1 ≤ µ ≤ m), (9.52)

(dλσ − (Aσ + λρB
ρ
σ)π∗dx+ λρA

ρ
µσπ

∗duµ
x) (1 ≤ σ ≤ m− l). (9.53)
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Proposition 9.2. Let (I∗, L∗) be a locally embeddable differential system

defined in X = J1(R,Rm)|gρ(x, uj , uj
x) = 0, rank[∂gρ/∂uj

x] = m − l, 1 ≤
j ≤ m and 1 ≤ ρ ≤ m − l, l ≥ 0, where I∗ = span {θα|1 ≤ α ≤ m} and
L∗ = span {θα, dx|1 ≤ α ≤ m},

θρ = gρ
uσ

x
(duσ − uσ

xdx) + gρ

u
µ
x
(duµ − uµ

xdx) 1 ≤ σ, ρ ≤ m− l, (9.54)

θµ = duµ − uµ
xdx m− l + 1 ≤ µ, ν ≤ m. (9.55)

Let Qi = Qi(x, u
j , uj

x, u
µ
xx, λρλρx

), 1 ≤ i ≤ m, with Qi(x, u
j , uj

x, tu
µ
xx, λρλρx

)
being polynomial in t of degree less or equal to 1, and

Pµ = Qµ + λρB
ρ
µ − λρA

ρ
µν

duν
x

dx
, (9.56)

Rσ = Qσ − λσx + λρB
ρ
σ − λρA

ρ
µσ

duµ
x

dx
, (9.57)

and
Rµ = Pµ +Dx(∂Pµ/∂u

µ
xx). (9.58)

Furthermore, let us assume that the functions Pµ satisfy the Helmholtz
conditions, that the functions Rα do not depend on λρ and (λρ)x coordi-

nates, and the 1-form Θ = Rα(x, uj , uµ
x, u

µ
xx)θα is closed mod R, where

R = C∞(Z,R∗), Z = J2(R,Rm)|gρ(x, uj , uj
x) = 0 with coordinates

{x, uj , uµ
x, u

µ
xx} and R∗ = span {dx, duµ

x , du
µ
xx}. Then, Qi is locally a Euler-

Lagrange operator for a Lagrangian L(x, uj , uµ
x).

Proof: From Theorem 9.1 we know that a function F (x, uj , uj
x) can

be found that does not depend on uν
xx, such that Eµ(F ) = ∂F/∂uµ −

Dx∂F/∂u
µ
x = Pµ (note that if Rµ does not depend on λρ, then neither does

Pµ).

Therefore,
∂Pµ/∂u

ν
xx = Fµν , (9.59)

where
Fµν = (∂/∂uµ

x − aσ
ρg

ρ

u
µ
x
∂/∂uσ

x)Fν , (9.60)

and
Fµ = (∂/∂uµ

x − aσ
ρg

ρ

u
µ
x
∂/∂uσ

x)F. (9.61)

The Rµ functions satisfy

Rµ = (∂/∂uµ − aσ
ρg

ρ
uµ∂/∂uσ

x)F. (9.62)

Hence, if the Θ-form is closed mod R, then locally

Rσ = (∂/∂uσ − aσ′

ρ g
ρ
uσ∂/∂uσ′

x )F. (9.63)

Finally, we make F = L.
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In addition, if the domain of the Rα functions is simply connected and

ΩP = Pµθ
µ ∧ dx+ 1/2[∂Pµ/∂u

j
x −Dx∂Pµ/∂u

j
xx]θµ ∧ θj

+1/2[∂Pµ/∂u
j
xx + ∂Pj/∂u

µ
xx]θµ ∧ θj

x. (9.64)

is exact, then we have a global solution for the inverse problem.

Example 6. Let X be the J1(R,R3)|g(v, y, z, vx, yx, zx) = 0, where

g(v, y, z, vx, yx, zx) = mvvx −mgzx +R
√

1 + (yx)2 + (zx)2. (9.65)

Let

Q1 = −λρx −
√

1 + (yx)2 + (zx)2

mv3
= 0, (9.66)

and

Q2 = −Ryx

mv3
− v(1 + z2

x)yxx − yxzxzxx − vxyx

√

1 + (yx)2 + (zx)2

v2(
√

1 + (yx)2 + (zx)2)3

−λ1(
R(1 + z2

x)yxx

(
√

1 + (yx)2 + (zx)2)3
+

Rzxyxzxx

(
√

1 + (yx)2 + (zx)2)3
) = 0, (9.67)

Q3 = −
√

1 + (yx)2 + (zx)2

mv3
(mg − Rzx

√

1 + (yx)2 + (zx)2
)

−v(1 + y2
x)zxx − yxzxyxx − vxzx

√

1 + (yx)2 + (zx)2

v2(
√

1 + (yx)2 + (zx)2)3

−λ1

R(1 + y2
x)zxx

(
√

1 + (yx)2 + (zx)2)3
+

Rzxyxyxx

(
√

1 + (yx)2 + (zx)2)3
= 0. (9.68)

Hence,

P2 = −Ryx

mv3
− v(1 + z2

x)yxx − yxzxzxx − vxyx

√

1 + (yx)2 + (zx)2

v2(
√

1 + (yx)2 + (zx)2)3
, (9.69)

P3 = −
√

1 + (yx)2 + (zx)2

mv3
(mg − Rzx

√

1 + (yx)2 + (zx)2
)

+
v(1 + y2

x)zxx − yxzxyxx − vxzx
√

1 + (yx)2 + (zx)2

v2(
√

1 + (yx)2 + (zx)2)3
, (9.70)

and
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R1 = −
√

1 + (yx)2 + (zx)2

mv3
, (9.71)

R2 = − Ryx

mv3
√

1 + (yx)2 + (zx)2
, (9.72)

R3 = −
√

1 + (yx)2 + (zx)2

mv3
(mg − Rzx

√

1 + (yx)2 + (zx)2
). (9.73)

It is easy to verify that P2 and P3 satisfy Helmholtz conditions, and that
the 1-form Θ = R1θ

1 + R2θ
2 + R3θ

3 is closed mod R, with R∗ = span
{dx, dyx, dzx} and R = C∞(X,R∗). The Lagrangian for this example is

L =

√
1+(yx)2+(zx)2

v
.
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