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The inverse problem of variational calculus and
the problem of mixed endpoint conditions

Pedro Gongalves Henriques

Abstract. P. A. Griffiths established the so-called mixed endpoint
conditions for variational problems with non-holonomic constraints.
We will present some results in this context and discuss the inverse
problem of calculus of variations.

Keywords:Inverse problem of calculus of variations.

1. Introduction

The study of Calculus of Variations for multiple integrals was first devel-
oped by Caratheodory [1929], while Weil-De Donder [1936], [1935] advanced
a different theory later. The two approaches were unified by Lepage [1936-
1942], Dedecker [1953-1977] and Liesen [1967] in a framework using the
n-Grassmannian manifold of a C*° manifold. Important contributions in
the Calculus of Variations on smooth manifolds were made by R. Hermann
[1966], H. Goldschmidt and S. Sternberg [1973] with their Hamilton-Cartan
formalism, as well as by Ouzilou [1972], D. Krupka [1970-1975] and I. M.
Anderson [1980]. The symplectic approach of P. L. Garcia and A. Pérez-
Rendén [1969-1978], the multisymplectic version of Kijowski and Tulczy-
jew [1979] based on the theory of Dedecker, the polysymplectic approach
of C. Gunther [1987], Edelen [1961] and Rund [1966] are also important
references in this field. Here we deal with the broader problem of finding
extrema of a functional on a set of n-dimensional integral manifolds of a
Pfaffian differential system.

In 1983, Griffiths proposed a new approach to variational problems based
on techniques from the theory of exterior differential systems. His work
dealt with the problem of finding extrema for a functional ¢ defined on the
set of one-dimensional integral manifolds of a differential system (I*, L*).
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240 Pedro Gongalves Henriques

This approach was established using intrinsic entities. In this work we
present a general setting based on [25] (sections 2 to 8), and we deal with
the inverse problem (section 9).

In 1887 Helmholtz addressed the following problem: given
P, = Py(x,u ,ul,ul),

» ey xx

is there a Lagrangian L(z,u’,u2) such that

E;(L) =0L/ou* — D,OL/0u,, = P;
where 4 ' ' 4

D, = 0/0x +u,0/0u’ + ul,0/0us?
He found necessary conditions for P; to form an Euler-Lagrange system
of equations (see (9.1), (9.2) and (9.3)). Some years later, these condi-
tions where proved to be locally sufficient. I. M. Anderson [1992], [1980],
P. J. Olver [1986], F. Takens [1979], W. M. Tulczyjew [1980] and A. M.
Vinagradov [1984] generalized Helmholtz’s conditions for both higher order
systems of partial differential equations and multiple integrals.

2. Integral manifolds of a differential system and valued dif-
ferential systems

We assume that a Pfaffian differential system (I*, L*) is given on a real-
manifold X by:

i) a subbundle I* C T*X,
ii) another subbundle L* C T*X with [* C L* C T*X,

such that the rank (L*/I*) = n (with n being a natural number).

An integral manifold of (I*, L*) is given by an oriented connected com-
pact n-dimensional smooth manifold N (possibly with a piecewise smooth
boundary ON) together with a smooth mapping

fAN—-X
satisfying
Ty = Ljy™ + fo(TN), (21)
for all z € N, where fi : Tu N — Ty, X is the differential of f at z.
We denote by V (I*, L*) the collection of integral manifolds f of (I*, L*).

A valued differential system is a triple (I*,L*, ), where (I*,L*) is a
Pfaffian differential system and ¢ is an n-form on X.

We define the functional ¢ associated with (I*, L*, ) in V (I*, Lx) by:
¢:V(I*,L*) — R,
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Inverse problem of variational calculus and problem of mixed endpoint conditions 241

fedﬂz/ﬁ@ (2.2)

3. Local embeddability

The following definition is a general setting for the study of problems in
the Calculus of Variations. In [25] we proved that there exist locally defined
mappings that induce (I*,L*) from the canonical system in J'(R", R®)
possibly with some constraints, establishing a local coorespondence be-
tween these differential systems. Let us assume that d(C*°(X,L*)) C
C®(X,L* NT*X), and let d = dimX; s = rankl* (d(C*°(X,L*)) is
the set of images produced by the exterior derivative of C*°(X, L*)). Us-
ing the Frobenius theorem, we can set for every p € X a chart coordinate
system {u',...,ust" 01 . 0% 57"} 5o that

i)
i)

L* = span{du®|l1 < a < s+ n}, (3.1)

L= span{%\l <i<d-s—n} (3.2)
v

for an open subset U of X with p € U.
Definition 3.1. Let (I*,L*) be a Pfaffian differential system with
d(C=(X, L)) C C®(X,L* AT*X).

We say that (I*, L*) is locally embeddable if for every p € X there exist an
open neighborhood U of p and local coframes

CF={6,...,0,} (3.3)

for I'* and
CF' =1{01,....,05,du" + 1,du"* + n} (3.4)
for L7;, satisfying the following conditions:

(i)
S(If AQY) € T* AAN™(LE)/(T*U AT AAHLY)) (3.5)
(ii) Ker d is a constant rank subbundle of I* A €2,

where Q = span{du"sTI A AduSTEA AU dust8 -means deletion

of the s + b factor (for n = 1,du”"st1 =1). We use u” since we may have
to reorder these coordinates.
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The map 6 : I* AQ — ATY(T*U) /I: A (A™(T % U)) is induced by
d:C®U,I* AQ) — C=(U, A" (T*U))
on I* N Q.

This definition means that if I* has no Cauchy characteristics, the struc-
ture equations are locally:

do' = i A du"* T 4 AT 7l N0 4 B 0% A du" PmodI AT (3.6)
1<iia<s 1<), 8<nl=C"X,I.

4. The Cartan system of ¥

Let (I*,L*, o) be a valued differential system on X, and W be the total
space of I*. Let x be the canonical form on 7% X, and ¢ the inclusion map
W LT*X.

Let us assume that there exists a local n-form w inducing a nonzero
section of A™(L*/I*) and has the following form:

w=w'A .. A" (4.1)
We define: 4 R
wi= (=)ol AL AW AW (4.2)

Let W™ be the n-Cartesian power of W, and Z be a subset of W defined
by Z = {z € W" : 7/(z) € AX"}, where 7’ is the natural projection
7 W™ — X" and AX" is the diagonal submanifold of X™. The subset
Z is a vector subbundle over X and dimZ = d + sn. We define

U = dy (4.3)
where 1 is given by
P =m0+ (10 0 d)[i* (x)] A THw;. (4.4)

77 is the natural projection into the j** component 7/ : W™ — W, i’ is the
inclusion map Z — W™ and = is the natural projection 7 : Z — X.

Definition 4.1. Given the n + 1-form ¥, the Cartan system C(¥) is the
ideal generated by the set of n-forms

{va¥  where ve C®(Z,TZ)}.

An integral manifold of (C(¥),w) is given by an oriented connected com-
pact n-dimensional smooth manifold N (possibly with a piecewise smooth
boundary ON ) together with a smooth mapping

fN—-X
satisfying:
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Inverse problem of variational calculus and problem of mixed endpoint conditions 243

f*0=0 for every 6¢e C(V) (4.5)
and

f*(w) £0. (46)
A solution of (C'(¥),w) projected in X will give an extremum of ¢.

5. The momentum space, prolongation of (C(V¥),7*w) in the
momentum space, non-degeneracy

The momentum space is constructed in the following way. Suppose we
are given on Z (see section 4):

(i) a closed (n + 1)-form ¥ with the associated Cartan system C(V),
(ii) 7* the pull back to Z of the w n-form which induces a nonzero
section on A"(L*/I*).

Integral elements of (C(V),n*w) are defined in a similar way as the
integral elements of (I*,L*). The set of integral elements [z, Ef| gives a
subset

Vo (C(V), m*w)) C Gp(Z) (Gn(Z) is the n-Grassmanian).

Denoting by 7" the projection G,,(Z) — Z and assuming regularity at each
step, one inductively defines:

Zy = 7" (Vo (C(V), m*w), Vi (C(V), m*w)) =

{E € V,(C(¥),7*w) : FE tangent to Z1}, (5.1)
Zy = m"(V,(C(¥), m"w), V(C(T), m"w)) =
{E € V)(C(¥,7*w)) : E tangent to Zs}. (5.2)

Definition 5.1. Suppose (I*,L*,¢) is a valued differential system, with
(I*, L*) being a locally embeddable differential system and w = w A ... Aw".
If there exists a ko € N such that Zy, = Zjy41 = ... = Zpyyn'(n' € N) in
the above construction, with
(1) Zg, being a manifold of dimension (n+ 1)m +n for m € N, and
(i) (C(¥),m*w)z,, being a differential system in Zy, with r, =0 (Car-
tan number in Cartan-Kdhler Theorem) for all V,—1(C(V), 7m*w);

(for n = 1 we follow [23] and replace this condition by ¥ N W™
0 on Zy,).

Then (I*,L*, @) is a non-degenerate valued differential system, and Z =Y
1s called the momentum space.
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We call (C(V¥), 7*w)y the prolongation of (C(¥), 7*w) in the momentum
space. By construction, the differential system (C'(V), 7*w)y satisfies:

(i) the projection (C'(¥),7*w) — Y is surjective,
(ii) the integral manifolds of (C(¥),n*w) on Z coincide with those of
(C(¥),m*w) on Y.

6. Well-posed valued differential systems

Definition 6.1. (I*,L*, ¢, P*, M*) is a well-posed valued differential sys-
tem, if the following conditions are satisfied:

(i) (I*,L*,p) is a non-degenerate valued differential system (with
dimY = (n+ 1)m+n) and ¢ = Lw for a smooth function L on X;
(ii) there exists a subbundle P* of I* of rank m and a subbundle M* of
L* of rank m 4+ n, such that:
Irr c L c T*X
(a) U U
Pt c M*,
(b) the locally given n-form w also induces a nonzero section on
AM(M* /P,
(¢) Y C (P*)"axn, with Y a subbundle of (P*)"|axn,
(iii) #”*M* =span{n*0|0 € C°(X,M*)} is completely integrable on 'Y,
where 17 = woi. As before i denotes the inclusion mapping Y — Z
and 7 the projection Z — X.

Let us assume that there exists a coframe CF = {§%, du’*7, 7T§-//, W§//\1 <
a < s,1 < <s,5 € Liysipg < i’ <s,1 <j <n} for T*X with
Ly c {k € N,1 <k <n} such that

(i)
(i)

I = span{6°|1 < a < s}; (6.1)

L* = span{f®, du*|1 <a <s,1<j<nl; (6.2)
(iii) T*X = L*®R* ( @ denotes a direct sum) with R* = span{wj»/,, 7T§-N‘1 <
i/ S Sl7j, S Li/781+1 S /i,/ S 871 SJ S n}a

(iv
df%n =0 mod I, for j” ¢ Ly; (6.3)
(v) o
) -/ .
dHJ/ = 7Tj/ A w mod I, for ] € LZ'/, (64)
(vi)
df; =n; ANwmod I, when 1 < j <mn; (6.5)
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Inverse problem of variational calculus and problem of mixed endpoint conditions 245

(vii) 7T§-//, 77; are linearly independent mod L.

We define 0;?‘ = 0% A wj.

Let dp = L, A 7T§»” - Lg// A 7T;// mod [ and dL¢ = L%/7¥, mod mL*
1<a,d/ <s veL,and vV € L.
Quadratic form A: Let (I*,L*, ¢, P*, M*) be a well-posed valued diffe-
rential system and A be a quadratic form defined in 7*X given by
A(v,w) = L2 vgw? , where v = vgad/I0% + Vv 0/0Ty, and
w = wpa /00" + wyry 0/07y,. This quadratic form plays an important role
in establishing necessary conditions for a local extremum.

6.1. Generalized Lagrange Problem. Let us describe the following
problem:

Generalized Lagrange Problem. Let X = J!(R", R™) (the 1 jet man-
ifold), with the canonical system I* defined on X (i.e. I* = span{f® =
dy® — y%da'}). Let ¢ = Lw with w = dz* A ... Ada™. We choose 2!, ..., 2"
to be coordinates for R™, and y',...,y™ to be coordinates for R™.

We proved in [26] that a Lagrange problem for n = 1 with LdetL,‘i‘l‘f‘/ +
0, and with constraints not envolving more than one variable ¢ in each
equation of restriction is a well posed valued differential system.

7. The Euler-Lagrange differential system for a well-posed
valued differential system

When we compute the first variation of ¢, we find an integral over N
and another over the boundary dN. The volume integral will vanish for
projections of integral manifolds of the Cartan system (C(V), 7*w) into X.
Choosing suitably the set of boundary conditions we can make the integral
over the boundary to vanish as well, providing stationary integral manifolds
for generalized Lagrange problems (see [25]).

7.1. The Euler-Lagrange differential system.

Definition 7.1. Let (I*,L*, ) be a valued differential system. The Cartan
system (C(V), 7*w) is called the Euler-Lagrange differential system associ-
ated with (I*, L*, ¢).

Assuming that (I*, L*, ) is non-degenerate, we now consider the re-
striction to Y of the Euler-Lagrange differential system associated with
(I*,L*, ). The following proposition is easy to prove (see [25]):

Proposition 7.1. If g is an integral manifold of (C(V),7*w), then mog €
V(I*,L*), where w is the natural projection 7 : Z — X.
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We denote by (V(C(¥), 7*w) the set of integral manifolds of
(C(V),m*w)).

8. Examples

Example 1. Strings [41], [42]

Let X = JY(N,R™), N being a two-dimensional manifold. In this case
I = span{dz® — 2'*do — #*d7|0 < o < m — 1,2} are coordinates in R™,
and o, T are coordinates of N, z'* = %’ % = ‘95”—:. In R™ we take a
metric defined in TR™ by ¢°° = —¢g'' = 1,1 <i < m and g =0 for i # j.
The set X is given by: X = {x € Xo|( -z) > 0 and (2’ - ') < 0} (where
(1) denotes the inner product with respect to the metric g). The form w is
w =do Nd1. We have

o=Lw=[( &)?— (i i)z -2)]"?do A dr. (8.1)
Note: L is a function of # and x’ only.
First variation of ¢.. Let ¢ = [ f*(p), where f € V(I*,L*). Then

S = /f*(qudgo + d(vap)), (8.2)

where v(o,7) = F.(0/0t)(t,0,T)|i=0, (0, 7) € N,t € [0,1] and F is the one
parameter variation of f i.e, F(t,0,7)|t=t, € V(I*,L*) for all 0 < t; < 1.
Hence the Lie derivative of dz® — 2'*do — 2*dr by v along f(N) vanishes,
(d(va(dz® — 2"*do — 2%dT)) + (va(—d2'* Ndo — di® A dT)))|pnvy = 0.

The form Yy is given by

Uy = (Lia — A)T*(d2® Aw) 4 (Lya — )" (dz'® A w)+
(dho A T*do — dN, A T*d7) A T8 da® + (—2%dAq — 2/dN) AT'w  (8.3)
The Cartan system in Z is:

(i)

D)2y = —71*((dz® — &%dr) A% do) = 0, (8.4)
(i)
9JON, Wy = —7*((dz® — 2'*dT) A7+ do) = 0, (8.5)
(i) '
0/0% Wz = =" (Lze — Ag)w =0, (8.6)
(iv)
/02" Wy = —*(Lyra — N )w = 0, (8.7)
(v) ,
9/0x% W7 = —*dA\y A do — dN,, N¥dT = 0. (8.8)
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Hence
Z|an A ,L$/a_)\fl. (8.9)

Note that from (i) and (m) we have ¢ = 0;

from (iii), (iv) and (v) we have E[Llw = (dL/dz* — D,OL/dz'* —
D.0L/0i%)w = 0 for D, = 9/0T + *0/0x* + £%0/0%% and D, =
/0o + 2'*0/0x™ + 2""*0/0x'™.

The generalized momenta are given by
l,/a(l,/ . :13) o (lj . l,/)j:a

S R o [ s ek

(8.10)
Vo (2 - 1) — (- x)2'™
@ @) = (@) (a2
Let R?™|(&-4) >0,(z' -2') <0 ¥ R be given by
F,(i‘a,l‘la) — (/\;(j:a7$/a)7)'\a(j:a7$/a))'

In this case F' has an inverse in R*™|(i - %) >0, (2" -2') <0 and F'!
s given by:

(8.11)

o

AL -
( ) ( ) T2 (8.12)
(V=22 = (A )( )]

Lo _ /\a(/\' /\) (/\ )\)/\'
[V A)2 = (- A (- a2
The Cartan system in Z}, = Z1|(A-X) > 0, (N -XN) < 0 is given by (i), (ii),
(i) and (v) of the Cartan system in Z. Let Y = Z|. The prolongation of
(C(¥),m*w) ends at Z|. The dimension of Y is dimY = 3m~+2. Every point

in'Y is a zero-dimensional integral element of (C(¥), 7*w), and ry = 2m+1.
The Cartan system is in involution at z if detC(v)|x, # 0, and

(8.13)

<wv,dr >1 <wv,do>1T

m X m m X m
C(v) = 4 o (8.14)
m X m m X m

for every v # 0 along E', with [z, E'] being any integral element of
(C(¥), m*w), where

A=<v,do > Ljazs— <v,d7 > Loz (8.15)
and
B =<wv,do > Ljags— < v,dT > Lyas, with0 < <m-—1. (8.16)

Sao Paulo J.Math.Sci. 2, 1 (2008), 239-262



248 Pedro Gongalves Henriques

Let us define the energy momentum current P = (PY, ..., P™1) on the
surface v = {x*(o,7),0,7|0 < a <m — 1} by

P = / Pedr + P'%do (8.17)

where P* = —Ljo, P'® = — L.

Case 1. Open strings. Let N = [0,7] x [t1,t2], (t1,t2) € R%t1 < to. We
will impose the following constraints on variations of f € V(I*,L*) :

a)
b)

g (vam*w)an =0, (8.18)

g (vor* (dx® — %dr — 2'%do))p =0 (8.19)
where B = [0, 7] x t1 U [0, 7] X ta,
c)

X, =0 on g(A) where A= N\ B. (8.20)
In this case, G is any smooth lift of F to' Y with Gli=y = g, (m o g = f),
and v is a vector field defined along g with v = G,(9/0t)|i=o. The constraint

c) forces the boundary term in the first variation of ¢(f) vanish.
Case 2. Closed strings. Let N = S X [t1,ta], with S1 being the unit
circle. Its coordinate o € [0,27], and (t1,t2) € R, t1 < to. We will replace

the constraints on variations of f € V(I*, L*) of the previous case with the
following:

a)
b)

g (vam*w)on =0, (8.21)

g* (vom*(dax® — i%dT — 2’%do))g =0 (8.22)
where B = S1 X t1 U [0, 7] X ta.
The quadratic form A.. The cone X' = X|(&-2) > 0,(2' -2') <0
is convez. F' has an inverse in X' with F' : X"F ' R2™ where X" =
R*|(X-)) > 0,(NX) <0. Hence the matrix

1| Lieis  Ljogs
A s Loros (8.23)
has an inverse. Therefore, the eigenvalues of A’ do not vanish on X'.
Thus, it suffices to know the eigenvalues of A’ at an interior point of X' to
determine the number of positive eigenvalues of A’ in every point of X'.
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Let
a={i"=1,i'=0,2"=1,2" =0 with 1<i<m-1,j=0
or 2<j<m-—1}.
Then
Liogn(a) = —Lgigo(a) = —Lyigi(a) = Lyigi(a) =1,2<i<m—1,

(8.24)
and all the other elements of A" are zero. We conclude that the matriz has
m-positive eigenvalues and m-negative eigenvalues in X' and the quadratic
form A is neither positive nor negative definite.

Example 2. Let Xg = J'(R?, R™),N C R?, with N being a two-dimen-

stonal manifold with boundary. Let also
I'* = span{dz® — 2'*do — *dr|1 < a < m}, x%are coordinates in R™ and

/e = %‘%,3&0‘ = %‘—Ta Moreover, let
m
o= Lo =) (&) + (&*)’|do Adr. (8.25)
a=1

The Cartan system in Z 1is

D)2y = —71*((dz® — &%dr) A7 % do) = 0, (8.26)

(if)
QJON, 2V 7 = —*((dz® — 2'*dT) A7 xdo) =0, (8.27)

(iii)
8/9% Wy = — (25 — Ao)w = 0, (8.28)

(iv)
/02" Wy = —7* (22" — \))w = 0, (8.29)

(v) ,
9/0x% W7 = —*d\y A do — dN,, N¥dT = 0. (8.30)
Hence )

7y = Z|Lgo = Ao, Lypa = N, (8.31)

The prolongation ends at Zy with (C(¥), 7*w) on Z; given by (8.26), (8.27)
and (8.80). It is easy to prove that (C(V),7*w) in Y is in involution and
(I*, L*, o, I*, L*) is a well-posed valued differential system.
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Boundary conditions. The constraints on one-parameter variations F of
fin V(I*,L*) are:

a)
b)

9" (vamw)on = 0, (8.32)

g (vor* (da® — i%dT — 2’“do))gn = 0. (8.33)

In this case, too, G is any smooth lift of F' to'Y with G|i—o = g, (mog = f),
and v is a vector field defined along g with v = G|i=0+(0/0t).
The quadratic form A.. A simple computation yields

Liozs = 2008, Lyays = 0, Lo = 2003. (8.34)
Thus, the quadratic form A is positive definite.
Example 3. Let Xo = J'(R?, R™). We associate coordinates o, T to R?,xt,
1 <i<mtoR™ and 2" = %,jzi = % Let X = Xolgr1 = 0, where
g1(2t,2%) = 2! — 22 = 0. Let N = By be a ball with radius 1 centered at

t axl t
z (t,b) — z'(a,b) = 8—dT = / z2dr, (8.35)
a T a

where a < 0 and a® + b2 = 1.

Boundary condition h4s.. We have the following system for
v = F,(0/0t)(t,x)|i=0 where F is a one-parameter variation of f :

Oont i =, (8.36)
or
v

= v =0, (8.37)
8;;”_1 — e =0, (8.38)
0vt _ 0 0. (8.39)
Oo

Let A" = {(1,0) € R}|(7)? + (0)> =1 and 7 <0}. A" is nowhere char-
acteristic for (8.38) and the values of v, at A’ and v,2 in N determine
uniquely a solution in N for the system of equations. Let h}4/ : A" — R and
hly : ON — R (2 < j <m) be a smooth function. Assume f € V(I*, L*),
and let I*,L* be as before. Then, f satisfies the boundary condition [h /]
if

zhy =hYy,  and xéN = th. (8.40)
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In this case,

o[ f] :/f*go, where f € V(I*, L*,[hL)]), (8.41)
and

p=Lw=[=")+> (&) +) (a)]do A dr. (8.42)
J J

Momentum space. The Cartan system in Z is:

(i)

d/0Ni 2V y = —71*((dx* — d'dr) A+ do) =0, (8.43)

(ii)
D/ON; 2V 7 = —71*((da* — 2"'d7) A *do) = 0, (8.44)

(i)
0/0i W7 = —m*(247 — \j)w = 0, (8.45)

(iv)
0/02" 1V 7 = —* (22" — N))w = 0, (8.46)

(v) , ‘

/02" Wz = —7*d\; A do — dN; A ¥dT = 0. (8.47)

From (8.46) and (8.47) we also have Y = Z; = Z\%j:)-\j opriey- This
Cartan system (C(¥), m*w) is non-degenerate. Let us transfer the boundary
condition to Q; =Y |-, where LT = span{dz'—i'dr—x""do, do,dr}. Then,
f e V(I*, L*) satisfies the boundary condition har, if for any lift g of f to
Y we have:

(Wiog)|a = h}4, and (w3 og)lon = h]éN, (8.48)
where hh, : A" — Qq with 71 o h}4, = hh, and the projection
™+ Qi — R given by mi(q) = 2" (q).

Furthermore, g is a solution to the Fuler-Lagrange system satisfying the
mized boundary condition [hat], if g satisfies (8.43), (8.44) and (8.47), and

va( Nt [de’ — ildr — 2"'do] A dr+
Nor*[da — &'dr — 2 do] A do)gonay =0 (8.49)

for any element, v = Fy(0/0t)(t, z)|i=0 where F is a one parameter varia-
tion of mo g satisfying v,i|a—g and vy2|N=o.

Finally, the quadratic form A is positive definite.
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9. Inverse problem for calculus of variations

Example 4. In 1887, Helmholtz solved the following problem:

It is given P; = P;(z,u/, ug;, uys). Is there a Lagrangian L(x, v/, u) such

that Ei(L) = OL/0u’ — D,OL/0ul, = P;, where Dy = 0/0x + ul,0/0u’ +
ul,0/0ul? He found the following necessary conditions for P; :

(i)

OF; [0ul, = OP; /Oy, (9.1)
(i) | | |
OP,/0ul, = OP; ). + 2D, 0P, /oul.,, 9.2)
(iid) | | | |
8PZ/8uJ = an/auZ — D$8P]/8ufv + DméP]/@u;gg (9.3)

This problem led to the following studies (|2]):

(i) - the derivation and analysis of Helmholtz conditions as necessary
and (locally) sufficient conditions for a differential operator to coin-
cide with the Euler-Lagrange operator for some Lagrangian;

ii) - the characterization of the obstructions to the existence of global
variational principles for different operators defined on manifolds;

iii) - the invariant inverse problem for different operators with symmetry;
and

(iv) - the wariational multiplier problem wherein variational principles
are found, not for a given differential operator, but rather for the
differential equations determined by that operator.

That is: find a matric B = [BZ]] such that BZPJ = E;(L) for some L
with B being non-singular.
Let E — M be a fibered manifold. J>°(FE) is the infinite jet of E.
Let ' 4 4
0" = du' — ujdx (9.4)
0 = du’ — v dx (9.5)
and . . o
Qp = P6" Ndx + 1/2[0P;/0u), — D, 0P;/0ul.,.10" N 67
+1/2[0P;/0ul,, + OP;/Out,]0" A 63 (9.6)
If P satisfies the Helmholtz conditions, then dQp = 0. If the

H"tY(E)—n+1 de Rham cohomology group of E is trivial. then Qp is ezact.
This fact implies that P; is globally variational. If 6, = Ldx + OL/0u.6",
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then df, = Qp. In 1913, Volterra showed that if
L=[y Py, tud | tul, tuds )dt where N = [0,1], then
Ei(L) =P (9.7)
Thus, we have a global solution for the inverse problem in the case of
one independent variable and to equations P; = 0 of second order.

Vaingberg [1969] generalized this result; however his Lagrangian is usu-
ally of a much higher order than necessary.

In [2] we can find the following theorem.
Theorem 9.1. Let P; be a differential operator of order 2k
P, = Py(x,ul,ul, ,u%k) (9.8)
Then P; is the Euler-Lagrange operator of a k — th order Lagrangian L =
et o) U oy I the Junctions B satiey the Higher orde
pi(t) = B(x,uj,u{, ...,ui,tuiﬂ, ...,tkugk) (9.9)
are polynomials in t of degree less or equal to k.

Example 5. Let us now look to another example where we have a function
of three independent variables x,y and z, with a single dependent variable u.
LetT =T(x,y, 2, U, Uz, Uy, Uz, Uy, Ugyys 5 -, Uzz) be a second order operator.

E[L) =0L/0u — Dy0L/0uy — DyOL/0u, — D.0L/0u, (9.10)
Let v be a lift to the momentum space of an infinitesimal variation F,(0/0t)
of f = mog, where g is a solution of (C(V),n*w). The Lie-derivative of
= m"Lw + (77 o d")*[1*(x)] A m*w; by v is
vadip + d(va) = E[L)(u)v'n*(dx A dy A dz)
+d(OL/dugv T (dy A dz) — OL/Ouyvrn* (dx A dz) + OL/Ou v r*(dz A dy)).
(9.11)
Suppose that for some vector w with m,w € TyV (I*, L*, ¢, [h])
(i.e. wadf + d(wab) for 0 = du — uzdx — uydy — u.dz and w.b|sgy = 0) we
have vadip + d(vp) =
Tlujv'7*(dz A dy A dz) + d(OL/duzw't*(dy A dz) — OL/u,w' n* (dx A dz)
+OL/duw'n* (da A dy)). (9.12)
Then we have T[u] = E[L](u)

If we identify e; with dy ANdz, es with dz Adx and es with dx A dy at each
point of the integral manifold of (C(V),7*w), we can write

d(OL/Ouzv'n* (dy A dz) — OL/Ou,vtn* (dx A dz) (9.13)
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+OL/Ou v ' (dx A dy)) = DivV|u]n*(dz A dy A dz), (9.14)
where
V{u] = OL/0uzvte; + OL/Ouyvtes + OL/du vl es. (9.15)
The divergence operator is defined in terms of the total derivatives D, D,
and D,.

We can conclude that vadip + d(vap) = (E[L|(u)v + DivV{u])m*(dz A
dy N dz).
We have
E[L](u) =0 whenever Llu] = DivWu]. (9.16)
Suppose T'[u] = E[L](u). Then the first variation formula is
vadip + d(va) = (T[ulv' + DivW [u])7* (dz A dy A dz). (9.17)

By applying the Euler-Lagrange operator (i.e. Ela[u]m*(dx A dy A dz)] =
Elafu]]7*(dz A dy A dz)]), we obtain

Evidy + d(vap)] = E[T[ulv]r”(dz A dy A dz), since E(DivW)(u) = 0.

(9.18)
We have
Elvady +d(vnp)] = (vadE[L])(u) + d(vadE[L](w)))n* (dz Ady Adz) (9.19)
= (vudT + d(vadT))7* (dx A dy A dz). (9.20)
Therefore

E[T[u]v]r*(dx A dy A dz) = (vadT + d(vadT))mn*(dx Ady A dz).  (9.21)
Let

Y = 7*Tw + (o) [i* (x)]7*wj, (9.22)
d
" vady' + d(v ") = E[T[ulv]r*(dz A dy A dz). (9.23)
If we define
H(T)[v]r*(dx A dy A dz) = vady' + d(v)') — E[T (u)v]n* (dz A dy A dz),
(9.24)

then H(T') = 0 if Tu| is Euler-Lagrange. Helmholtz equations are:
(i)
OT /Oy = DyOT gy + 1/2D,0T /Oy, + 1/2D,0T s, (9.25)
(ii)
OT /O, = D,dTOuyy + 1/2D,0T duys + 1/2D,0T /Ou,.,  (9.26)
(iii)
OT /O, = D.OT/0u.. + 1/2D,0T .y + 1/2D,0T/Ous,.  (9.27)
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We have a sequences of spaces

Grad Curl Div E H
0 =R —Fu =V —Vu —Fu —Fu —V(u
(9.28)
that is cochain complex, the FEuler-Lagrange complex. Since this complex is
exact, the inverse problem is globally solved in this second example.

9.1. Variational Bicomplex. Let us introduce now a very important tool
for a globalization of the inverse problem.

Definition 9.1. A p form w on J*(E) is said to be of type (r,s), where
r+ s =p, if at each point x of J*(FE)

w(Xl,XQ,...,Xp) = 0, (929)
whenever either

(i) more than s of the vectors X1, Xo, ..., X, are w3y vertical, or
(ii) more than r of the vectors Xi, X, ..., X, annihilate all contact one
forms.

Note: Q™ denotes the space of type (r,s) forms on J®(E).

(i) m: E — M be a fiber bundle.
(ii) Let us assume that there exists a transformation group G acting on

E, and
(iii) that there exists a set of differential equations on sections of E.
d=dy +dy,
dy - QU (JF(E)) — QL5 (I2(E)), (9.30)
dy : Q™ (J®(E)) — Q= TH{(J®(E)), (9.31)
di; =0, dpdy =—dydy, di =0. (9.32)
In local coordinates
df = [0f /02" + ue0f JOu® + ufs0f Jous + ...)da" (9.33)
dy f=0f/ou*8“+ 0f Jou6 + ... (9.34)
The sequences of spaces
Tdy I Tdv
0 —Q03 BN 0 LEE R— — 0
Tdy dgldy .. dgldy dgldy I 1dy
0 —0%2 o2 . Q2 on? o F? — 0
Tdy dgldy ... dgldy duldy I 1dv
0 — QO,I — Ql,l LS Qn—l,l — Qn,l — Fl —0
Tdy dgldy .. dgldy dgTdy
0 -R —Q% ot = L otl Ono
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1s the Variational Bicomplex.

Therefore the generalization of (9.28) is:

di dy . dy i
0 =R —Q00 QL0 020 L qon10

dy ) oy oy
Q0 Ll 2 B,

9.2. Lagrange problem with non-holonomic constraints. Let us re-
call from [26] the Lagrange problem with non-holonomic constraints. We
showed that a well-posed variational problem with mixed endpoint con-
ditions for n = 1 is locally a Lagrange problem with non-holonomic con-
straints.

Proposition 9.1. Let us assume that a Lagrange problem with non-holono-

nomic constraints g°(z,u’,u}) = 0, with rank[0g” /Ou}] = m — 1 with 1 <
j<mand1l <p<m-—112>0is given. If det[L,,] # 0 and Ldet[A,,] # 0
for all (A1, ..., A\m—1) € R™L, then (I*, L*,p, I*, L*) is a well-posed valued
differential system, where I* = span {0%|1 < a < m}, and L* = span
{0%,dz|l <a<m}

0° = gzg(du" —uldr) + QZu (dut —uldx) 1<o<m-—I, (9.35)
Ot =dut —ubde m—-1+1<pv<m. (9.36)

In this setting we have

Ot = —duk; A dx, (9.37)
6P = — Al du A% — Bhdx A9° mod{0® A6 |1 < a,o’ <m}, (9.38)

P _ P o o p’ P o
AHPI = gugug/ap/apugug + gugugap/, (939)
P P o p o p' _ p o p _ p o P p

Al“/ gugug’ap’guiap”guét guguétap’guz gu;ug'al’/ Gutt + guguﬁ’ (9.40)

p_ P o ol o B o o p o

Bcr - gug/ug" Qg ap” (gzt gugua:) + guguga’a Uy

P o’ p o

—gug,gcac, + gug,aa , (9.41)
B = —g° a’ 0 aa’( o’ ,O”ua) R, a® o u® + g° a® o +g°
w gugug’ p' 9y Qp" \ 9z Jug Uy Gue'ua o Iy la gug';r o Gyt T Gun
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—G0or g o oy 0 (95 = Gug ) + Gopo Gl + G (9:42)
L, = (0/oul; — aggzga/aug)L, (9.43)
L, = (0/0ul; — aggzga/aug)[/u, (9.44)

and

ij()\l,...,)\m,l)
/ / 17 / /

— P o p o P P o P _ P o P P
= L/W+)‘P(9ugug’ap’guzap”gug gt Oy uy gugugap,gug—kguguw), (9.45)

[

[ap] = [ggg]*l with 1 < p,p,p" 0,0/ <m—landm—1+1<pu,v<m.

(9.46)

Y = (Ly— A7 (duly Adz) + (dNy — (A + A Bh) ™ doe + N A m* duiy ) A0
+ (dAg = (A5 + N, BO)m"dx + N\ Al o duly) A 7607

, , (9.47)
mod{7* (8 N 0¢)|1 < a,a’ < m},
with

Ay = Ly — Lug/ag;gzg + Lug/agl/gzgagugzg — Luralgpe (9.48)
Ay = Lyeal, — Lug/az//ggpag. (9.49)

The Cartan system is
0% (1 <a<m), (9.50)
(Ly —Ap)mde (m—14+1<p<m), (9.51)

(dAy = (Ap + ApBo)m dx + N AL mduy)  (m—1+1 < p<m), (9.52)

(dAs = (Ag + A BO)m dx + N AL o duly) (1 <o <m —1). (9.53)
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Proposition 9.2. Let (I*, L*) be a locally embeddable differential system
defined in X = JY(R, R™)|g"(z,u’,u}) = 0, rank[0gP/Oul] = m — 1,1 <
j<mand 1l <p<m-—112>0, where I* = span {6%|]1 < a < m} and
L* = span {6°,dz|1 < a < m},
0° = guo (du” — ugdzr) + gzg(du“ —ubdr) 1<o,p<m-—I, (9.54)
Ot =du? —ubide m—1+1<pv<m. (9.55)
Let Q; = Qi(a:,uj,u?;,uﬁx, )\p)\%),l <11 < m, with Qi(x,uj,ug;,tu’;x, /\P/\Pa:)
being polynomial in t of degree less or equal to 1, and

du?,
P,=Qu+ )\pBﬁ — )\pAfw%, (9.56)
R, = Aoz + AgBE — X, AP duy 9.57
U'_QU_ ax+p lwdl‘ ( )
and
R, =P, + D,(0P,/out,). (9.58)

Furthermore, let us assume that the functions P, satisfy the Helmholtz
conditions, that the functions R do not depend on A, and (Ap)z coordi-
nates, and the 1-form © = R,(x,u’ u’x‘,um)Ho‘ 18 closed mod R, where
R=C>(Z,R"),Z = J*(R,R™)|g’(x,u ,u}) = 0 with coordinates

{x,u?  uly, uby} and R* = span {dx, dug,duéﬁgc}. Then, Q; is locally a Euler-
Lagrange operator for a Lagrangian L(z,u’,ul).

Proof: From Theorem 9.1 we know that a function F(z,u’,u}) can

be found that does not depend on u},, such that E,(F) = 0F/0ut —

T

D,0F /0ul; = P, (note that if R, does not depend on )\p, then neither does
P,).
Therefore,
0P, /0uy, = F, (9.59)
where
F = (0/0uf —a7g, ua/aug)F,,, (9.60)
and
= (0/0uly — ajg!) u@/@ug)F. (9.61)
The R, functions satlsfy
= (0/0ut — a5 gn.0/0ul)F. (9.62)
Hence, if the ©-form is closed mod R, then locally
R, = (0/0u” —aj guaa/au )F. (9.63)

Finally, we make F' = L.
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In addition, if the domain of the R, functions is simply connected and
Qp = P,0" Adx + 1/2[0P, /0ul, — D,OP,/0ul, 0" A 67
+1/2[0P,/0ul, + OP;/Ou 10" A 63, (9.64)
is exact, then we have a global solution for the inverse problem.

Example 6. Let X be the J'(R, R3)|g(v, vy, 2, Vs, Yz, 22) = 0, where
9(0, Y, 2,00, Yo, 22) = MUy — mgzg + RV/1T+ (42)? + (22)2. (9.65)

. \/1 + (%:)2 + (Za:)2
muv3

Let

Q1= _)\P:c

=0, (9.66)

and

Ry (14 22)yee — YoZaZer — V¥ /1 + (12)% + (22)°
mo? V(14 (4o)? + (22)2)?
—i( R(1+ zg)ym I RzyYpzaw
(V14 (2)? + (2)2)° (V1 (y2)? + (22)2)3
VI (y2)? + (22)? Rz,
Ga=- mv? MV e e
(1 3)2er — YoZaler — VaZa/ 1+ (Y2)? + (22)°
(V14 (Y2)? + (22)2)?
ISV (Ch) Y2) 20n N R20YaYan
(V14 )2+ (2)2)° (V14 12)? + (22)?)3
Hence,

Q2 =

)=0,  (9.67)

= 0. (9.68)

_ Ry, _ 0(1 + 23)Yee — YoZeZes — Uccyx\/l + (42)* + (22)°
mu? V(T (o) + (22)%)?

. \/1 + (%:)2 + (Za:)2
muv3

P =

. (9.69)

Rz,

ma - V14 (1) + (%)2)

V(14 Y2) 200 — YoZalYzr — VaZa /1 + (Y2)? + (22)?
02 (/1 + (y2)? + (22)%)°

Py =

_l’_

, (9.70)

and
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Ry =— Vit (%fbl?r (ZI)Q, (9.71)

B Ry,
mvd\/T+ (yz)? + (22)2

_ \/1 + (Ye)? + (22)?
muv3

Ry =

(9.72)

_ Rz,
\/1 + (yac>2 + (Z$>2

R3 =

(mg ). (9.73)

It is easy to verify that Po and P3 satisfy Helmholtz conditions, and that
the 1-form © = R10' + Ro0? + R36? is closed mod R, with R* = span
{dx,dy,,dz;} and R = C*°(X,R*). The Lagrangian for this example is
[ _ PGP

2 .
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