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Abstract. In this work, we consider the invariant manifolds for the
family of equations

ẋ = Ax + f(ε, x),

where A the is generator of a strongly continuous semigroup of linear
operators in a Banach space X and f(ε, ·) : X → X is continuous. The
existence of stable (unstable) and center-stable (center-unstable) man-
ifolds for a large class of these equations has been proved in [2]. We
prove here that, if A admits a exponential trichotomy and f satisfies
some suitable regularity hypotheses, then those manifolds are continu-
ous with respect to the parameter ε.

1. Introduction

There exists a large literature on the existence and properties of stable
(unstable) and center-stable (center-unstable) invariant manifolds for the
problem

ẋ = Ax+ f(x), (1.1)
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under various assumptions.
We may cite for example, [1], [2], [5], [6], [7], [8], [10], [11], [13], [14], [15],

[16] and [17]. The continuity of these sets with respect to parameters has
also been investigated, assuming (uniform) exponential dicothomy for the
operator A in [1], [10], [8] and [16], for instance. Existence and continuity,
assuming nonuniform exponential dichotomy has been proved in [3] and
[4]. For the case of exponential trichotomy, the continuity of these sets was
proved in [5] and [14]. However, [14] treats only discrete systems and [5],
as well as [14], use normal hyperbolicity.

As far as we know, the continuous case, without assuming normal hyper-
bolicity, has been considered for the first time in the first author’s PhD’s
thesis (in Portuguese, see [18]). It is our aim here to present, among others,
the result obtained there for this problem.

To be precise, we state below the hypotheses used throughout, and fix
some notation, which are basically the same of [2].

Let X be a Banach space with norm | · |, A : D(A) ⊂ X → X the
generator of a strongly continuous semigroup of linear operators {T (t)}t≥0

on X and suppose f : X → X is a continuous function satisfying
(H1) f(0) = 0,
(H2) ‖f(ϕ)− f(ψ))‖ ≤ η(r)‖ϕ− ψ‖, ‖ϕ‖, ‖ψ‖ < r,
where η is non decreasing continuous function to real values on [0,∞) with
η(0) = 0.

We also assume the following hypotheses for the semigroup.
(H3) (BU - Backwards Uniqueness). For each t ≥ 0, T (t) is injective;
(H4) X admits the following decomposition:
(H4a) X = π−X ⊕ π0X ⊕ π+X, where π−, π0, π+ are continuous linear
projections on X.

The condition (H4a) implies

π−π0 = π0π− = π−π+ = π+π− = π+π0 = π0π+ = 0,

and

π−π− = π−, π0π0 = π0, π+π+, π− + π0 + π+ = I.

If ϕ ∈ X, we write ϕ− = π−ϕ, ϕ0 = π0ϕ, ϕ+ = π+ϕ.
Throughout we shall use the equivalent norm ‖ · ‖ on X, where, for each

ϕ ∈ X

‖ϕ‖ = |ϕ−|+ |ϕ0|+ |ϕ+|.
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(H4b) For each t ≥ 0, T (t) commutes with the operators π−, π0, π+ so
that each of the subspaces π−X, π0X, π+X is invariant under T (t). Fur-
thermore, T (t) may be extended to a continuous group of linear operators
on π0X ⊕ π+X;
(H4c) There exist constants

a−, a0, a+, min{a−, a+} > a0 ≥ 0 and K > 1;

(without loss of generality we assume a0 > 0), such that
(H4c.i) ‖T (t)ϕ−‖ ≤ Ke−a−t‖ϕ−‖, ∀ ϕ ∈ X, t ≥ 0;

(H4c.ii) ‖T (t)ϕ0‖ ≤ Kea0|t|‖ϕ0‖, ∀ ϕ ∈ X, t ∈ R;
(H4c.iii) ‖T (t)ϕ+‖ ≤ Kea+t‖ϕ+‖, ∀ ϕ ∈ X, t ≤ 0.

It is well known (see for example [9] and [13]) that, if f satisfies (H1)
and (H2), then the Cauchy problem

ẋ = Ax+ f(x)
x(0) = x0. (1.2)

has a unique local ‘mild solution’, that is, a solution of the integral equation

w(t) = T (t)w(0) +
∫ t

0
T (t− s)f(w(s))ds. (1.3)

defined for small positive 0 < t < t1, with x(t) → x0 as t → 0+. If
x0 ∈ D(A) and f is continuously differentiable, then the solution is also a
strict solution (i.e x : (0, t1) → X is C1, x(t) ∈ D(A), for 0 < t < t1 and
the differential equation (1.2) is satisfied). If A is bounded, the solution is
defined in a open interval around 0 (see [9]).

Define, for λ > 0,

fλ(ϕ) =

{
f(ϕ), if ‖ϕ‖ ≤ λ,

f
(

λϕ
‖ϕ‖

)
, if ‖ϕ‖ > λ.

The properties on f and η ensure the existence of a non decreasing contin-
uous function ν(λ), λ ≥ 0, ν(0) = 0 such that, for every ϕ, ψ ∈ X

‖fλ(ϕ)‖ ≤ ν(λ)λ,
‖fλ(ϕ)− fλ(ψ)‖ ≤ ν(λ)‖ϕ− ψ‖.

Thus, to study (1.3) locally it is enough to investigate the global behavior
of the equation

w(t) = T (t)w(0) +
∫ t

0
T (t− s)fλ(w(s))ds. (1.4)
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This paper is organized as follows. In Section 2, we recall some results
from [2]. In Section 3, we to prove the continuity of the invariant manifolds,
with respect to a parameter.

2. Existence of invariant manifolds

We state below some results proved in [2], for completeness. We give
below a slightly modified proof of the first result, just to introduce the
ideas that will be used in the sequel.

Lemma 2.1. Let τ > 0 and w : [0, τ ] → X be continuous solutions of
(1.3). Then

y(t) = w(t+ τ), ∀ t ∈ [−τ, 0] (2.5)

satisfies

T (−t)y(t) = y(0) +
∫ t

0
T (−s)f(y(s))ds, ∀ t ∈ [−τ, 0]. (2.6)

Conversely, if (BU) holds and y satisfies (2.6), then w satisfies (1.3) in
[0, τ ].

Proof Suppose that w satisfies (1.3) and let y be given by (2.5). Then,
if t ∈ [−τ, 0], it follows that

T (−t)y(t) = T (−t)w(t+ τ)

= T (−t)
[
T (t+ τ)w(0) +

∫ t+τ

0
T (t+ τ − s)f(w(s))ds

]
= T (τ)w(0) +

∫ t+τ

0
T (τ − s)f(w(s))ds.

But, from (1.3) we have

T (τ)w(0) = w(τ)−
∫ τ

0
T (τ − s)f(w(s))ds.

Therefore

São Paulo J.Math.Sci. 5, 2 (2011), 111–134
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T (−t)y(t) = w(τ)−
∫ τ

0
T (τ − s)f(w(s))ds+

∫ t+τ

0
T (τ − s)f(w(s))ds

= y(0) +
∫ t+τ

τ
T (τ − s)f(w(s))ds

= y(0) +
∫ t+τ

τ
T (τ − s)f(w(s))ds

= y(0) +
∫ t

0
T (−r)f(w(r + τ))dr

= y(0) +
∫ t

0
T (−r)f(y(r))dr,

that is, y satisfies (2.6). Conversely, suppose that y satisfies (2.6). Then

y(0) = T (−t)y(t)−
∫ t

0
T (−s)f(y(s))ds, t ∈ [−τ, 0],

which, with t = −τ , becomes

y(0) = T (τ)y(−τ)−
∫ −τ

0
T (−s)f(y(s))ds.

Since y(0) = w(τ) and y(−τ) = w(0), it follows that

w(τ) = T (τ)w(0)−
∫ −τ

0
T (−s)f(w(s+ τ))ds. (2.7)

On the other hand, from (2.6), we have

T (−t)w(t+ τ) = w(τ) +
∫ t

0
T (−s)f(w(s+ τ))ds.

Letting −t = τ − θ, we obtain

T (τ − θ)w(θ) = w(τ) +
∫ θ−τ

0
T (−s)f(w(s+ τ))ds.

Using (2.7), we obtain

T (τ − θ)w(θ) = T (τ)w(0)−
∫ −τ

0
T (−s)f(w(s+ τ))ds

+
∫ θ−τ

0
T (−s)f(w(s+ τ))ds

= T (τ)w(0)−
∫ −τ

θ−τ
T (−s)f(w(s+ τ))ds.
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Thus

T (τ − θ)[w(θ)− T (θ)w(0) +
∫ −τ

θ−τ
T (θ − τ − s)f(w(s+ τ))ds] = 0.

Changing variables to r = s+ τ , we have

T (τ − θ)[w(θ)− T (θ)w(0)−
∫ θ

0
T (θ − r)f(w(r))dr] = 0.

Thus, by (BU), it follows that

w(θ)− T (θ)w(0)−
∫ θ

0
T (θ − r)f(w(r))dr = 0.

Therefore, w satisfies (1.3). �

Definition 2.2. A solution of (1.3) in an interval [−τ, 0], τ > 0 is a
function y : [−τ, 0] → X such that w, given by (2.5), is a solution of (1.3)
in [0, τ ].

In the definition below, B(ϕ, ε) denotes the ball of radius ε and center
at ϕ.

Definition 2.3. A subset K ⊂ X is said to be locally positively invariant
under the flow of (1.3) if there exists ε > 0 such that, for any ϕ ∈ K ∩
B(ϕ, ε):
(i) for sufficiently small t > 0 a solution w(t), of (1.3), exists with w(0) =
ϕ;
(ii) if for τ > 0, w(t) exists and belongs to B(ϕ, ε) for all t ∈ [0, τ ] then
w(t) ∈ K, for all t ∈ [0, τ ].

Negatively invariant subsets are defined by substituting < for > and
t ∈ [0, τ ] for t ∈ [τ, 0] in (i) and (ii).

Definition 2.4. Suppose that a Banach space Y is decomposed as Y =
π1Y ⊕ π2Y for continuous linear projection operators π1 and π2. Then, a
subset S ⊂ Y of Y containing y0 is said to be tangent to π2Y at y0 if

‖π1(y − y0)‖
‖π2(y − y0)‖

→ 0, as y → y0 in S.

The following results has been proved in [2].

Theorem 2.5. Assume the hypotheses (H1) , (H2), (H3) and (H4) hold.
Let ε > 0 be such that min(a−, a+) > ε. Then, for δ > 0 sufficiently small,
there exist locally invariant sets

S = {ϕ ∈ B(0, δ) : ‖ϕ−‖ <
δ

2K
, ϕ0 + ϕ+ = pλ(ϕ−)},

São Paulo J.Math.Sci. 5, 2 (2011), 111–134



Exponential trichotomies and continuity of invariant manifolds 117

and
U = {ϕ ∈ B(0, δ) : ‖ϕ+‖ <

δ

2K
, ϕ− + ϕ0 = qλ(ϕ+)},

termed the stable and unstable manifold respectively, where pλ, qλ are
Lipschitz function defined for ‖ϕ−‖ < δ

2K , ‖ϕ+‖ < δ
2K ,respectively. If

ϕ ∈ S then a unique solution w(t) of (1.3) with w(0) = ϕ exists for t ≥ 0
and

‖w(t)‖ ≤ 2Ke−(a−−ε)t‖w−(0)‖, t ≥ 0.
If the hypothesis (BU) holds and ϕ ∈ U then an unique solution w(t) of
(1.3) with w(0) = ϕ exists for t ≤ 0 and

‖w(t)‖ ≤ 2Ke(a+−ε)t‖w+(0)‖, t ≤ 0.
Furthermore, S is tangent at zero to π−X, U is tangent at zero to π+X
and (pλ, w

pλ
+ ) is the unique solution of the system

w−(t) = T (t)ϕ− +
∫ t
0 T (t− s)π−fλ(w−(s) + pλ(w−(s)))ds,

pλ(ϕ−) =
∫ 0
∞ T (−s)(π0 + π+)fλ(w−(s) + pλ(w−(s)))ds, t ≥ 0

(2.8)

and (qλ, w
qλ
+ ) is the unique solution of the system

qλ(ϕ+) =
∫ 0
−∞ T (−s)(π− + π0)fλ(w+(s) + qλ(w+(s)))ds,

w+(t) = T (t)ϕ+ +
∫ t
0 T (t− s)π+fλ(w+(s) + qλ(w+(s)))ds, t ≤ 0,

The functions pλ, qλ have Lipschitz constants smaller or equal to 1, pλ(0) =
0, qλ(0) = 0 and K is the constant given in the hypothesis (2.c).

In what follows, we denote by B(0, δ), B(π−⊕π0)(0, δ), B(π0⊕π+)(0, δ), the
ball of radius δ and center in the origin of X, π−X ⊕ π0X, π0X ⊕ π+X,
respectively.

Theorem 2.6. Assume the hypotheses (H1) , (H2), (H3) and (H4) hold.
Then, there exists δ > 0 and sets

W ∗s = {ϕ ∈ X : ‖ϕ− + ϕ0‖ < δ, ϕ+ = p∗(ϕ− + ϕ0)},
W ∗u = {ϕ ∈ X : ‖ϕ0 + ϕ+‖ < δ, ϕ− = q∗(ϕ0 + ϕ+)},

termed the center-stable and center-unstable manifolds of (1.1), re-
spectively, where p∗ and q∗ are Lipschitz functions defined on
B(π−⊕π0)(0, δ) ⊂ π−X ⊕ π0X, B(π0⊕π+)(0, δ) ⊂ π0X ⊕ π+X, respectively;
The set W ∗s is locally positively invariant under the flow (1.3), while if
(BU) holds W ∗u is locally negatively invariant. Any solution of (1.3) which
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exists and remains in B(0, δ) fort ≥ 0 lies on W ∗s, and any solution of
(1.3) which exists and remains in B(0, δ) for t ≤ 0 lies on W ∗u. Further-
more, the tangent space to W ∗s at zero is π−X⊕π0X and the tangent space
to W ∗u at zero is π0X ⊕ π+X .

Proof This theorem has also been proved in [2], where W ∗s for (1.4) is
shown to exist, for λ small enough to imply

max
{

2K2ν(λ)
a+ − a0 − 4Kν(λ)

,
2(Kν(λ))2

a0(a+ − a0 − 4Kν(λ))
+
Kν(λ)
a+

}
< 1,

and p∗λ, for t ≥ 0, is the unique solution of the system below

w−(t) = T (t)ϕ− +
∫ t
0 T (t− s)π−fλ(w−(s) + w0(s) + p∗λ(w−(s) + w0(s)))ds,

w0(t) = T (t)ϕ0 +
∫ t
0 T (t− s)π0fλ(w−(s) + w0(s) + p∗λ(w−(s) + w0(s)))ds,

p∗λ(ϕ− + ϕ0) =
∫ 0
∞ T (−s)π+fλ(w−(s) + w0(s) + p∗λ(w−(s) + w0(s)))ds,

where w−(t) = π−w(t), w0(t) = π0w(t) e w(t) satisfies (1.4). Furthermore,
p∗λ has Lipschitz constant smaller or equal to 1 and p∗λ(0) = 0.

Similarly, W ∗u can be shown to exist as a graph of q∗λ, the unique solution
of the system

q∗λ(ϕ0 + ϕ+) =
∫ 0
−∞ T (−s)π−fλ(q∗λ(w0(s) + w+(s)) + w0(s) + w+(s))ds,

w0(t) = T (t)ϕ0 +
∫ t
0 T (t− s)π0fλ(q∗λ(w0(s) + w+(s)) + w0(s) + w+(s))ds,

w+(t) = T (t)ϕ+ +
∫ t
0 T (t− s)π+fλ(q∗λ(w0(s) + w+(s)) + w0(s) + w+(s))ds,

for t ≤ 0, where w0(t) = π0w(t), w+(t) = π+w(t) and w(t) satisfies (1.4).

3. Continuity of the invariant manifolds

We prove in this section that the manifolds of the previous section are
continuous with respect to the parameter ε.

3.1. Continuity of the stable (unstable) manifolds. We now state
one of the main results of this section.
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Theorem 3.1. (Continuity of the stable (unstable) manifolds). Suppose
that the functions fλ, in (1.4), also depend on a parameter ε ∈ Λ, where Λ
is an open set in a Banach space, and fλ = fε

λ satisfies the estimates

‖fε
λ(u)− fε0

λ (u)‖ ≤ C1(ε)‖u‖, C1(ε) → 0, ε→ ε0; (3.9)

‖fε
λ(u)− fε

λ(v)‖ ≤ ν(λ)‖u− v‖, for each ε ∈ Λ, (3.10)

where ν(·) is a non decreasing continuous function with ν(0) = 0. Then
the stable (unstable) manifold Sε, (U ε), is continuous with respect to the
parameter ε at ε0.

Proof We prove the continuity of Sε; the proof for U ε is analogous.
By Theorem 2.5, Sε is the graph of a Lipschitz function pλ = pε

λ, where
(pλ, w

pλ
− ) is the unique solution of (2.8). From (2.8) and (3.10), we have

‖w−(t, ε)‖

≤ Ke−a−t‖ϕ−‖+
∫ t

0
Ke−a−(t−s)ν(λ)‖w−(s, ε) + pε

λ(w−(s, ε))‖ds

≤ Ke−a−t‖ϕ−‖+
∫ t

0
Ke−a−(t−s)ν(λ)[‖w−(s, ε)‖+ ‖pε

λ(w−(s, ε))‖]ds

≤ Ke−a−t‖ϕ−‖+
∫ t

0
2Kν(λ)e−a−(t−s)‖w−(s, ε)‖ds.

By Gronwall’s Lemma, we obtain

‖w−(t, ε)‖ ≤ K‖ϕ−‖e−(a−−2Kν(λ))t, t ≥ 0. (3.11)

We will use the metric ρ given by

ρ(h1, h2) = sup
ϕ∈X

ϕ− 6=0

‖h1(ϕ−)− h2(ϕ−)‖
‖ϕ−‖

,

equipped with which, the set

G = {h : π−X → π0X ⊕ π+X, ‖h(ϕ−)− h(ψ+)‖ ≤ ‖ϕ− − ψ+‖,

∀ϕ, ψ ∈ X, h(0) = 0} becomes a complete metric space.
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Let θ(t) = ‖w−(t, ε)− w−(t, ε0)‖, t ≥ 0. Then

θ(t) ≤
∫ t

0
‖T (t− s)π−{fε

λ[w−(s, ε) + pε
λ(w−(s, ε))]

− fε0
λ [w−(s, ε0) + pε0

λ (w−(s, ε0))]}‖ds

≤
∫ t

0
Ke−(t−s)a−‖fε

λ[w−(s, ε) + pε
λ(w−(s, ε))]

− fε0
λ [w−(s, ε0) + pε0

λ (w−(s, ε0))]‖ds

≤
∫ t

0
Ke−(t−s)a−‖fε

λ[w−(s, ε) + pε
λ(w−(s, ε))]

− fε
λ[w−(s, ε0) + pε0

λ (w−(s, ε0))]‖ds

+
∫ t

0
Ke−(t−s)a−‖fε

λ[w−(s, ε0) + pε0
λ (w−(s, ε0))]

− fε0
λ [w−(s, ε0) + pε0

λ (w−(s, ε0))]‖ds.

From (3.9) and (3.10), it follows that

θ(t) ≤
∫ t

0
Kν(λ)e−(t−s)a−

[
‖w−(s, ε)− w−(s, ε0)‖+

‖pε
λ(w−(s, ε))− pε0

λ (w−(s, ε0))‖
]
ds

+
∫ t

0
Ke−(t−s)a−C1(ε)‖w−(s, ε0) + pε0

λ (w−(s, ε0))‖ds

=
∫ t

0
Kν(λ)e−(t−s)a−

[
θ(s) + ‖pε

λ(w−(s, ε))− pε0
λ (w−(s, ε0))‖

]
ds

+
∫ t

0
Ke−(t−s)a−C1(ε)‖w−(s, ε0) + pε0

λ (w−(s, ε0))‖ds.

Using that pε0
λ is Lipschitz with Lipschitz constant ≤ 1 and pε0

λ (0) = 0, we
obtain

θ(t) ≤
∫ t

0
Kν(λ)e−(t−s)a−

[
θ(s) + ‖pε

λ(w−(s, ε))− pε0
λ (w−(s, ε0))‖

]
ds

+
∫ t

0
2Ke−(t−s)a−C1(ε)‖w−(s, ε0)‖ds.
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Now, using the same argument for pε
λ, we have

‖pε
λ(w−(s, ε))− pε0

λ (w−(s, ε0))‖
≤ ‖pε

λ(w−(s, ε))− pε
λ(w−(s, ε0))‖

+ ‖pε
λ(w−(s, ε0))− pε0

λ (w−(s, ε0))‖
≤ ‖w−(s, ε)− w−(s, ε0)‖
+ ‖pε

λ(w−(s, ε0))− pε0
λ (w−(s, ε0))‖

= θ(s) + ‖pε
λ(w−(s, ε0))− pε0

λ (w−(s, ε0))‖

= θ(s) + ‖w−(s, ε0)‖
‖pε

λ(w−(s, ε0))− pε0
λ (w−(s, ε0))‖

‖w−(s, ε0)‖
≤ θ(s) + ‖w−(s, ε0)‖ρ

(
pε

λ, p
ε0
λ

)
.

Therefore

θ(t) ≤
∫ t

0
Kν(λ)e−(t−s)a− [θ(s) + θ(s) + ‖w−(s, ε0)‖ρ

(
pε

λ, p
ε0
λ

)
]ds

+
∫ t

0
2KC1(ε)e−(t−s)a−‖w−(s, ε0)‖ds

=
∫ t

0
2Kν(λ)e−(t−s)a−θ(s)ds

+
∫ t

0
Kν(λ)e−(t−s)a−‖w−(s, ε0)‖ρ

(
pε

λ, p
ε0
λ

)
ds

+
∫ t

0
2KC1(ε)e−(t−s)a−‖w−(s, ε0)‖ds.
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Using (3.11), we obtain

θ(t) ≤
∫ t

0
2Kν(λ)e−(t−s)a−θ(s)ds

+
∫ t

0
Kν(λ)e−(t−s)a−ρ(pε

λ, p
ε0
λ )K‖ϕ−‖e−(a−−2Kν(λ))sds

+
∫ t

0
2KC1(ε)e−(t−s)a−K‖ϕ−‖e−(a−−2Kν(λ))sds

=
∫ t

0
2Kν(λ)e−(t−s)a−θ(s)ds

+K2‖ϕ−‖ν(λ)ρ(pε
λ, p

ε0
λ )e−a−t

∫ t

0
e2Kν(λ)sds

+ 2K2‖ϕ−‖C1(ε)e−a−t

∫ t

0
e2Kν(λ)sds.

Thus

ea−tθ(t) ≤
∫ t

0
2Kν(λ)ea−sθ(s)ds+K2‖ϕ−‖ν(λ)ρ(pε

λ, p
ε0
λ )

∫ t

0
e2Kν(λ)sds

+ 2K2‖ϕ−‖C1(ε)
∫ t

0
e2Kν(λ)sds

≤
∫ t

0
2Kν(λ)ea−sθ(s)ds+

K‖ϕ−‖ν(λ)
2ν(λ)

ρ(pε
λ, p

ε0
λ )e2Kν(λ)t

+
K‖ϕ−‖
ν(λ)

C1(ε)e2Kν(λ)t.

From the generalized Gronwall’s Lemma, (see [12]), it follows that

ea−tθ(t) ≤ e2Kν(λ)t

[
K‖ϕ−‖

2
ρ(pε

λ, p
ε0
λ )e2Kν(λ)t +

K‖ϕ−‖C1(ε)
ν(λ)

e2Kν(λ)t

]
.

Hence

θ(t) ≤ K‖ϕ−‖
2

ρ(pε
λ, p

ε0
λ )e−(a−−4Kν(λ))t +

K‖ϕ−‖C1(ε)
ν(λ)

e−(a−−4Kν(λ))t.

(3.12)
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Now

‖pε
λ(ϕ−)− pε0

λ (ϕ−)‖ ≤
∫ ∞

0
‖T (−s)π0[fε

λ(w−(s, ε) + pε
λ(w−(s, ε)))

− fε0
λ (w−(s, ε0) + pε0

λ (w−(s, ε0)))]‖ds

+
∫ ∞

0
‖T (−s)π+[fε

λ(w−(s, ε) + pε
λ(w−(s, ε)))

− fε0
λ (w−(s, ε0) + pε0

λ (w−(s, ε0)))]‖ds

≤
∫ ∞

0
Kea0s‖fε

λ[w−(s, ε) + pε
λ(w−(s, ε))]

− fε0
λ [w−(s, ε0) + pε0

λ (w−(s, ε0))]‖ds

+
∫ ∞

0
Ke−a+s‖fε

λ[w−(s, ε) + pε
λ(w−(s, ε))]

− fε0
λ [w−(s, ε0) + pε0

λ (w−(s, ε0))]‖ds.

Using that, for s > 0, −a+s < a0s, it follows that

‖pε
λ(ϕ−)− pε0

λ (ϕ+)‖ ≤
∫ ∞

0
2Kea0s‖fε

λ[w−(s, ε) + pε
λ(w−(s, ε))]

− fε0
λ [w−(s, ε0) + pε0

λ (w−(s, ε0))]‖ds.

Subtracting and summing the term

fε
λ[w−(s, ε0) + pε0

λ (w−(s, ε0))],

we obtain

‖pε
λ(ϕ−)− pε0

λ (ϕ+)‖ ≤
∫ ∞

0
2Kea0s‖fε

λ[w−(s, ε) + pε
λ(w−(s, ε))]

− fε
λ[w−(s, ε0) + pε0

λ (w−(s, ε0))]‖ds

+
∫ ∞

0
2Kea0s‖fε

λ[w−(s, ε0) + pε0
λ (w−(s, ε0))]

− fε0
λ [w−(s, ε0) + pε0

λ (w−(s, ε0))]‖ds.
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Using (3.9) and (3.10), it follows that

‖pε
λ(ϕ−)− pε0

λ (ϕ−)‖

≤
∫ ∞

0
2Kν(λ)ea0s

{
‖w−(s, ε)− w−(s, ε0)‖

+ ‖pε
λ(w−(s, ε))− pε0

λ (w−(s, ε0))‖
}
ds

+
∫ ∞

0
2Kea0sC1(ε)‖w−(s, ε0) + pε0

λ (w−(s, ε0))‖ds

=
∫ ∞

0
2Kν(λ)ea0s

{
θ(s) + ‖pε

λ(w−(s, ε))− pε0
λ (w−(s, ε0))‖

}
ds

+
∫ ∞

0
2Kea0sC1(ε)‖w−(s, ε0) + pε0

λ (w−(s, ε0))‖ds

≤
∫ ∞

0
2Kν(λ)ea0s

{
θ(s) + ‖pε

λ(w−(s, ε))− pε0
λ (w−(s, ε0))‖

}
ds

+
∫ ∞

0
4Kea0sC1(ε)‖w−(s, ε0)‖ds.

Using once again that

‖pε
λ(w−(s, ε))− pε0

λ (w−(s, ε0))‖ ≤ θ(s) + ‖w−(s, ε0)‖ρ(pε
λ, p

ε0
λ ),

we obtain

‖pε
λ(ϕ−)− pε0

λ (ϕ−)‖ ≤
∫ ∞

0
2Kν(λ)ea0s

[
2θ(s) + ‖w−(s, ε0)‖ρ(pε

λ, p
ε0
λ )

]
ds

+
∫ ∞

0
4KC1(ε)ea0s‖w−(s, ε0)‖ds.

Now, using (3.11), it follows that

‖pε
λ(ϕ−)− pε0

λ (ϕ−)‖ ≤
∫ ∞

0
4Kν(λ)ea0sθ(s)ds

+
∫ ∞

0
2K2ν(λ)‖ϕ−‖ρ(pε

λ, p
ε0
λ )e−(a−−a0−2Kν(λ))sds

+
∫ ∞

0
4K2‖ϕ−‖C1(ε)e−(a−−a0−2Kν(λ))sds.

Thus,

‖pε
λ(ϕ−)− pε0

λ (ϕ−)‖ ≤ I1 + I2 + I3,
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where

I1 =
∫ ∞

0
4Kν(λ)ea0sθ(s)ds,

I2 =
∫ ∞

0
2K2ν(λ)‖ϕ−‖ρ(pε

λ, p
ε0
λ )e−(a−−a0−2Kν(λ))sds

and

I3 =
∫ ∞

0
4K2‖ϕ−‖C1(ε)e−(a−−a0−2Kν(λ))sds.

Using the estimate obtained for θ(t) in (3.12), we obtain

I1 ≤
∫ ∞

0
4Kν(λ)ea0s

[
K

2
‖ϕ−‖ρ(pε

λ, p
ε0
λ )e−(a−−4Kν(λ))s

+
K‖ϕ−‖
ν(λ)

C1(ε)e−(a−−4Kν(λ))s

]
ds

=
∫ ∞

0
2K2‖ϕ−‖ν(λ)ρ(pε

λ, p
ε0
λ )e−(a−−a0−4Kν(λ))sds

+
∫ ∞

0
4K2‖ϕ−‖C1(ε)e−(a−−a0−4Kν(λ))sds

=
2K2ν(λ)‖ϕ−‖

a− − a0 − 4Kν(λ)
ρ(pε

λ, p
ε0
λ ) +

4K2‖ϕ−‖
a− − a0 − 4Kν(λ)

C1(ε).

Furthermore,

I2 =
∫ ∞

0
2K2ν(λ)‖ϕ−‖ρ(pε

λ, p
ε0
λ )e−(a−−a0−2Kν(λ))sds

=
2K2ν(λ)‖ϕ−‖

a− − a0 − 2Kν(λ)
ρ(pε

λ, p
ε0
λ )

and

I3 =
∫ ∞

0
4K2‖ϕ−‖C1(ε)e−(a−−a0−2Kν(λ))sds

=
4K2‖ϕ−‖

a− − a0 − 2Kν(λ)
C1(ε).
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Therefore

‖pε
λ(ϕ−)− pε0

λ (ϕ−)‖

≤ 2K2ν(λ)‖ϕ−‖
a− − a0 − 4Kν(λ)

ρ(pε
λ, p

ε0
λ ) +

4K2‖ϕ−‖
a− − a0 − 4Kν(λ)

C1(ε)

+
2K2ν(λ)‖ϕ−‖

a− − a0 − 2Kν(λ)
ρ(pε

λ, p
ε0
λ ) +

4K2‖ϕ−‖
a− − a0 − 2Kν(λ)

C1(ε)

=
[

2K2ν(λ)‖ϕ−‖
a− − a0 − 4Kν(λ)

+
2K2ν(λ)‖ϕ−‖

a− − a0 − 2Kν(λ)

]
ρ(pε

λ, p
ε0
λ )

+
[

4K2‖ϕ−‖
a− − a0 − 4Kν(λ)

+
4K2‖ϕ−‖

a− − a0 − 2Kν(λ)

]
C1(ε).

Hence

‖pε
λ(ϕ−)− pε0

λ (ϕ−)‖
‖ϕ−‖

≤
[

2K2ν(λ)
a− − a0 − 4Kν(λ)

+
2K2ν(λ)

a− − a0 − 2Kν(λ)

]
ρ(pε

λ, p
ε0
λ )

+
[

4K2

a− − a0 − 4Kν(λ)
+

4K2

a− − a0 − 2Kν(λ)

]
C1(ε),

which implies

sup
ϕ∈X

ϕ− 6=0

‖pε
λ(ϕ−)− pε0

λ (ϕ−)‖
‖ϕ−‖

≤
[

2K2ν(λ)
a− − a0 − 4Kν(λ)

+
2K2ν(λ)

a− − a0 − 2Kν(λ)

]
ρ(pε

λ, p
ε0
λ )

+
[

4K2

a− − a0 − 4Kν(λ)
+

4K2

a− − a0 − 2Kν(λ)

]
C1(ε).

Therefore

ρ(pε
λ, p

ε0
λ ) ≤

[
2K2ν(λ)

a− − a0 − 4Kν(λ)
+

2K2ν(λ)
a− − a0 − 2Kν(λ)

]
ρ(pε

λ, p
ε0
λ )

+
[

4K2

a− − a0 − 4Kν(λ)
+

4K2

a− − a0 − 2Kν(λ)

]
C1(ε).

Choosing λ sufficiently small, we have[
2K2ν(λ)

a− − a0 − 4Kν(λ)
+

2K2ν(λ)
a− − a0 − 2Kν(λ)

]
<

1
2
.
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Thus

ρ(pε
λ, p

ε0
λ ) <

1
2
ρ(pε

λ, p
ε0
λ ) + C2(ε),

where C2(ε) =
[

4K2

a−−a0−4Kν(λ) + 4K2

a−−a0−2Kν(λ)

]
C1(ε).

Therefore
ρ(pε

λ, p
ε0
λ ) < 2C2(ε),

where C2(ε) → 0, as ε→ ε0, concluding the proof. �

3.2. Continuity of the center-stable (center-unstable) manifolds.
In this section we prove the continuity of the center-stable and center-
unstable manifolds.

Theorem 3.2. Assume the same hypotheses of Theorem 3.1. Then the
center stable, center unstable manifolds, W ∗s

ε , W ∗u
ε are continuous at ε0.

Proof We prove the continuity of W ∗s
ε . The continuity of W ∗u

ε follows
in a similar way. By Theorem 2.6, W ∗s

ε is the graph of a Lipschitz function
p∗ελ , where p∗ελ satisfies

w−(t, ε) = T (t)ϕ− +
∫ t

0
T (t− s)π−fε

λ(w−(s, ε) + w0(s, ε)

+ p∗ελ (w−(s, ε) + w0(s, ε)))ds,

w0(t, ε) = T (t)ϕ0 +
∫ t

0
T (t− s)π0f

ε
λ(w−(s, ε) + w0(s, ε)

+ p∗ελ (w−(s, ε) + w0(s, ε)))ds,

p∗ελ (ϕ− + ϕ0) =
∫ 0

∞
T (−s)π+f

ε
λ(w−(s, ε) + w0(s, ε)

+ p∗ελ (w−(s, ε) + w0(s, ε)))ds.

Furthermore, p∗λ has Lipschitz constant equal or smaller than 1 and
p∗λ(0) = 0.

To facilitate the notation, from now on, in this subsection, we write pε
λ

in the place of p∗ελ .
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Using (3.10), we have

‖w−(s, ε) + w0(s, ε)‖ ≤ Ke−a−t‖ϕ−‖+
∫ t

0
Kν(λ)e−(t−s)a−‖w−(s, ε)

+ w0(s, ε) + pε
λ(w−(s, ε) + w0(s, ε))‖ds

+Kea0t‖ϕ0‖+
∫ t

0
Kν(λ)e(t−s)a0‖w−(s, ε) + w0(s, ε)

+ pε
λ(w−(s, ε) + w0(s, ε))‖ds

≤ Ke−a−t‖ϕ−‖+
∫ t

0
2Kν(λ)e−(t−s)a−‖w−(s, ε)

+ w0(s, ε)‖ds

+Kea0t‖ϕ0‖+
∫ t

0
2Kν(λ)e(t−s)a0‖w−(s, ε)

+ w0(s, ε)‖ds.

Since −a− < a0, it follows that

‖w−(s, ε) + w0(s, ε)‖

≤ Kea0t‖ϕ0‖+
∫ t

0
4Kν(λ)e(t−s)a0‖w−(s, ε) + w0(s, ε)‖ds.

By Gronwall’s Lemma, we obtain

‖w−(s, ε) + w0(s, ε)‖ ≤ K‖ϕ− + ϕ0‖e(4Kν(λ)+a0)t. (3.13)

Let ρ∗ be the metric given by

ρ∗(h1, h2) = sup
ϕ∈X, ϕ−+ϕ0 6=0

‖h1(ϕ− + ϕ0)− h2(ϕ− + ϕ0)‖
‖ϕ− + ϕ0‖

,

equipped with which, the set

G∗ ={h : π−X ⊕ π0X → π+X ⊕ π0X, ‖h(ϕ− + ϕ0)− h(ψ+ + ψ0)‖
≤ ‖ϕ− + ϕ0 − ψ− + ψ0‖, ∀ϕ, ψ ∈ X, h(0) = 0}
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becomes a complete metric space. Let θ∗(t) = ‖w−(t, ε) + w0(t, ε) −
w−(t, ε0)− w0(t, ε0)| , t ≥ 0. Then

θ∗(t) ≤
∫ t

0
Ke−(t−s)a−‖fε

λ[w−(s, ε) + w0(s, ε) + pε
λ(w−(s, ε) + w0(s, ε))]

− fε0
λ [w−(s, ε0) + w0(s, ε0) + pε0

λ (w−(s, ε0) + w0(s, ε0))]‖ds

+
∫ t

0
Ke(t−s)a0‖fε

λ[w−(s, ε) + w0(s, ε) + pε
λ(w−(s, ε) + w0(s, ε))]

− fε0
λ [w−(s, ε0) + w0(s, ε0) + pε0

λ (w−(s, ε0) + w0(s, ε0))]‖ds.

Using that −(t− s)a− ≤ (t− s)a0, we obtain

θ∗(t) ≤
∫ t

0
2Ke(t−s)a0‖fε

λ[w−(s, ε) + w0(s, ε) + pε
λ(w−(s, ε) + w0(s, ε))]

− fε0
λ [w−(s, ε0) + w0(s, ε0) + pε0

λ (w−(s, ε0) + w0(s, ε0))]‖ds.
Summing and subtracting the term

fε
λ[w−(s, ε0) + w0(s, ε0) + pε0

λ (w−(s, ε0) + w0(s, ε0))],

and using (3.9), (3.10), we have

θ∗(t) ≤
∫ t

0
2Ke(t−s)a0ν(λ)

[
θ∗(s) + ‖pε

λ(w−(s, ε) + w0(s, ε))

− pε0
λ (w−(s, ε0) + w0(s, ε0))‖

]
ds

+
∫ t

0
2Ke(t−s)a0C1(ε)‖w−(s, ε0) + w0(s, ε0)‖ds.

Now, using that pε
λ is Lipschitzian with Lipschitz constant smaller than

1 and pε0
λ (0) = 0, it follows that

‖pε
λ(w−(s, ε) + w0(s, ε))− pε0

λ (w−(s, ε0) + w0(s, ε0))‖
≤ ‖w−(s, ε) + w0(s, ε)− w−(s, ε0)− w0(s, ε0)‖+ ‖w−(s, ε0)

− w0(s, ε0)‖
‖pε

λ(w−(s, ε0) + w0(s, ε0))− pε0
λ (w−(s, ε0) + w0(s, ε0))‖

‖w−(s, ε0)− w0(s, ε0)‖
≤ θ∗(s) + ρ∗(pε

λ, p
ε0
λ )‖w−(s, ε0) + w0(s, ε0)‖.

Then

θ∗(t) ≤
∫ t

0
2Ke(t−s)a0ν(λ)

[
2θ∗(s) + ‖w−(s, ε0) + w0(s, ε0)‖ρ∗(pε

λ, p
ε0
λ )

]
ds

+
∫ t

0
2KC1(ε)e(t−s)a0‖w−(s, ε0) + w0(s, ε0)‖ds.
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Using (3.13), we obtain

θ∗(t) ≤
∫ t

0
4Kν(λ)e(t−s)a0θ∗(s)ds

+
∫ t

0
2Ke(t−s)a0ν(λ)K‖ϕ− + ϕ0‖e(4Kν(λ)+a0)sdsρ∗(pε

λ, p
ε0
λ )ds

+
∫ t

0
2KC1(ε)e(t−s)a0K‖ϕ− + ϕ0‖e(4Kν(λ)+a0)sds.

Thus

e−a0tθ∗(t) ≤
∫ t

0
4Kν(λ)e−a0sθ∗(s)ds

+ 2K2ν(λ)‖ϕ− + ϕ0‖ρ∗(pε
λ, p

ε0
λ )

∫ t

0
e4Kν(λ)sds

+ 2K2C1(ε)‖ϕ− + ϕ0‖
∫ t

0
e4Kν(λ)sds.

Since ∫ t

0
e4Kν(λ)sds ≤ e4Kν(λ)t

4Kν(λ)
,

we obtain

e−a0tθ∗(t) ≤
∫ t

0
4Kν(λ)e−a0sθ∗(s)ds+

K

2
‖ϕ− + ϕ0‖ρ∗(pε

λ, p
ε0
λ )e4Kν(λ)t

+
K

2ν(λ)
C1(ε)‖ϕ− + ϕ0‖e4Kν(λ)t.

From Gronwall’s Lemma, it follows that

θ∗(t) ≤
[
K

2
ρ∗(pε

λ, p
ε0
λ ) +

K

2ν(λ)
C1(ε)

]
e(a0+8Kν(λ))t‖ϕ− + ϕ0‖. (3.14)

Now

‖pε
λ(ϕ− + ϕ0)− pε0

λ (ϕ− + ϕ0)‖ ≤
∫ ∞

0
Ke−a+s‖fε

λ(w−(s, ε) + w0(s, ε)

+ pε
λ(w−(s, ε) + w0(s, ε)))

− fε0
λ (w−(s, ε0) + w0(s, ε0)

+ pε0
λ (w−(s, ε0) + w0(s, ε0)))‖ds.

Using (3.9) and (3.10), after adding and subtracting the term

fε
λ(w−(s, ε0) + w0(s, ε0) + pε0

λ (w−(s, ε0) + w0(s, ε0))),
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we have

‖pε
λ(ϕ− + ϕ0)− pε0

λ (ϕ− + ϕ0)‖ ≤
∫ ∞

0
Kν(λ)e−a+sθ∗(s)ds

+
∫ ∞

0
Kν(λ)e−a+s‖pε

λ(w−(s, ε) + w0(s, ε))

− pε0
λ (w−(s, ε0) + w0(s, ε0))‖ds

+
∫ ∞

0
Ke−a+sC1(ε)‖w−(s, ε0) + w0(s, ε0)

+ pε0
λ (w−(s, ε0) + w0(s, ε0))‖ds.

Using that

‖pε
λ(w−(s, ε) + w0(s, ε))− pε0

λ (w−(s, ε0) + w0(s, ε0))‖
≤ θ∗(s) + ρ∗(pε

λ, p
ε0
λ )‖w−(s, ε0) + w0(s, ε0)‖,

we obtain

‖pε
λ(ϕ− + ϕ0)− pε0

λ (ϕ− + ϕ0)‖

≤
∫ ∞

0
2Kν(λ)e−a+sθ∗(s)ds+

∫ ∞

0
Kν(λ)e−a+sρ∗(pε

λ, p
ε0
λ )‖w−(s, ε0)

+ w0(s, ε0)‖ds+
∫ ∞

0
2KC1(ε)e−a+s‖w−(s, ε0) + w0(s, ε0)‖ds.
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Using (3.13) and (3.14), it follows that
‖pε

λ(ϕ− + ϕ0)− pε0
λ (ϕ− + ϕ0)‖

≤
(
K2ν(λ)‖ϕ− + ϕ0‖

∫ ∞

0
e−(a+−a0−8Kν(λ))sds

)
ρ∗(pε

λ, p
ε0
λ )

+
(
K2ν(λ)‖ϕ− + ϕ0‖

∫ ∞

0
e−(a+−a0−4Kν(λ))sds

)
ρ∗(pε

λ, p
ε0
λ )

+
(
K2‖ϕ− + ϕ0‖

∫ ∞

0
e−(a+−a0−8Kν(λ))sds

)
C1(ε)

+
(

2K‖ϕ− + ϕ0‖
∫ ∞

0
e−(a+−a0−4Kν(λ))sds

)
C1(ε)

=
[

K2ν(λ)
a+ − a0 − 8Kν(λ)

‖ϕ− + ϕ0‖

+
K2ν(λ)

a+ − a0 − 4Kν(λ)
‖ϕ− + ϕ0‖

]
ρ∗(pε

λ, p
ε0
λ )

+
[

K2

a+ − a0 − 8Kν(λ)
‖ϕ− + ϕ0‖+

2K
a+ − a0 − 4Kν(λ)

‖ϕ− + ϕ0‖
]
C1(ε).

Hence

‖pε
λ(ϕ− + ϕ0)− pε0

λ (ϕ− + ϕ0)‖
‖ϕ− + ϕ0‖

≤
[

K2ν(λ)
a+ − a0 − 8Kν(λ)

+
K2ν(λ)

a+ − a0 − 4Kν(λ)

]
ρ∗(pε

λ, p
ε0
λ )

+
[

K2

a+ − a0 − 8Kν(λ)
+

2K
a+ − a0 − 4Kν(λ)

]
C1(ε).

Choosing λ small enough as to have[
K2ν(λ)

a+ − a0 − 8Kν(λ)
+

K2ν(λ)
a+ − a0 − 4Kν(λ)

]
<

1
2

and letting

C∗
2 (ε) =

[
K2

a+ − a0 − 8Kν(λ)
+

2K
a+ − a0 − 4Kν(λ)

]
C1(ε),

we obtain
ρ∗(pε

λ, p
ε0
λ ) <

1
2
ρ∗(pε

λ, p
ε0
λ ) + C∗

2 (ε).

Therefore
ρ∗(pε

λ, p
ε0
λ ) < 2C∗

2 (ε),
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where C∗
2 (ε) → 0, as ε→ ε0, concluding the proof. �

Remark 3.3. It follows from [15] that the center manifold, W c
ε is given by

W c
ε = W ∗s

ε ∩W ∗u
ε .

Therefore, the the continuity of the center manifold, W c
ε also follows from

Theorem 3.2 .
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