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Abstract. For nonautonomous linear differential equations v′ = A(t)v
in a Banach space, we consider general exponential dichotomies that
extend the notion of (uniform) exponential dichotomy in various ways.
Namely, the new notion allows: stable and unstable behavior with
respect to growth rates ecρ(t) for an arbitrary function ρ(t); nonuniform
exponential behavior, causing that any stability or conditional stability
may be nonuniform; and different growth rates in the uniform and
nonuniform parts of the dichotomy. Our objective is threefold:

1. to show that there is a large class of linear differential equations
admitting this general exponential behavior;

2. to provide conditions for the existence of general dichotomies in
terms of appropriate Lyapunov exponents;

3. to establish the robustness of the exponential behavior, that is,
its persistence under sufficiently small linear perturbations.
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1. Introduction

For nonautonomous linear equations

v′ = A(t)v, (1)

where A : R+
0 → B(X) is a continuous function with values in the space of

bounded linear operators in a Banach space X, we consider a very general
type of exponential behavior. This generalizes the classical notion of expo-
nential dichotomy in various ways: besides introducing a nonuniform term,
causing that any stability or conditional stability may be nonuniform, we
consider arbitrary rates that in particular may not be exponential, as well as
different growth rates in the uniform and nonuniform parts. This includes
for example the classical notion of (uniform) exponential dichotomy, as well
as the notions of nonuniform exponential dichotomy and nonuniform poly-
nomial dichotomy (a similar comment applies when the word dichotomy is
replaced by the word contraction). In particular, the modifications of the
notion of (uniform) exponential dichotomy allow a nonuniform stability or
even nonuniform conditional stability with respect to the initial condition,
as well as situations when the Lyapunov exponents are all infinity or all
zero.

We have three main objectives:

1. to show that in a finite-dimensional space a large class of linear
differential equations admit this exponential behavior;

2. to provide natural conditions for the existence of general dichotomies
in terms of appropriate Lyapunov exponents;

3. to establish the robustness of the exponential behavior, that is, the
persistence of the exponential behavior in the equation

v′ = [A(t) +B(t)]v (2)

for any sufficiently small linear perturbation B(t).

We emphasize that when compared to the case of uniform and even
nonuniform exponential behavior, this creates additional complications,
particularly in the case of dichotomies. Namely, besides the existence of
expansion and contraction, unlike in the uniform case the stable and un-
stable directions may approach each other. This means that we need to
control the “angle” between the two directions, by estimating the norms
of the corresponding projections. The fact that we consider different rates
in the uniform and nonuniform parts of the dichotomies is an additional
complication that requires a careful control of the perturbations.

The classical notion of (uniform) exponential dichotomy, essentially in-
troduced by Perron in [19], plays an important role in a large part of the
theory of differential equations and dynamical systems. In particular, the
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existence of an exponential dichotomy for equation (1) implies the existence
of topological conjugacies and of stable and unstable invariant manifolds
for the equation

v′ = A(t)v + f(t, v)

for any sufficiently small nonlinear perturbation f . We refer the reader to
the books [8, 12, 13, 22] for details and references. On the other hand, it
is also true that the existence of an exponential dichotomy is a stringent
condition and it is important to look for more general notions, particularly
in view of the applications.

In particular, the notion of nonuniform exponential dichotomy (see [5])
was inspired both on the classical notion of (uniform) exponential dichotomy
and on the notion of nonuniformly hyperbolic trajectory introduced by
Pesin (see [2]). We emphasize that in comparison to the notion of (uniform)
exponential dichotomy, this is a much weaker requirement. For example,
in finite-dimensional spaces essentially any linear differential equation with
nonzero Lyapunov exponents admits a nonuniform exponential dichotomy
(and any linear differential equation with negative Lyapunov exponents
admits a nonuniform exponential contraction).

In this paper we consider an even more general type of exponential di-
chotomy in which the usual exponential behavior is replaced by an arbitrary
growth rate. This may correspond for example to situations when the Lya-
punov exponents are all infinity or are all zero. More precisely, Barreira
and Valls introduced in [6] the notion of ρ-exponential dichotomy. This
corresponds to assume that the linear equation (1) may exhibit stable and
unstable behaviors with asymptotic rates of the form ecρ(t), where ρ is some
increasing function. The robustness of this general type of exponential di-
chotomy is also established in [6].

In addition, we consider the case of different growth rates for the uniform
and nonuniform parts of the dichotomy, as proposed in [7]. Certainly, if
these general dichotomies are supposed to play any role in the theory, one
must show that they occur in a sufficiently large class of dynamics. In this
paper, besides establishing their occurrence in a large natural class, we also
establish their robustness. More precisely, we show in this paper that:

1. there is a large class of equations exhibiting this behavior, and we can
provide natural conditions for the existence of general dichotomies
in terms of appropriate Lyapunov exponents;

2. the nonuniform part of the asymptotic behavior can be estimated by
the so-called regularity coefficient, which is defined in terms of the
Lyapunov exponents of equation (1) and its adjoint.
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The so-called robustness problem also has a long history. In particular,
the problem was discussed by Massera and Schäffer [16], Perron [19], Cop-
pel [11] and in the case of Banach spaces by Dalec′kĭı and Krĕın [10]. The
continuous dependence of the projections of the exponential dichotomies
on the perturbation was obtained by Palmer [18] for ordinary differential
equations. For more recent work we refer to [9, 14, 15, 17, 20, 21] and the
references therein. We also refer to [4, 6] for the study of robustness of
nonuniform exponential dichotomies.

I. NONUNIFORM CONTRACTIONS

We first concentrate on the simpler case of nonuniform contractions,
leaving the more elaborate case of nonuniform dichotomies for the second
part of the paper. This allows us to present the results and their proofs
without some accessory technicalities. After the introduction of some basic
notions, we show how appropriate Lyapunov exponents can be used to de-
duce that a linear differential equation with negative Lyapunov exponents
in a finite-dimensional space admits a nonuniform contraction. We also
show how the nonuniform part of the contraction can be estimated by the
so-called regularity coefficient, which is defined in terms of the Lyapunov
exponents of equation (1) and its adjoint. Finally, we establish the robust-
ness of nonuniform contractions, that is, we establish the persistence of the
stable behavior under sufficiently small linear perturbations.

2. Basic notions

Let B(X) be the space of bounded linear operators in a Banach space X.
Given a continuous function A : R+

0 → B(X), we denote by T (t, s) the
evolution operator associated to equation (1). This is the linear operator
such that

T (t, s)v(s) = v(t), t, s ≥ 0,
where v(t) is any solution of equation (1) (we note that any solution is
global). Clearly, T (t, t) = Id and

T (t, τ)T (τ, s) = T (t, s), t, τ, s ≥ 0.

In order to introduce the notion of nonuniform contraction, it is con-
venient to consider the notion of growth rate. We say that an increasing
function µ : R+

0 → [1,+∞) is a growth rate if

µ(0) = 1 and lim
t→+∞

µ(t) = +∞.

Given growth rates µ and ν, we say that equation (1) admits a (µ, ν)-
nonuniform contraction if there exist constants α,D > 0 and ε ≥ 0 such
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that

‖T (t, s)‖ ≤ D

(
µ(t)
µ(s)

)−α

ν(s)ε, t ≥ s ≥ 0. (3)

The constant −α plays the role of a Lyapunov exponent, while ε measures
the nonuniformity of the contraction (it is also related to the Lyapunov
exponents, although in a more subtler manner; see Section 4). For example,
if µ and ν are arbitrary differentiable growth rates, and α > 0 and ε ≥ 0,
then the scalar differential equation

v′ =
(
−αµ′(t)
µ(t)

+
εν ′(t)
2ν(t)

(cos t− 1)− ε

2
log ν(t) sin t

)
v

admits a (µ, ν)-nonuniform contraction with D = 1.

When µ(t) = ν(t) = eρ(t), we recover the notion of ρ-nonuniform expo-
nential contraction, in which case (3) reduces to

‖T (t, s)‖ ≤ De−α(ρ(t)−ρ(s))+ερ(s), t ≥ s ≥ 0.
When µ(t) = ν(t) = 1 + t, we recover the notion of nonuniform polynomial
contraction, in which case (3) reduces to

‖T (t, s)‖ ≤ D

(
1 + t

1 + s

)−α

(1 + s)ε, t ≥ s ≥ 0.

3. Lyapunov exponents

We introduce in this section a notion of Lyapunov exponent for linear
differential equations in a finite-dimensional space that is well adapted to
an arbitrary growth rate. This shall be useful in Sections 4 and 5.

We consider equation (1) for some continuous function A : R+
0 →Mn(R)

with values in the set Mn(R) of n× n matrices. Given a growth rate µ, we
define a new function χ : Rn → [−∞,+∞] by

χ(v0) = lim sup
t→+∞

log‖v(t)‖
logµ(t)

, (4)

where v(t) is the solution of equation (1) with v(0) = v0 (with the con-
vention that log 0 = −∞). We say that χ is the µ-Lyapunov exponent
associated to equation (1).

We first describe a few properties of the function χ. The following state-
ment is an easy consequence of the definition.

Proposition 1. The function χ is a Lyapunov exponent, that is, the fol-
lowing properties hold:

1. χ(0) = −∞;
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2. χ(cv) = χ(v) for every c ∈ R \ {0} and v ∈ Rn;
3. χ(u+ v) ≤ max{χ(u), χ(v)} for every u, v ∈ Rn.

Since χ is a Lyapunov exponent, it follows from the abstract theory of
Lyapunov exponents (see [1, Section 1.2]) that:

1. χ(u+ v) = max{χ(u), χ(v)} whenever χ(u) 6= χ(v);
2. if for some nonzero vectors u1, . . . , um the numbers χ(u1), . . . , χ(um)

are distinct, then u1, . . . , um are linearly independent;
3. the function χ attains at most n+ 1 distinct values.

In particular, χ can take only finitely many values in Rn \ {0}, that we
denote by λ1 < · · · < λr for some integer r ≤ n. We note that in general
λ1 may be −∞ and λr may be +∞. For each i = 1, . . . , r, we consider the
set

Vi = {v ∈ Rn : χ(v) ≤ λi}.
It follows from Proposition 1 that Vi is a vector space. The number

ki = dimVi − dimVi−1,

with the convention that V0 = {0}, is called the multiplicity of the value λi.
In order to introduce the notion of Lyapunov regularity, we first consider

the adjoint equation
w′ = −A(t)∗w, (5)

where A(t)∗ denotes the transpose of the matrix A(t). Given a growth
rate ν, we define the ν-Lyapunov exponent χ̃ : Rn → [−∞,+∞] associated
to equation (5) by

χ̃(w0) = lim sup
t→+∞

log‖w(t)‖
log ν(t)

, (6)

where w(t) is the solution of equation (5) with w(0) = w0. Again by
the abstract theory of Lyapunov exponents, χ̃ can take only finitely many
values in Rn \ {0}. We denote them by λ̃s < · · · < λ̃1 for some integer
s ≤ n. In general λ̃s may be −∞ and λ̃1 may be +∞.

We define the regularity coefficient of the Lyapunov exponents χ and χ̃
by

γ = minmax{χ(vi) + χ̃(wi) : 1 ≤ i ≤ n}, (7)
where the minimum is taken over all dual bases v1, . . . , vn and w1, . . . , wn

of Rn, that is, all bases such that

〈vi, wj〉 = δij for i, j = 1, . . . , n

(here δij is the Kronecker symbol). In order to ensure that the regularity
coefficient is well defined, we always assume in the paper that the sums
λ1 + λ̃1 and λr + λ̃s are well defined.
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4. Existence of nonuniform contractions

We show in this section that in a finite-dimensional space a large class
of linear differential equations having only negative Lyapunov exponents
admits a nonuniform contraction. The more general case of nonuniform
dichotomies can be treated in a similar manner, although the presentation
would be much more involved, and thus we have chosen not to include it
in the paper.

Theorem 1. Let A(t) be a n× n matrix varying continuously with t ≥ 0,
and let µ ≥ ν be growth rates. If χ(v) < 0 for every v ∈ Rn, then for each
sufficiently small δ > 0 equation (1) admits a (µ, ν)-nonuniform contraction
with

α = −(λr + δ) and ε = γ + 2δ.

Moreover, there exists C > 0 such that

‖T (t, s)−1‖ ≤ C

(
µ(s)
µ(t)

)λ1+δ

ν(t)γ+2δ, t ≥ s ≥ 0. (8)

Proof. The argument is based on the proof of Theorem 4 in [3]. We write

T (t, s) = X(t)X(s)−1,

where X(t) is a fundamental solution matrix of the equation v′ = A(t)v.
One can easily verify that the matrix Y (t) = [X(t)∗]−1 satisfies

Y ′(t) = −A(t)∗Y (t).

Since Y (t) is invertible for each t ≥ 0, its columns form a basis of the space
of solutions of the equation w′ = −A(t)∗w, and thus Y (t) is a fundamental
solution matrix of this equation. Now let x1(t), . . . , xn(t) be the columns of
X(t), and let y1(t), . . . , yn(t) be the columns of Y (t). For each j = 1, . . . , n,
we set

αj = χ(xj(0)) and βj = χ̃(yj(0)),

where χ and χ̃ are respectively the Lyapunov exponents in (4) and (6). We
also write

ρ(t) = logµ(t) and σ(t) = log ν(t). (9)

Given δ > 0 such that λr + δ < 0, there exists D > 0 such that

‖xj(t)‖ ≤ De(αj+δ)ρ(t) and ‖zj(t)‖ ≤ De(βj+δ)σ(t)

for every j = 1, . . . , n and t ≥ 0. Since X(t)∗Y (t) = Id, we have

〈xi(t), yj(t)〉 = δij for every i and j.
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Therefore, taking into account that the minimum in (7) can take only
finitely many values, eventually rechoosing the matrix X(t) one can always
assume that

max{αj + βj : j = 1, . . . , n} = γ.

The entries of the matrix T (t, s) = X(t)Y (s)∗ are

uik(t, s) =
n∑

j=1

xij(t)ykj(s),

where xij(t) is the ith coordinate of xj(t) and where ykj(s) is the kth
coordinate of yj(s). Since αj + δ ≤ λr + δ < 0 and ρ ≥ σ, we obtain

|uik(t, s)| ≤
n∑

j=1

|xij(t)| · |ykj(s)| ≤
n∑

j=1

‖xj(t)‖ · ‖yj(s)‖

≤
n∑

j=1

D2e(αj+δ)ρ(t)+(βj+δ)σ(s)

≤
n∑

j=1

D2e(αj+δ)(ρ(t)−ρ(s))+(αj+δ)ρ(s)+(βj+δ)σ(s)

=
n∑

j=1

D2e(αj+δ)(ρ(t)−ρ(s))+(αj+βj+2δ)σ(s)

≤ nD2e(λr+δ)(ρ(t)−ρ(s))+(γ+2δ)σ(s).

Taking a vector v =
∑n

k=1 ckek, where e1, . . . , en is the canonical basis
of Rn, if ‖v‖2 =

∑n
k=1 c

2
k = 1, then

‖T (t, s)‖2 =

∥∥∥∥∥
n∑

i=1

n∑
k=1

ckuik(t, s)ei

∥∥∥∥∥
2

≤
n∑

i=1

(
n∑

k=1

c2k

n∑
k=1

uik(t, s)2
)

=
n∑

i=1

n∑
k=1

uik(t, s)2.

(10)

Therefore, writing D′ = n2D2, we conclude that

‖T (t, s)‖ ≤

(
n∑

i=1

n∑
k=1

uik(t, s)2
)1/2

≤ D′e(λr+δ)(ρ(t)−σ(s))+(γ+2δ)σ(s).
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This shows that equation (1) admits a (µ, ν)-nonuniform contraction with
α = −(λr + δ) and ε = γ + 2δ.

Now we obtain the bound in (8). We have T (t, s)−1 = X(s)Y (t)∗, and
thus the entries of this matrix are

uik(s, t) =
n∑

j=1

xij(s)ykj(t).

Since ρ ≥ σ, we obtain

|uik(s, t)| ≤
n∑

j=1

|xij(s)| · |ykj(t)| ≤
n∑

j=1

‖xj(s)‖ · ‖yj(t)‖

≤
n∑

j=1

D2e(αj+δ)ρ(s)+(βj+δ)σ(t)

=
n∑

j=1

D2e(αj+δ)(ρ(s)−ρ(t))+(αj+δ)ρ(t)+(βj+δ)σ(t)

≤ nD2e(λ1+δ)(ρ(s)−ρ(t))+(γ+2δ)σ(t).

Proceeding as in (10), one can show that this yields the estimate in (8). �

5. Bounds for the regularity coefficient

We obtain in this section lower and upper bounds for the regularity
coefficient γ (we recall that it was introduced only in the finite-dimensional
setting). This is particularly interesting in view of Theorem 1, which tells
us that the nonuniform part of a nonuniform contraction is essentially meas-
ured by the regularity coefficient. The proofs in this section are appropriate
modifications of arguments in [3].

We first obtain a lower bound for the regularity coefficient. For simplicity
of the notation we continue to use the functions ρ and σ in (9).

Theorem 2. For the regularity coefficient γ in (7), we have

γ ≥ 1
n

(
lim sup
t→+∞

1
ρ(t)

∫ t

0
trA(τ) dτ − lim inf

t→+∞

1
σ(t)

∫ t

0
trA(τ) dτ

)
.

Proof. Let v1, . . ., vn be a basis of Rn, and for each i let vi(t) be the solution
of equation (1) with vi(0) = vi. The matrix X(t) whose columns are the
vectors v1(t), . . . , vn(t) is nonsingular and satisfies

detX(t)
detX(0)

= exp
∫ t

0
trA(τ) dτ
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for every t ≥ 0. Furthermore,

|detX(t)| ≤
n∏

i=1

‖vi(t)‖,

and thus,

lim sup
t→+∞

1
ρ(t)

∫ t

0
trA(τ) dτ ≤

n∑
i=1

χ(vi). (11)

Now let w1, . . ., wn be another basis of Rn. By the former argument, we
have

lim inf
t→+∞

1
σ(t)

∫ t

0
trA(τ) dτ = − lim sup

t→+∞

1
σ(t)

∫ t

0
tr(−A(τ)∗) dτ

≥ −
n∑

i=1

χ̃(wi).
(12)

Adding the inequalities in (11) and (12) yields

lim sup
t→+∞

1
ρ(t)

∫ t

0
trA(τ) dτ − lim inf

t→+∞

1
σ(t)

∫ t

0
trA(τ) dτ ≤

n∑
i=1

(χ(vi)+ χ̃(wi)).

If the bases v1, . . ., vn and w1, . . ., wn are dual, and the minimum in (7) is
attained at this pair, that is,

γ = max{χ(vi) + χ̃(wi) : 1 ≤ i ≤ n},
then

n∑
i=1

(χ(vi) + χ̃(wi)) ≤ nmax{χ(vi) + χ̃(wi) : 1 ≤ i ≤ n} = nγ.

Together with (12) this establishes the desired result. �

For example, when n = 1, that is, for the scalar equation v′ = a(t)v, we
obtain

γ ≥ lim sup
t→+∞

1
ρ(t)

∫ t

0
a(τ) dτ − lim inf

t→+∞

1
σ(t)

∫ t

0
a(τ) dτ. (13)

To obtain an upper bound we assume that the matrices A(t) are upper
triangular. It follows for example from Lemma 1.3.3 in [1] that there is no
loss of generality in making this assumption. We also assume that

lim
t→+∞

log t
ρ(t)

= 0, lim
t→+∞

log t
σ(t)

= 0, (14)
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and

lim sup
t→+∞

1
ρ(t)

log+‖A(t)‖ = 0, lim sup
t→+∞

1
σ(t)

log+‖A(t)‖ = 0, (15)

where log+ x = max{log x, 0}, again with ρ and σ as in (9). Finally, we
consider the numbers

ck = lim sup
t→+∞

1
ρ(t)

∫ t

0
ak(τ) dτ (16)

and

ck = lim inf
t→+∞

1
σ(t)

∫ t

0
ak(τ) dτ, (17)

where a1(t), . . . , an(t) are the entries in the diagonal of A(t).

Theorem 3. Assume that A(t) is upper triangular for every t ≥ 0, and
that conditions (14) and (15) hold for some differentiable functions ρ ≥ σ.
If ck, ck ≤ 0 for k = 1, . . . , n, then

γ ≤
n∑

m=1

(cm − cm).

Proof. We first establish two auxiliary results. Set

cij = cj − ci +
j−1∑

m=i+1

(cm − cm), (18)

and take

hij =
{

0 if cij ≥ 0,
+∞ if cij < 0.

(19)

We denote by aij(t) the entries of the matrix A(t). For each i = 1, . . . , n
and t ≥ 0, set

vij(t) =


0 if i > j,
e

R t
0 aii(τ) dτ if i = j,∫ t

hij

∑j
k=i+1 aik(s)vkj(s)e

R t
s aii(τ) dτ ds if i < j.

(20)

One cay easily verify that the columns of the matrix V (t) = (vij(t)) form
a basis of the space of solutions of equation (1). These columns are

vj(t) = (v1j(t), . . . , vnj(t)) (21)
for j = 1, . . . , n. Given i, j = 1, . . . , n, we also set

λij = lim sup
t→+∞

1
ρ(t)

log |vij(t)|.
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Lemma 1. For each i, j = 1, . . . , n, we have

λij ≤ cj +
j−1∑
m=i

(cm − cm).

Proof of the lemma. Clearly,

λii = ci and i = 1, . . . , n.

Now we proceed by backward induction on i. Namely, for a given i < n,
we assume that

λkj ≤ cj +
j−1∑
m=k

(cm − cm) whenever i+ 1 ≤ k ≤ j. (22)

We shall prove that for j ≥ i+ 1,

λij ≤ cj +
j−1∑
m=i

(cm − cm). (23)

By (15), (17), and (22), for each ε > 0 sufficiently small there exists D > 0
such that |aik(t)| ≤ Deερ(t),

e−
R t
0 aii(τ) dτ ≤ De(−ci+ε)σ(t) ≤ De(−ci+ε)ρ(t),

and
|vkj(t)| ≤ De[cj+

Pj−1
m=k(cm−cm)+ε]ρ(t)

for every t ≥ 0 and i+ 1 ≤ k ≤ j. Therefore,

λij ≤ lim sup
t→+∞

1
ρ(t)

log
(
e

R t
0 aii(τ) dτ

∣∣∣∣ ∫ t

hij

j∑
k=i+1

|aik(s)vkj(s)|e−
R s
0 aii(τ) dτ ds

∣∣∣∣)

≤ ci + lim sup
t→+∞

1
ρ(t)

log
∣∣∣∣ ∫ t

hij

D3
j∑

k=i+1

e[cj+
Pj−1

m=k(cm−cm)−ci+3ε]ρ(s) ds

∣∣∣∣
≤ ci + lim sup

t→+∞

1
ρ(t)

log
∣∣∣∣ ∫ t

hij

D3ne[cj+
Pj−1

m=i+1(cm−cm)−ci+3ε]ρ(s) ds

∣∣∣∣
= ci + lim sup

t→+∞

1
ρ(t)

log
∣∣∣∣ ∫ t

hij

e(cij+3ε)ρ(s) ds

∣∣∣∣.
(24)

Now we consider two cases.
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Case cij ≥ 0. Since ρ is increasing, for each t ≥ 0 we have∫ t

0
e(cij+3ε)ρ(s) ds ≤ te(cij+3ε)ρ(t). (25)

Case cij < 0. Take ε > 0 sufficiently small so that a = cij + 3ε < 0.
It follows from (14) that ρ(t) → +∞ when t → +∞, and thus also that
tρ′(t) → +∞ when t → +∞. Therefore, for each c > 0 there exists t0 > 0
such that tρ′(t) > c for every t > t0. For any such t, we obtain

c

∫ +∞

t
eaρ(s) ds ≤

∫ +∞

t
sρ′(s)eaρ(s) ds

=
s

a
eaρ(s)

∣∣∣+∞
t

− 1
a

∫ +∞

t
eaρ(s) ds.

By condition (14), we have

log(seaρ(s)) = log s+ aρ(s) = ρ(s)
(

log s
ρ(s)

+ a

)
→ −∞

when s→ +∞, and thus,(
c+

1
a

)∫ +∞

t
eaρ(s) ds ≤ t

|a|
eaρ(t).

Taking c sufficiently large and t > t0, we find that∫ +∞

t
e(cij+3ε)ρ(s) ds ≤ te(cij+3ε)ρ(t). (26)

By (25) and (26), in both cases we obtain

lim sup
t→+∞

1
ρ(t)

log
∣∣∣∣ ∫ t

hij

e(cij+3ε)ρ(s) ds

∣∣∣∣ ≤ cij + 3ε.

Hence, it follows from (24) that

λij ≤ ci + cij + 3ε = cj +
j−1∑
m=i

(cm − cm) + 3ε.

Since ε is arbitrary, we conclude that (23) holds for every j ≥ i + 1. This
completes the proof of the lemma. �
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Now we consider the adjoint equation in (5). For each i, j = 1, . . . , n and
t ≥ 0, set

wij(t) =


0 if i < j,
e−

R t
0 aii(τ) dτ if i = j,

−
∫ t
hji

∑i−1
k=j aki(s)wkj(s)e−

R t
s aii(τ) dτ ds if i > j.

(27)

with the same constants as in (19). One can easily verify that the columns
of the matrix W (t) = (wij(t)) form a basis of the space of solutions of
equation (5). These columns are

wj(t) = (w1j(t), . . . , wnj(t)) (28)

for j = 1, . . . , n. Given i, j = 1, . . . , n, we set

λ̃ij = lim sup
t→+∞

1
σ(t)

log |wij(t)|.

Lemma 2. For each i, j = 1, . . . , n, we have

λ̃ij ≤ −cj +
i∑

m=j+1

(cm − cm). (29)

Proof of the lemma. We proceed in a similar manner to that in the proof
of Lemma 1. Clearly,

λ̃jj = −cj and j = 1, . . . , n.

Now we proceed by induction on i. Namely, given i > 1, we assume that

λ̃kj ≤ −cj +
k∑

m=j+1

(cm − cm) whenever j ≤ k ≤ i− 1. (30)

We shall prove that for j ≤ i− 1,

λ̃ij ≤ −cj +
i∑

m=j+1

(cm − cm).

It follows from (15), (16), and (30) that given ε > 0 sufficiently small there
exists D > 0 such that |aki(t)| ≤ Deεσ(t),

e
R t
0 aii(τ) dτ ≤ De(ci+ε)ρ(t) ≤ De(ci+ε)σ(t),

and
|wkj(t)| ≤ De[−cj+

Pk
m=j+1(cm−cm)+ε]σ(t)
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for every t ≥ 0 and j ≤ k ≤ i− 1. Therefore,

λ̃ij ≤ lim sup
t→+∞

1
σ(t)

log
(
e−

R t
0 aii(τ) dτ

∣∣∣∣ ∫ t

hji

i−1∑
k=j

|aki(s)wkj(s)|e
R s
0 aii(τ) dτ ds

∣∣∣∣)

≤ −ci + lim sup
t→+∞

1
σ(t)

log
∣∣∣∣ ∫ t

hji

D3
i−1∑
k=j

e[−cj+
Pk

m=j+1(cm−cm)+ci+3ε]σ(s) ds

∣∣∣∣
≤ −ci + lim sup

t→+∞

1
σ(t)

log
∣∣∣∣ ∫ t

hji

e(cji+3ε)σ(s) ds

∣∣∣∣.
Proceeding as in the proof of Lemma 1, we obtain

lim sup
t→+∞

1
σ(t)

log
∣∣∣∣ ∫ t

hji

e(cji+3ε)σ(s) ds

∣∣∣∣ ≤ cji + 3ε.

Hence,

λ̃ij ≤ −ci + cji + 3ε = −cj +
i∑

m=j+1

(cm − cm) + 3ε,

and the arbitrariness of ε yields (29) for every j ≤ i − 1. This completes
the proof of the lemma. �

We proceed with the proof of the theorem. Set vj = vj(0) and wj = wj(0)
for each j, with the vectors vj(t) and wj(t) as in (21) and (28). By Lemmas 1
and 2 we have

χ(vj) = max{λij : i = 1, . . . , n} ≤ cj +
j−1∑
m=1

(cm − cm),

and

χ̃(wj) = max{λ̃ij : i = 1, . . . , n} ≤ −cj +
n∑

m=j+1

(cm − cm).

Therefore,

χ(vj) + χ̃(wj) ≤
n∑

m=1

(cm − cm) (31)

for every i = 1, . . . , n. By the definition of the regularity coefficient γ,
to complete the proof it suffices to show that the bases v1, . . . , vn and
w1, . . . , wn are dual. Since

d

dt
〈vi(t), wj(t)〉 = 〈A(t)vi(t), wj(t)〉+ 〈vi(t),−A(t)∗wj(t)〉

= 〈A(t)vi(t), wj(t)〉 − 〈A(t)vi(t), wj(t)〉 = 0,
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we have
〈vi(t), wj(t)〉 = 〈vi, wj〉 for every t ≥ 0.

Clearly, 〈vi, wj〉 = 0 for every i < j, and

〈vi, wi〉 = vii(0)wii(0) = 1

for i = 1, . . . , n. Now we fix i > j and t ≥ 0. We have

〈vi(t), wj(t)〉 =
i∑

k=j

vki(t)wkj(t)

= vji(t)wjj(t) + vii(t)wij(t) +
i−1∑

k=j+1

vki(t)wkj(t).

(32)

Moreover, by (18),
cji = cki + cjk (33)

for k = j + 1, . . . , i− 1. We consider two cases:

1. If cji ≥ 0, then hji = 0 (see (19)). By (33), for every k such that
j + 1 ≤ k ≤ i − 1 we have either cki ≥ 0 or cjk ≥ 0. Therefore,
by (19), we have hki = 0 or hjk = 0, and thus either vki(0) = 0
or wkj(0) = 0 (by direct substitution of t = 0 in (20) and (27)).
Furthermore, again since hji = 0, it follows from (20) and (27) that
vji(0) = wij(0) = 0. Hence, evaluating (32) at t = 0 we find that all
terms in the last sum are zero, and thus 〈vi, wj〉 = 0.

2. If cji < 0, then hji = +∞ (see (19)). By (33) and (19), for every k
such that j + 1 ≤ k ≤ i− 1 we have either hki = +∞ or hjk = +∞,
and thus vki(+∞) = 0 or wkj(+∞) = 0. Hence, taking the limit
in (32) as t → +∞ we find that all terms in the last sum are zero,
and thus 〈vi, wj〉 = 0.

The theorem follows now from (31) and the definition of γ. �

For example, for the scalar equation v′ = a(t)v, we obtain

γ ≤ lim sup
t→+∞

1
ρ(t)

∫ t

0
a(τ) dτ − lim inf

t→+∞

1
σ(t)

∫ t

0
a(τ) dτ,

which together with (13) yields the formula

γ = lim sup
t→+∞

1
ρ(t)

∫ t

0
a(τ) dτ − lim inf

t→+∞

1
σ(t)

∫ t

0
a(τ) dτ

when n = 1 (under the assumptions (14) and (15)).
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6. Robustness of nonuniform contractions

Now we return to the infinite-dimensional setting, and we establish the
robustness of a nonuniform contraction under sufficiently small linear per-
turbations. Namely, we consider the perturbed equation (2), for some con-
tinuous function B : R+

0 → B(X).

Theorem 4. Let A,B : R+
0 → B(X) be continuous functions such that

equation (1) admits a (µ, ν)-nonuniform contraction. If

‖B(t)‖ ≤ δ
µ′(t)
µ(t)

ν(t)−ε, t ≥ 0 (34)

for some δ < α/D, then equation (2) admits a (µ, ν)-nonuniform contrac-
tion and

‖T̂ (t, s)‖ ≤ D

(
µ(t)
µ(s)

)−α+δD

ν(s)ε, t ≥ s ≥ 0, (35)

where T̂ (t, s) is the evolution operator associated to equation (2).

Proof. We follow arguments in [6]. We consider the set

J = {(t, s) ∈ R+
0 × R+

0 : t ≥ s},

and the Banach space

C =
{
U : J → B(X) : U is continuous and ‖U‖ <∞

}
with the norm

‖U‖ = sup
{
‖U(t, s)‖ν(s)−ε : (t, s) ∈ J

}
.

Now we define an operator L in the space C by

(LU)(t, s) = T (t, s) +
∫ t

s
T (t, τ)B(τ)U(τ, s)dτ

for each U ∈ C. Since

‖(LU)(t, s)‖ ≤ ‖T (t, s)‖+
∫ t

s
‖T (t, τ)‖ · ‖B(τ)‖ · ‖U(τ, s)‖dτ

≤ D

(
µ(t)
µ(s)

)−α

ν(s)ε + δD‖U‖ν(s)ε

∫ t

s

(
µ(t)
µ(τ)

)−α µ′(τ)
µ(τ)

dτ,
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We obtain

‖(LU)‖ ≤ D

(
µ(t)
µ(s)

)−α

+ δD‖U‖
∫ t

s

(
µ(t)
µ(τ)

)−α µ′(τ)
µ(τ)

dτ

= D

(
µ(t)
µ(s)

)−α

+
δD

α
‖U‖

{
1−

(
µ(t)
µ(s)

)−α
}
≤ D +

δD

α
‖U‖,

and thus the operator L : C → C is well defined. One can show in a similar
manner that

‖LU1 − LU2‖ ≤
δD

α
‖U1 − U2‖.

Since δ < α/D, the operator L is a contraction. Hence there exists a unique
function U ∈ C such that LU = U, thus satisfying

U(t, s) = T (t, s) +
∫ t

s
T (t, τ)B(τ)U(τ, s)dτ (36)

for every t ≥ s ≥ 0. By the variation of parameters formula, we know that
U(t, s) = T̂ (t, s). Now we set φ(t) = ‖T̂ (t, s)‖. Since U ∈ C, the continuous
function φ is bounded. Moreover,

φ(t) ≤ ‖T (t, s)‖+
∫ t

s
‖T (t, τ)‖ · ‖B(τ)‖ · φ(τ) dτ

≤ D

(
µ(t)
µ(s)

)−α

ν(s)ε + δD

∫ t

s

(
µ(t)
µ(τ)

)−α µ′(τ)
µ(τ)

φ(τ) dτ

for every t ≥ s ≥ 0.

Lemma 3. We have

φ(t) ≤ D

(
µ(t)
µ(s)

)−α+δD

ν(s)ε, t ≥ s ≥ 0.

Proof of the lemma. We specify a continuous function Φ by requiring that
it satisfies the integral equation

Φ(t) = D

(
µ(t)
µ(s)

)−α

ν(s)ε + δD

∫ t

s

(
µ(t)
µ(τ)

)−α µ′(τ)
µ(τ)

Φ(τ)dτ

for every t ≥ s ≥ 0. One can verify that Φ satisfies the differential equation

Φ′(t) = (−α+ δD)
µ′(t)
µ(t)

Φ(t),

and that Φ(s) = Dν(s)ε. Therefore,

Φ(t) = D

(
µ(t)
µ(s)

)−α+δD

ν(s)ε.
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Now let z(t) = φ(t)− Φ(t). Then

z(t) ≤ δD

∫ t

s

(
µ(t)
µ(τ)

)−α µ′(τ)
µ(τ)

z(τ)dτ, t ≥ s. (37)

Since φ and Φ are bounded functions, we have
z = sup

t≥s
z(t) < +∞.

It follows from (37) that

z ≤ δD sup
t≥s

∫ t

s

(
µ(t)
µ(τ)

)−α µ′(τ)
µ(τ)

z(τ)dτ

≤ δD

α
z

{
1−

(
µ(t)
µ(s)

)−α
}
≤ δD

α
z.

Since δ < α/D, we have z ≤ 0. Therefore, we conclude that φ(t) ≤ Φ(t) for
every t ≥ s. �

The lemma yields precisely inequality (35), and the proof of the theorem
is complete. �

Under the hypotheses of Theorem 4, it follows from (36) that

‖T̂ (t, s)− T (t, s)‖ ≤
∫ t

s
‖T (t, τ)‖ · ‖B(τ)‖ · ‖T̂ (τ, s)‖dτ

≤ δD2

∫ t

s

(
µ(t)
µ(τ)

)−α(µ(τ)
µ(s)

)−α+δD

ν(s)εµ
′(τ)
µ(τ)

dτ

= Dν(s)ε

{(
µ(t)
µ(s)

)−α+δD

−
(
µ(t)
µ(s)

)−α
}

≤ Dν(s)ε

(
µ(t)
µ(s)

)−α+δD

.

II. NONUNIFORM DICHOTOMIES

We consider in this second part a corresponding notion of nonuniform
dichotomy. It generalizes the usual notion of exponential dichotomy in
several ways: besides introducing a nonuniform term, causing that any
conditional stability may be nonuniform, we consider rates that may not
be exponential as well as different rates in the uniform and nonuniform
parts. After introducing some basic notions, our main aim is to establish
the robustness of nonuniform dichotomies. When compared to the case of
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contractions, this creates substantial complications. Namely, besides the
existence of expansion and contraction, the stable and unstable directions
may approach each other. This means that we need to control the “angle”
between the two directions by estimating the norms of the corresponding
projections.

7. Basic notions

We first introduce the notion of nonuniform dichotomy. Given growth
rates µ and ν, we say that equation (1) admits a (µ, ν)-nonuniform di-
chotomy if there exist projections P (t) : X → X for each t > 0 satisfying

T (t, s)P (s) = P (t)T (t, s), t ≥ s, (38)

and there exist constants α, β,D > 0 and ε ≥ 0 such that

‖T (t, s)P (s)‖ ≤ D

(
µ(t)
µ(s)

)−α

ν(s)ε, t ≥ s, (39)

and

‖T (t, s)Q(s)‖ ≤ D

(
µ(s)
µ(t)

)−β

ν(s)ε, s ≥ t, (40)

where Q(t) = Id−P (t) for each t ≥ 0. Identity (38) corresponds to the
invariance of the “stable” and “unstable” spaces,

E(t) = P (t)(X) and F (t) = Q(t)(X),

that is,
T (t, s)E(s) = E(t) and T (t, s)F (s) = F (t)

for every t, s ≥ 0. When P (t) = Id for every t ≥ 0 we recover the notion of
(µ, ν)-nonuniform contraction introduced in Section 2.

8. Robustness of nonuniform dichotomies I

We start in this section the study of the robustness of nonuniform di-
chotomies by establishing a partial result in which we only control the
expansion and contraction. More precisely, here we do not consider the
norms of the projections determined by the new stable and unstable di-
rections. That problem is addressed in Section 9 under slightly stronger
hypotheses.

The following is our partial robustness result. We denote the evolution
operator associated to equation (2) by T̂ (t, s).
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Theorem 5. Let A,B : R+
0 → B(X) be continuous functions such that

equation (1) admits a (µ, ν)-nonuniform dichotomy with ε < min{α, β}.
If B(t) satisfies (34) with δ sufficiently small, then there exist projections
P̂ (t) and Q̂(t) = Id−P̂ (t) such that

‖T̂ (t, s)| Im P̂ (s)‖ ≤ D̃

(
µ(t)
µ(s)

)−α̃

ν(s)ε, t ≥ s, (41)

and

‖T̂ (t, s)| Im Q̂(s)‖ ≤ D̃

(
µ(s)
µ(t)

)−α̃

ν(s)ε, s ≥ t, (42)

where D̃ = max{D̃1, D̃2}, with α̃, D̃1 and D̃2 as in (45) and (53).

Proof. We shall always take

δ < min
{
α+ β

4D
,

αβ

2D(α+ β)
,
α̃+ β

D
,
α̃+ α

D

}
. (43)

The following lemmas can be obtained by repeating arguments in [6], and
thus their proofs are omitted. We use the notation introduced in the proof
of Theorem 4.

Lemma 4. There exists a unique function U ∈ C such that for each (t, s) ∈
J we have

U(t, s) = T (t, s)P (s) +
∫ t

s
T (t, τ)P (τ)B(τ)U(τ, s)dτ

−
∫ ∞

t
T (t, τ)Q(τ)B(τ)U(τ, s)dτ.

Moreover:

1. t 7→ U(t, s)ξ, t ≥ s is a solution of equation (2) for each ξ ∈ X;
2. U(t, τ)U(τ, s) = U(t, s) for each t ≥ τ ≥ s ≥ 0.

Using the function U in Lemma 4, we define linear operators

P̂ (t) = T̂ (t, 0)U(0, 0)T̂ (0, t), Q̂(t) = Id−P̂ (t)

for each t ≥ 0. One can easily verify that P̂ (t) is a projection for each t ≥ 0,
and that

T̂ (t, s)P̂ (s) = P̂ (t)T̂ (t, s), t ≥ s. (44)
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Lemma 5. The function [s,+∞) 3 t → P̂ (t)T̂ (t, s) is bounded, and for
each t ≥ s ≥ 0 we have

P̂ (t)T̂ (t, s) = T (t, s)P (s)P̂ (s) +
∫ t

s
T (t, τ)P (τ)B(τ)P̂ (τ)T̂ (τ, s)dτ

−
∫ ∞

t
T (t, τ)Q(τ)B(τ)P̂ (τ)T̂ (τ, s)dτ.

Now we establish the inequalities (41) and (42). Let ξ ∈ X. We set

ϕ(t) = ‖P̂ (t)T̂ (t, s)ξ‖ for t ≥ s,

and γ = ‖P̂ (s)ξ‖. By Lemma 5 and (39)–(40), the function ϕ is bounded,
and satisfies

ϕ(t) ≤ ‖T (t, s)P (s)‖γ +
∫ t

s
‖T (t, τ)P (τ)‖ · ‖B(τ)‖ · ϕ(τ)dτ

+
∫ ∞

t
‖T (t, τ)Q(τ)‖ · ‖B(τ)‖ϕ(τ)dτ

≤ Dγ

(
µ(t)
µ(s)

)−α

ν(s)ε + δD

∫ t

s

(
µ(t)
µ(τ)

)−α µ′(τ)
µ(τ)

ϕ(τ)dτ

+ δD

∫ ∞

t

(
µ(τ)
µ(t)

)−β µ′(τ)
µ(τ)

ϕ(τ)dτ.

Lemma 6. We have

ϕ(t) ≤ D̃1γ

(
µ(t)
µ(s)

)−α̃

ν(s)ε, t ≥ s ≥ 0,

with the positive constants

α̃ =
(α− β) +

√
(α+ β)2 − 4δD(α+ β)

2
, D̃1 =

D

1− δD/(β + α̃)
. (45)

Proof of the lemma. We specify a bounded continuous function Γ by re-
quiring that it satisfies the integral equation

Γ(t) = Dγ

(
µ(t)
µ(s)

)−α

ν(s)ε + δD

∫ t

s

(
µ(t)
µ(τ)

)−α µ′(τ)
µ(τ)

Γ(τ)dτ

+ δD

∫ ∞

t

(
µ(τ)
µ(t)

)−β µ′(τ)
µ(τ)

Γ(τ)dτ

(46)

for every t ≥ s. One can verify that

Γ′(t) = −αµ
′(t)
µ(t)

Γ(t) + (α+ β)δD
µ′(t)
µ(t)

∫ ∞

t

(
µ(τ)
µ(t)

)−β µ′(τ)
µ(τ)

Γ(τ)dτ, (47)
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and that

Γ′′(t) = Γ(t)

{
−αµ

′′(t)
µ(t)

+ α

(
µ′(t)
µ(t)

)2

− (α+ β)δD)
(
µ′(t)
µ(t)

)2
}

− α
µ′(t)
µ(t)

Γ′(t) + (α+ β)δD

{
µ′′(t)
µ(t)

+ (β − 1)
(
µ′(t)
µ(t)

)2
}

×
∫ ∞

t

(
µ(τ)
µ(t)

)−β µ′(τ)
µ(τ)

Γ(τ)dτ.

(48)

By (47) and (48), we conclude that Γ(t) satisfies the differential equation

Γ′′(t)− f(t)Γ′(t)− g(t)Γ(t) = 0, (49)

where

f(t) =
µ′′(t)
µ′(t)

+ (β − α− 1)
µ′(t)
µ(t)

,

and

g(t) =
(
αβ − (α+ β)δD

)(µ′(t)
µ(t)

)2

.

We look for a solution of equation (49) in the form

Γ(t) = µ(t)−λ, λ > 0. (50)

Substituting (50) into (49), we find that λ satisfies the equation

λ2 − (α− β)λ+ (α+ β)δD − αβ = 0. (51)

Using condition (43), one can verify that equation (51) has the unique
positive solution λ = α̃. Therefore, equation (49) has the bounded solution
µ(t)−α̃, and in particular

Γ(t) = Γ(s)
(
µ(t)
µ(s)

)−α̃

.

Substituting Γ(t) in (46) and setting t = s, we obtain

Γ(s) ≤ Dγν(s)ε + δDΓ(s)
∫ ∞

s

(
µ(τ)
µ(s)

)−β−α̃ µ′(τ)
µ(τ)

dτ

= Dγν(s)ε +
δD

β + α̃
Γ(s),

which implies that

Γ(s) =
D

1− δD/(β + α̃)
γν(s)ε = D̃1γν(s)ε.
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Therefore,

Γ(t) = D̃1γ

(
µ(t)
µ(s)

)−α̃

ν(s)ε.

One can now use a similar idea to that in the proof of Lemma 3 to show
that ϕ(t) ≤ Γ(t) for every t ≥ s. �

It follows from Lemma 6 that

‖P̂ (t)T̂ (t, s)ξ‖ ≤ D̃1

(
µ(t)
µ(s)

)−α̃

ν(s)ε‖P̂ (s)ξ‖, t ≥ s.

Setting η = P̂ (s)ξ, we obtain

‖T̂ (t, s)P̂ (s)η‖ = ‖P̂ (t)T̂ (t, s)ξ‖ ≤ D̃1

(
µ(t)
µ(s)

)−α̃

ν(s)ε‖η‖

for every t ≥ s. This establishes inequality (41).
Now we show that inequality (42) holds. For each t ≤ s, we have

Q̂(t)T̂ (t, s) = T (t, s)Q(s)Q̂(s) +
∫ t

0
T (t, τ)P (τ)B(τ)Q̂(τ)T̂ (τ, s)dτ

−
∫ s

t
T (t, τ)Q(τ)B(τ)Q̂(τ)T̂ (τ, s)dτ.

(52)

Let ξ ∈ X. We set

ψ(t) = ‖T̂ (t, s)Q̂(s)ξ‖ for t ≤ s,

and γ = ‖Q̂(s)ξ‖. By (52) and (39)–(40), the function ψ is bounded, and
satisfies

ψ(t) ≤ ‖T (t, s)Q(s)‖γ +
∫ t

0
‖T (t, τ)P (τ)‖ · ‖B(τ)‖ · ψ(τ)dτ

+
∫ s

t
‖T (t, τ)Q(τ)‖ · ‖B(τ)‖ψ(τ)dτ

≤ Dγ

(
µ(s)
µ(t)

)−β

ν(s)ε + δD

∫ t

0

(
µ(t)
µ(τ)

)−α µ′(τ)
µ(τ)

ψ(τ)dτ

+ δD

∫ s

t

(
µ(τ)
µ(t)

)−β µ′(τ)
µ(τ)

ψ(τ)dτ.

Lemma 7. We have

ψ(t) ≤ D̃2γ

(
µ(s)
µ(t)

)−α̃

ν(s)ε, 0 < t ≤ s,
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where
D̃2 =

D

1− δD/(α+ α̃)
> 0. (53)

Proof of the lemma. Again we specify a bounded continuous function Ψ by
requiring that it satisfies the integral equation

Ψ(t) = Dγ

(
µ(s)
µ(t)

)−β

ν(s)ε + δD

∫ t

0

(
µ(t)
µ(τ)

)−α µ′(τ)
µ(τ)

Ψ(τ)dτ

+ δD

∫ s

t

(
µ(τ)
µ(t)

)−β µ′(τ)
µ(τ)

Ψ(τ)dτ

(54)

for every t ≤ s. One can proceed in a similar manner to that in the proof
of Lemma 6 to show that

Ψ(t) = Ψ(s)
(
µ(s)
µ(t)

)−α̃

.

Substituting Ψ(t) in (54) and setting t = s, we obtain

Ψ(s) = Dγν(s)ε + δDΨ(s)
∫ s

0

(
µ(s)
µ(τ)

)−α−α̃ µ′(τ)
µ(τ)

dτ

≤ Dγν(s)ε +
δD

α+ α̃
Ψ(s).

Hence, Ψ(s) ≤ D̃2γν(s)ε and again one can proceed in a similar manner to
that in the proof of Lemma 6 to obtain

ψ(t) ≤ Ψ(t) ≤ D̃2γ

(
µ(s)
µ(t)

)−α̃

ν(s)ε, 0 < t ≤ s.

This completes the proof of the lemma. �

The lemma yields inequality (42), thus completing the proof of the the-
orem. �

9. Robustness of nonuniform dichotomies II

We remark that Theorem 5 gives no information about the norms of the
projections P̂ (t) and Q̂(t) for the perturbed equation. This is important in
order to establish the robustness of nonuniform dichotomies. For that we
require a slightly stronger hypothesis, namely

‖B(t)‖ ≤ δν(t)−2ε

{
(β + α̃)

µ′(t)
µ(t)

+ ε
ν ′(t)
ν(t)

}
, t ≥ 0. (55)

The following is our robustness result.
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Theorem 6. Let A,B : R+
0 → B(X) be continuous functions such that

equation (1) admits a (µ, ν)-nonuniform dichotomy with growth rates µ ≥ ν
and ε < min{α, β}. If B(t) satisfies (55) with δ sufficiently small, then
equation (2) admits a (µ, ν)-nonuniform dichotomy with the constants
α, β,D and ε replaced respectively by α̃, α̃, 4DD̃ and 2ε.

Proof. Again we follow arguments in [6]. We start with an auxiliary result.

Lemma 8. If δ < 1/4DD̃, then for each t ≥ 0 we have

‖P̂ (t)‖ ≤ 4Dν(t)ε, ‖Q̂(t)‖ ≤ 4Dν(t)ε. (56)

Proof of the lemma. By Lemma 5 with t = s, since P (t) and Q(t) are
complementary projections, we have

Q(t)P̂ (t) = −
∫ ∞

t
T (t, τ)Q(τ)B(τ)P̂ (τ)T̂ (τ, t)dτ. (57)

By (41) and (44), for each τ ≥ t we have

‖P̂ (τ)T̂ (τ, t)‖ ≤ D̃

(
µ(τ)
µ(t)

)−α̃

ν(t)ε‖P̂ (t)‖. (58)

Using (57) and (40), we obtain

‖Q(t)P̂ (t)‖

≤
∫ ∞

t
‖T (t, τ)Q(τ)‖ · ‖B(τ)‖ · ‖P̂ (τ)T̂ (τ, t)‖dτ

≤ δDD̃‖P̂ (t)‖
∫ ∞

t

(
µ(τ)
µ(t)

)−β−α̃( ν(t)
ν(τ)

)ε{
(β + α̃)

µ′(τ)
µ(τ)

+ ε
ν ′(τ)
ν(τ)

}
dτ

= −δDD̃‖P̂ (t)‖
∫ ∞

t

{(
µ(τ)
µ(t)

)−β−α̃( ν(t)
ν(τ)

)ε
}′

τ

dτ

= δDD̃‖P̂ (t)‖.
(59)

Similarly, it follows from (52) with t = s that

P (t)Q̂(t) =
∫ t

0
T (t, τ)P (τ)B(τ)Q̂(τ)T̂ (τ, t)dτ. (60)

By (42), for each τ ≤ t we have

‖Q̂(τ)T̂ (τ, t)‖ ≤ D̃

(
µ(t)
µ(τ)

)−α̃

ν(t)ε‖Q̂(t)‖.
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Now we observe that since µ ≥ ν and ε < α+ α̃, we have

µ(t)α+α̃ ≥ µ(t)ε ≥ ν(t)ε. (61)

Using (60), (61) and (39), we obtain

‖P (t)Q̂(t)‖ ≤
∫ t

0
‖T (t, τ)P (τ)‖ · ‖B(τ)‖ · ‖Q̂(τ)T̂ (τ, t)‖dτ

= δDD̃‖Q̂(t)‖
∫ t

0

{(
µ(t)
µ(τ)

)−α−α̃( ν(t)
ν(τ)

)ε
}′

τ

dτ

= δDD̃‖Q̂(t)‖
{

1− ν(t)ε

µ(t)α+α̃

}
≤ δDD̃‖Q̂(t)‖.

(62)

We also observe that

P̂ (t)− P (t) = Q(t)P̂ (t)− P (t)Q̂(t).

It thus follows from (60) and (62) that

‖P̂ (t)− P (t)‖ ≤ δDD̃(‖P̂ (t)‖+ ‖Q̂(t)‖). (63)

On the other hand, by (39)–(40) with t = s, we have

‖P (t)‖ ≤ Dν(t)ε, ‖Q(t)‖ ≤ Dν(t)ε

It thus follows from (63) that

‖P̂ (t)‖ ≤ ‖P̂ (t)− P (t)‖+ ‖P (t)‖
≤ δDD̃(‖P̂ (t)‖+ ‖Q̂(t)‖) +Dν(t)ε.

Since
‖Q̂(t)−Q(t)‖ = ‖P̂ (t)− P (t)‖,

we also have

‖Q̂(t)‖ ≤ δDD̃(‖P̂ (t)‖+ ‖Q̂(t)‖) +Dν(t)ε.

Therefore,

‖P̂ (t)‖+ ‖Q̂(t)‖ ≤ 2δDD̃(‖P̂ (t)‖+ ‖Q̂(t)‖) + 2Dν(t)ε,

and thus,
(1− 2δDD̃)‖P̂ (t)‖+ ‖Q̂(t)‖ ≤ 2Dν(t)ε.

Since δ < 1/4DD̃, we obtain

‖P̂ (t)‖+ ‖Q̂(t)‖ ≤ 4Dν(t)ε,

which yields the desired inequalities. �
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Using (58) and (56), for each τ ≥ t we have

‖P̂ (τ)T̂ (τ, t)‖ ≤ D̃

(
µ(τ)
µ(t)

)−α̃

ν(t)ε‖P̂ (t)‖

≤ 4DD̃
(
µ(τ)
µ(t)

)−α̃

ν(t)2ε.

Similarly, using (59) and (56), for each τ ≤ t we have

‖Q̂(τ)T̂ (τ, t)‖ ≤ D̃

(
µ(t)
µ(τ)

)−α̃

ν(t)ε‖Q̂(t)‖

≤ 4DD̃
(
µ(t)
µ(τ)

)−α̃

ν(t)2ε.

This completes the proof of the theorem. �
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