Linear systems and Multiplicity of ideals

Lê Dũng Tráng

The "Abdus Salam" ICTP, Strada Costiera 11, 34014 Trieste, Italy *E-mail address*: ledt@ictp.it

in memory of my friend Sevin Recillas

Introduction

A result of P. Samuel ([17] p. 186, Chap.II, Théorème 5) says that in a local noetherian ring $(\mathcal{O}, \mathfrak{M})$ of Krull dimension d in which the residual field k is infinite, the multiplicity of a \mathfrak{M} -primary ideal I is equal to the multiplicity of an ideal (x_1, \ldots, x_d) generated by some parameter sequence x_1, \ldots, x_d contained in I. By a theorem of Rees ([16] p.142 Theorem 9.44), this implies that the ideals I and (x_1, \ldots, x_d) have the same integral closure in the ring \mathcal{O} .

In fact Samuel's proof shows that the elements of the parameter sequence can be chosen to be general elements of I, namely *superficial elements* of I.

An interesting consequence of Samuel's result is that, in the case the local ring \mathcal{O} is a Cohen-Macaulay ring, e.g. a regular or a local complete intersection ring, the multiplicity of the ideal I in \mathcal{O} is the length of the \mathcal{O} -module

 $\mathcal{O}/(x_1,\ldots,x_d)$

Using a geometric interpretation of the multiplicity by C. P. Ramanujam ([15]), we shall give a geometric way to calculate the multiplicity. We shall consider the particular case of a non-singular complex surface and give an example with a geometric proof of a result of Mumford, as it was suggested to the author by M.S. Narasimhan.

Most of this note is written in the language of complex analytic spaces (see [2] and [1]), but the results can be stated and proved in the case of schemes of finite type (see definition in [3] Chap. IV 1.6.1) over an infinite field with equicharacteristic local rings.

²⁰⁰⁰ Mathematical Subject Classification: 13H15, 14B05, 14H20, 14H50, 32S05, 32S10, 32S15

1. Integral closures and blowing-ups.

Let $(\mathcal{O}, \mathfrak{M})$ be a reduced complex analytic local ring and let J be an ideal of \mathcal{O} . We say that an element x of \mathcal{O} is integral over the ideal J if there is a relation

$$x^n + \sum_{i=1}^n a_i x^{n-i} = 0$$

where $a_i \in J^i$.

Elements of \mathcal{O} which are integral over J form an ideal \overline{J} in \mathcal{O} which contains J. This ideal is called the *integral closure* of J in \mathcal{O} .

We know that an ideal J of \mathcal{O} defines an order function ν_J defined by

$$\nu_J(x) := \sup\{k, x \in J^k\} \in \mathbb{N} \cup +\infty$$

for any $x \in \mathcal{O}$.

We can define

$$\overline{\nu}_J(x) := \liminf \frac{\nu_J(x^k)}{k} \in \mathbb{N} \cup +\infty$$

Notice that one can show that $\overline{\nu}_J(x)$ is in \mathbb{Q} and not in \mathbb{R} , as its definition suggests.

Then, we have the important following theorem (see [11] Théorème 2.1 or [7]):

1.1. Theorem. Let $(\mathcal{O}, \mathfrak{M})$ be a reduced analytic local ring, J be an ideal of \mathcal{O} and $x \in \mathcal{O}$. Denote by (Z, z) a germ of complex analytic space such that $\mathcal{O}_{Z,z} = \mathcal{O}$. The following conditions are equivalent:

i) The element x is integral over the ideal J;

ii) We have $\overline{\nu}_J(x) \ge 1$;

iii) There is a modification $\pi: \tilde{Z} \to (Z, z)$ such that the space \tilde{Z} is normal and $J\mathcal{O}_{\tilde{Z}}$ is principal and $x \circ \pi$ is a section of $J\mathcal{O}_{\tilde{Z}}$.

iv) Let $\pi: \tilde{Z} \to (Z, z)$ be the normalized blowing-up of J, then $x \circ \pi$ is a section of $J\mathcal{O}_{\tilde{Z}}$.

On the other hand we have the following consequence of a theorem of D. Rees ([16] p.142 Theorem 9.44):

1.2. Theorem. Let $(\mathcal{O}, \mathfrak{M})$ be an analytic local ring which is an integral domain. Let $I \subset J$ be \mathfrak{M} -primary ideals of \mathcal{O} . Then, these ideals have the same multiplicity if and only if they have the same integral closure in \mathcal{O} .

The preceding theorems give us the important corollary:

1.3. Corollary. Let I be a \mathfrak{M} -primary ideal of a reduced analytic local ring $(\mathcal{O}, \mathfrak{M})$ and let x_1, \ldots, x_d a sequence of parameters in I which generates an ideal (x_1, \ldots, x_d) having the same multiplicity as the one of I. The normalized blowing-up of I equals the normalized blowing-up of (x_1, \ldots, x_d) .

Proof: Let (Z, z) be a germ of reduced complex analytic space such that $\mathcal{O}_{Z,z} = \mathcal{O}$. From the theorem of Rees, it is enough to prove that the normalized blowing-up $\pi : \tilde{Z} \to (Z, z)$ of I is also the normalized blowingup of the integral closure \overline{I} of I in \mathcal{O} . We have $\overline{I} \supset I$, so $\overline{I}\mathcal{O}_{\tilde{Z}} \supset I\mathcal{O}_{\tilde{Z}}$. Theorem 1.1 implies that $\overline{I}\mathcal{O}_{\tilde{Z}} \subset I\mathcal{O}_{\tilde{Z}}$, so

$$\overline{I}\mathcal{O}_{\tilde{Z}}=I\mathcal{O}_{\tilde{Z}}.$$

Therefore $\overline{IO}_{\tilde{Z}}$ is invertible and π factorizes uniquely by σ through the normalized blowing-up $\overline{\pi}: \overline{Z}' \to (Z, z)$ of \overline{IO} :

Now we show that $I\mathcal{O}_{\overline{Z}'} = \overline{I}\mathcal{O}_{\overline{Z}'}$. First, notice that $I\mathcal{O}_{\overline{Z}'} \subset \overline{I}\mathcal{O}_{\overline{Z}'}$, and, for $k \geq 0$ $I^k\mathcal{O}_{\overline{Z}'} \subset \overline{I}^k\mathcal{O}_{\overline{Z}'}$. By definition we have that $\overline{I}\mathcal{O}_{\overline{Z}'}$ is locally principal. Since $\mathcal{O}_{Z,z}$ is noetherian, the ideal \overline{I} is finitely generated. Let f_1, \ldots, f_k be generators of \overline{I} . Let $y \in \overline{\pi}^{-1}(z)$. Since $\overline{I}\mathcal{O}_{\overline{Z}',y}$ is principal, one of the $f_i \circ \overline{\pi}$'s, say $f_1 \circ \overline{\pi}$, generates $\overline{I}\mathcal{O}_{\overline{Z}',y}$. On the other hand f_1 is integral over I, there is a relation:

$$f_1^N + \sum_{1}^{N} a_k f_1^{N-k} = 0$$

where $a_k \in I^k$. Therefore in $\overline{I}\mathcal{O}_{\overline{Z}',y}$, we have:

$$(f_1 \circ \overline{\pi})^N + \sum_{1}^{N} (a_k \circ \overline{\pi}) p(f_1 \circ \overline{\pi})^{N-k} = 0$$

and by dividing by $(f_1 \circ \overline{\pi})^N$:

$$1 + \sum_{1}^{N} \frac{(a_k \circ \overline{\pi})}{(f_1 \circ \overline{\pi})^k} = 0,$$

which yields

$$f_1 \circ \overline{\pi} = -\sum_{1}^{N} \frac{(a_k \circ \overline{\pi})}{(f_1 \circ \overline{\pi})^{k-1}}.$$

Since $a_k \circ \overline{\pi}$ belongs to I^k , $a_k \circ \overline{\pi} \in \overline{I}^{k-1} I\mathcal{O}_{\overline{Z}'}$ and we have, for $1 \leq k \leq N$,

$$\frac{(a_k \circ \overline{\pi})}{(f_1 \circ \overline{\pi})^{k-1}} \in I\mathcal{O}_{\overline{Z}',y},$$

so $f_1 \circ \overline{\pi} \in I\mathcal{O}_{\overline{Z}',y}$ and at y:

$$I\mathcal{O}_{\overline{Z}',y} = \overline{I}\mathcal{O}_{\overline{Z}',y} = (f_1 \circ \pi)\mathcal{O}_{\overline{Z}',y}.$$

Therefore the sheaf $I\mathcal{O}_{\overline{Z}'}$ is invertible. It follows that $\overline{\pi}$ factorizes uniquely by $\tau: \overline{Z}' \to \tilde{Z}$ through the morphism π :

The uniqueness of the morphism implies that necessarily σ is the inverse morphism of τ , which shows that the normalized blowing-ups of I and its integral closure \overline{I} in \mathcal{O} are the same.

2. Geometry of Multiplicities

In [15], C. P. Ramanujam gave an interesting geometrical interpretation of the multiplicity.

First recall that for an invertible sheaf \mathcal{L} on a proper scheme X (resp. on a compact analytic space), the Euler characteristic $\chi(\mathcal{L}^n)$ of the cohomology on X of the *n*-th power \mathcal{L}^n of \mathcal{L} is a function of *n* which coincides with a polynomial $P_{\mathcal{L}}(n)$ of degree $m \leq d := \dim X$ in *n*. The coefficient of n^d in this polynomial is

$$\frac{1}{d!}d(\mathcal{L})$$

and $d(\mathcal{L})$ is called the degree of \mathcal{L} .

In the case of local analytic rings the result of C.P. Ramanujam (see [15] Theorem p. 64 and Remark (1) p. 66) can be stated in the following way:

2.1. Theorem. Let $(\mathcal{O}, \mathfrak{M})$ be a reduced local analytic local ring and I a \mathfrak{M} -primary ideal of \mathcal{O} . Let (Z, z) be a germ of analytic space such that $\mathcal{O}_{Z,z} = \mathcal{O}$. Let $\pi : Z' \to (Z, z)$ be a bimeromorphic map such that π^*I is an invertible sheaf on Z'. The degree of the restriction of π^*I to the space defined by π^*I is equal to the multiplicity of the ideal I.

Considering the space defined by the coherent ideal sheaf $\pi^*I = I\mathcal{O}_{Z'}$, we have the exact sequence

$$0 \to I^{n+1}\mathcal{O}_{Z'} \to I^n\mathcal{O}_{Z'} \to I^n\mathcal{O}_{Z'} \otimes_{\mathcal{O}_{Z'}} \mathcal{O}_{Z'}/I\mathcal{O}_{Z'} \to 0$$

which yields that the degree of the restriction of π^*I to the space $\langle \pi^*I \rangle$ defined by π^*I itself equals the degree of $I\mathcal{O}_{Z'}$ because

$$\chi(I^n \mathcal{O}_{Z'}) - \chi(I^{n+1} \mathcal{O}_{Z'}) = \chi(I^n \mathcal{O}_{Z'} \otimes_{\mathcal{O}_{Z'}} \mathcal{O}_{Z'}/I\mathcal{O}_{Z'})$$

and $\chi(I^n \mathcal{O}_{Z'}) - \chi(I^{n+1} \mathcal{O}_{Z'}) = P_{I \mathcal{O}_{Z'}}(n) - P_{I \mathcal{O}_{Z'}}(n+1)$ is a polynomial of degree d-1 with a term of degree d-1 equal to

$$-\frac{1}{(d-1)!}d(I\mathcal{O}_{Z'})n^{d-1}.$$

Since $\chi(I^n \mathcal{O}_{Z'} \otimes_{\mathcal{O}_{Z'}} \mathcal{O}_{Z'}/I\mathcal{O}_{Z'})$ has a term of degree d-1 equal to

$$\frac{1}{(d-1)!}d(I\mathcal{O}_{Z'}|_{<\pi^*I>})n^{d-1}$$

Ramanujam's theorem implies

2.2. Corollary. The multiplicity of I equals:

 $d(I\mathcal{O}_{Z'}|_{<\pi^*I>}) = -d(I\mathcal{O}_{Z'}).$

Ramanujam's theorem in particular applies to the cases when π is the normalized blowing-up of I or a resolution of (Z, z) in which π^*I is an invertible sheaf.

For instance, when the bimeromorphic map π of the preceding theorem is a resolution of singularities π of (Z, z) for which π^*I is invertible, we have:

2.3. Corollary. Assume that the map π of the preceding theorem is a resolution of singularities for which π^*I is invertible and $(\mathcal{O}, \mathfrak{M})$ is an integral domain, then the multiplicity of I equals $(-1)^{d-1}(D)^d$, where d is the Krull dimension of \mathcal{O} , D is the divisor defined by π^*I on Z' and $(D)^d$ the d-th self-intersection of D.

Proof: According to Ramanujam's theorem the multiplicity of I equals $d(I\mathcal{O}_{Z'}|_{<\pi^*I>}).$

The preceding corollary gives

$$d(I\mathcal{O}_{Z'}|_{<\pi^*I>}) = -d(I\mathcal{O}_{Z'}).$$

Let $D = \langle \pi^* I \rangle$ be the divisor of Z' defined by the invertible sheaf $I\mathcal{O}_{Z'}$. Hirzebruch-Riemann-Roch theorem (see [H] Theorem 4.1 Appendix A) gives that the degree $d(I\mathcal{O}_{Z'})$ of $I\mathcal{O}_{Z'}$ equals $(-1)^d(D)^d$. Precisely,

$$\chi(I^n\mathcal{O}_{Z'}) = ch(I^n\mathcal{O}_{Z'})Todd(\mathcal{T}_{Z'}) \cap [Z'$$

where [Z'] is the fundamental class of Z' and $ch(I^n \mathcal{O}_{Z'})$ is the Chern character and $Todd(\mathcal{T}_{Z'})$ is the Todd class of the tangent bundle of Z':

$$Todd(T_{Z'}) = 1 + \frac{1}{2}c_1(T_{Z'}) + \dots,$$

and, since $I^n \mathcal{O}_{Z'}$ is invertible, we have:

$$ch(I^{n}\mathcal{O}_{Z'}) = 1 + nc_{1}(I\mathcal{O}_{Z'}) + \ldots + \frac{1}{d!}n^{d}c_{1}^{d}(I\mathcal{O}_{Z'}).$$

By comparing the terms of degree d in n, for $n \gg 0$, on each side of the equality of Hirzebruch-Riemann-Roch theorem, we have:

$$d(I\mathcal{O}_{Z'}) = c_1^d(I\mathcal{O}_{Z'}) \cap [Z'].$$

Since $I\mathcal{O}_{Z'}$ is $\mathcal{O}(-D)$ we have:

$$c_1^d(I\mathcal{O}_{Z'}) \cap [Z'] = (-D)^d$$

and the multiplicity of *I* is $-d(I\mathcal{O}_{Z'}) = -(-D)^d = (-1)^{d-1}(D)^d$.

3. Linear Systems

Let (y_1, \ldots, y_k) be generators of an ideal J of the reduced analytic local ring $\mathcal{O}_{Z,z}$. We can construct the blowing-up of J in the following way.

Let Z be a representative of the germ (Z, z) such that the germs y_i $(1 \le i \le k)$ are defined by holomorphic functions defined on Z also denoted by y_k and let Y be a representative of the support of J in Z. Then on $Z \setminus Y$ we define the map λ into the complex projective space \mathbb{P}^{k-1} by:

$$\lambda(z') = (y_1(z') : \ldots : y_k(z'))$$

for any $z' \in Z \setminus Y$.

The graph G of λ is an analytic subspace of $Z \times \mathbb{P}^{k-1}$. The topological closure \overline{G} of G is naturally an analytic subspace of $Z \times \mathbb{P}^{k-1}$, because G is the difference of the analytic set defined by

$$(y_1:\ldots:y_k)=(u_1:\ldots:u_k)$$

in $Z \times \mathbb{P}^{k-1}$, the u_i 's are the homogeneous coordinates of \mathbb{P}^{d-1} , and the analytic set $Y \times \mathbb{P}^{k-1}$ (use e.g. Lemma 3.9 of [19]). One can show that

the restriction to \overline{G} of the first projection onto Z is a representative of the blowing-up $p: Z_J \to (Z, z)$ of the ideal $J = (y_1, \ldots, y_k)$ in (Z, z). Notice that Z_J is reduced.

Let *n* be the normalization of \overline{G} , then by corollary 1.3 the composition $p \circ n$ is also the normalized blowing-up $\pi : \tilde{Z} \to (Z, z)$ of *I* in (Z, z).

Consider the special case J is generated by $d \ge 2$ generators where d is the Krull dimension of $\mathcal{O}_{Z,z}$ and $Y = \{z\}$. The blowing-up Z_J of J is given in $Z \times \mathbb{P}^{d-1}$ by the equations

$$u_{i+1}y_i - u_i y_{i+1} = 0$$

where $1 \leq i \leq d-1$. Therefore the second projection induces a map

$$\lambda_J: Z_J \to \mathbb{P}^{d-1}$$

which can be viewed as the family of curves defined by the linear system generated by y_1, \ldots, y_d . On the other hand the underlying set $|p^{-1}(z)|$ of the exceptional divisor of the blowing-up $p: Z_J \to (Z, z)$ is contained in $\{z\} \times \mathbb{P}^{d-1}$, so

$$|p^{-1}(z)| = \{z\} \times \mathbb{P}^{d-1}$$

Let $\mathbf{a} = (a_1, \ldots, a_d)$ be a general point of \mathbb{P}^{d-1} . Since both Z_J and \mathbb{P}^{d-1} are reduced, the general fiber $\lambda_J^{-1}(\mathbf{a})$ is a general reduced curve in the linear system of curves generated by y_1, \ldots, y_d (see [13]). Therefore, after normalization, the inverse image $n^{-1}(\lambda_J^{-1}(\mathbf{a}))$ is a non-singular (reduced) curve transverse to the exceptional divisor of the normalized blowing-up $p \circ n$. Since all the components of the exceptional divisor of $p \circ n$ project onto \mathbb{P}^{d-1} , the curve $n^{-1}(\lambda_J^{-1}\mathbf{a})$) intersects all these components.

Apply these results to the case of a $\mathfrak{M}_{Z,z}$ -primary ideal I of the reduced analytic local ring $\mathcal{O}_{Z,z}$. The result of P. Samuel tells us that the ideal Iis integral over a ideal J generated by d general elements x_1, \ldots, x_d of I, where d is the Krull dimension of $\mathcal{O}_{Z,z}$. We have seen that the normalized blowing-up $\overline{\pi} : \tilde{Z} \to (Z, z)$ of I coincides with the normalized blowingup of the ideal generated by x_1, \ldots, x_d . Let Γ be a general curve in the linear system of curves generated by x_1, \ldots, x_d . From what precedes we observe that Γ is reduced and the strict transform $\tilde{\Gamma}$ of Γ by $\overline{\pi}$ is a nonsingular curve which intersects transversally all the components $D_{\alpha}, \alpha \in A$ of $|\overline{\pi}^{-1}(z)|$. This strict transform of a general curve in the linear system of curves generated by x_1, \ldots, x_d can be obtained in the following way:

• Let $\pi_J : Z_J \to (Z, z)$ be the blowing-up of the ideal J. We have a map $\lambda_J : Z_J \to \mathbb{P}^{d-1}$ defined by the generators x_1, \ldots, x_d of J.

- Consider a general point **m** of \mathbb{P}^{d-1} , it is defined by d-1 linear equations $\sum_{i=1}^{d} \alpha_i^j \xi_i = 0, \ 1 \leq j \leq d-1$, where ξ_1, \ldots, ξ_d are the homogeneous coordinates of \mathbb{P}^{d-1} .
- The fiber $\lambda_J^{-1}(\mathbf{m})$ of λ_J over \mathbf{m} is the strict transform by the blowing-up π_J of the curve Γ on (Z, z) defined by $\sum_{i=1}^d \alpha_i^j x_i = 0$, $1 \leq j \leq d-1$. Since \mathbf{m} is a general point of \mathbb{P}^{d-1} , the germ of curve (Γ, z) is a general curve in the linear system of curves generated by x_1, \ldots, x_d . The strict transform of Γ by the normalized blowing-up $\overline{\pi}$ is $n^{-1}(\lambda_J^{-1}(\mathbf{m}))$.

Let d_{α} be the number of components of the strict transform Γ which have a non-empty intersection with D_{α} . Let e_{α} be the multiplicity of D_{α} in the divisor defined by $I\mathcal{O}_{\tilde{Z}}$. Then, we have:

3.1. Theorem. The multiplicity of the ideal I equals $\sum_{\alpha \in A} e_{\alpha} d_{\alpha}$.

Proof: Let $\varphi : \mathbb{Z} \to \tilde{\mathbb{Z}}$ be a resolution of singularities of $\tilde{\mathbb{Z}}$. The sheaf $(\overline{p} \circ \varphi)^* I \mathcal{O}_{\mathbb{Z}} = I \mathcal{O}_{\mathbb{Z}}$ generated by I on \mathbb{Z} is invertible. Let D be the divisor of \mathbb{Z} defined by $I \mathcal{O}_{\mathbb{Z}}$. According to corollary 2.3, the multiplicity of I equals $(-1)^{d-1}(D)^d$. We shall prove:

3.2. Lemma.

$$(-1)^{d-1}(D)^d = \sum_{\alpha \in A} e_\alpha d_\alpha.$$

Using Ramanujam's result, this lemma obviously implies our theorem.

Proof of the lemma: First we observe that, since the image of D by the map $\overline{p} \circ \varphi$ is a point $\{z\}$, we have

$$D.div(f \circ \overline{p} \circ \varphi) = 0,$$

for any germ of functions $f \in \mathfrak{M}_{Z,z} \subset \mathcal{O}_{Z,z}$. In particular, if f is a general element of the ideal I, we have:

$$div(f \circ \overline{p} \circ \varphi) = D + H(f)$$

where H(f) is the strict transform of $\{f = 0\}$.

Now let us choose $\alpha_i^j \in \mathbb{C}$, such that the d-1 linear equations $\sum_{i=1}^d \alpha_i^j \xi_i = 0, \ 1 \leq j \leq d-1$, are general and define a general point of \mathbb{P}^{d-1} . Let $f_j := \sum_{i=1}^d \alpha_i^j x_i = 0, \ 1 \leq j \leq d-1$. The functions f_j , $1 \leq j \leq d-1$, are general elements of the ideal I. The curve Γ on Zdefined by $\{f_1 = \ldots = f_{d-1}\}$ is a general curve in the linear system of curves generated by x_1, \ldots, x_d . The strict transform of Γ by $\overline{p} \circ \varphi$ is the curve $H(f_1) \cap \ldots \cap H(f_{d-1})$.

The lemma will be consequence of the equality

$$(-1)^{d-1}(D^d) = (D.H(f_1)....H(f_{d-1})).$$

In fact, since $(D.D + H(f_i)) = 0$, for $1 \le i \le d - 1$, we have

$$D.H(f_1)....H(f_{d-1})) = -(D.H(f_1)...H(f_{d-2}).D)$$

Therefore, by induction we can prove

$$(D.H(f_1)....H(f_{d-1})) = (-1)^{d-2}(D.H(f_1).D...D) = (-1)^{d-1}(D^d).$$

It remains to prove that $(D.H(f_1)....H(f_{d-1})) = \sum_{\alpha \in A} e_\alpha d_\alpha$. The curve Γ being a general curve in the linear system of curves generated by x_1, \ldots, x_d the strict transform $\tilde{\Gamma}$ of Γ by π is non-singular and transverse to the components of $|\overline{\pi}^{-1}(z)|$. Since φ is a resolution of singularities \tilde{Z} and

$$\varphi^{-1}(\tilde{\Gamma}) = H(f_1) \cap \ldots \cap H(f_{d-1})$$

the intersection points of $H(f_1) \cap \ldots \cap H(f_{d-1})$ and D are the inverse images by φ of the intersection points of $\tilde{\Gamma}$ and $|\overline{\pi}^{-1}(z)|$ and the multiplicity e_{α} of D_{α} in \tilde{Z} equals the multiplicity of the corresponding component in \mathcal{Z} . Since the intersection of $\tilde{\Gamma}$ with the divisor of \tilde{Z} defined by $I\mathcal{O}_{\tilde{Z}}$ is $\sum_{\alpha \in A} e_{\alpha} d_{\alpha}$, we have

$$(D.H(f_1).\ldots.H(f_{d-1})) = \sum_{\alpha \in A} e_{\alpha} d_{\alpha}.$$

4. An example

Let us consider the simple case when $\mathcal{O}_{Z,z}$ is a regular local ring of Krull dimension 2. The multiplicity e(I) of a $\mathfrak{M}_{Z,z}$ -primary ideal I is the multiplicity of an ideal generated (f,g) by two general elements of I. Since $\mathcal{O}_{Z,z}$ is regular, it is Cohen-Macaulay, so:

$$e(I) = \dim_{\mathbb{C}} \frac{\mathcal{O}_{Z,z}}{(f,g)}.$$

Therefore, the multiplicity of I is the intersection number of f = 0 and g = 0 at z.

The blowing-up π_J of the ideal J := (f, g) gives the surface Z_J defined by $\beta f - \alpha g = 0$ in $Z \times \mathbb{P}^1$. The projection onto Z restricted to Z_J is the blowing-up π_J and the projection onto \mathbb{P}^1 restricted to Z_J extends to Z_J the map λ from $Z \setminus \{z\}$ into \mathbb{P}^1 defined by $\lambda(z') = (f(z') : g(z'))$, for $z' \in Z \setminus \{z\}$.

In [18] M. Spivakovsky shows that the singularities of the normalization \tilde{Z} of Z_J are rational. He calls these singularities *Sandwich singularities* (see also [8]).

Let $\varphi : \mathbb{Z} \to \mathbb{Z}$ be the minimal resolution of \mathbb{Z} . The map $\pi_J \circ n \circ \varphi$, where n is the normalization of Z_J , is a bimeromorphic map from a non-singular surface \mathbb{Z} onto Z:

 $\mathcal{Z} \xrightarrow{\varphi} \tilde{Z} \xrightarrow{n} Z_J \xrightarrow{\pi_J} (Z, z).$

Therefore, it is the composition of a sequence of point blowing-ups. In fact, since the strict transforms H(f) and H(g) of f = 0 and g = 0 by $\pi_J \circ n \circ \varphi$ are non-singular, distinct and transverse to $|(\pi_J \circ n)^{-1}(z)|$, the map $\pi_J \circ n \circ \varphi$ is an embedded resolution of the plane curve fg = 0.

Conversally let $\sigma : \mathcal{Z}' \to (Z, z)$ be the minimal embedded resolution of the germ of curve $\{fg = 0\}$ in (Z, z). Let $\mathcal{D}_{\alpha}, \alpha \in A$, be the components of the exceptional divisor \mathcal{E} of σ which intersect the strict transform of the curve $\{fg = 0\}$. Consider the connected components of the closure of $\mathcal{E} \setminus \bigcup_{\alpha \in A} \mathcal{D}_{\alpha}$ and the singular surface \tilde{Z}' obtained from \mathcal{Z}' by contracting these components:

$$\varphi': \mathcal{Z}' \to \tilde{Z}'.$$

Since σ is the minimal embedded resolution of the germ of curve $\{fg = 0\}$ in (Z, z), the only components of \mathcal{E} which might be of self-intersection -1are among the components $\mathcal{D}_{\alpha}, \alpha \in A$. Therefore, the contraction φ' is the minimal resolution of \tilde{Z}' .

The contraction of the components \mathcal{D}_{α} , $\alpha \in A$, defines a holomorphic map:

We have:

4.1. Lemma. The ideal sheaf $(f,g)\mathcal{O}_{\tilde{Z}'} = \overline{\pi}'^*(f,g)\mathcal{O}_Z$ is invertible.

Proof: Let $\tilde{H}(f)$ and $\tilde{H}(g)$ be the strict transforms of f = 0 and g = 0by $\overline{\pi}'$, then the valuation along $\varphi'(D_{\alpha})$ of any function h = uf + vg of $\mathcal{O}_{Z,z}$ being more that the one of f or g, at any non-singular point y of $\cup_{\alpha \in A} \varphi'(D_{\alpha})$ which is neither a singular point of \tilde{Z}' nor a point of $\tilde{H}(f)$ (resp. a point of $\tilde{H}(g)$), $f \circ \overline{\pi}'$ (resp. $g \circ \overline{\pi}'$) is a generator of $(f, g)\mathcal{O}_{\tilde{Z}',y}$.

On the other hand $f \circ \overline{\pi}'$ (resp. $g \circ \overline{\pi}'$) does not vanish on

$$Z' \setminus (H(f) \cup_{\alpha \in A} \varphi'(D_{\alpha})) \quad (resp. Z' \setminus (H(g) \cup_{\alpha \in A} \varphi'(D_{\alpha}))).$$

Therefore, for any function h in (f, g), the meromorphic function $(h/f) \circ \overline{\pi}'$ is bounded on \tilde{Z}

$$Z' \setminus (H(f) \cup \Sigma \cup \Sigma_{\tilde{Z}'})$$

where Σ is the finite set of singular points of $\bigcup_{\alpha \in A} \varphi'(D_{\alpha})$ and $\Sigma_{\tilde{Z}'}$ is the finite set of singular points of $\tilde{Z'}$. Since $\tilde{Z'}$ is normal, this implies that $(h/f) \circ \overline{\pi}'$ is holomorphic on $\tilde{Z}' \setminus \tilde{H}(f)$. Similarly $(h/g) \circ \overline{\pi}'$ is holomorphic on $\tilde{Z}' \setminus \tilde{H}(g)$. It shows that the ideal sheaf $(f,g)\mathcal{O}_{\tilde{Z}'} = \overline{\pi}'^*(f,g)\mathcal{O}_Z$ is invertible.

Thus, the contraction $\overline{\pi}'$ factorizes uniquely through the normalized blowing-up

$$\bar{\pi} := \pi_J \circ n : Z \to (Z, z)$$

of the ideal (f, g):

Since $\sigma : \mathcal{Z}' \to (Z, z)$ is the minimal embedded resolution of $\{fg = 0\}$ in Z, the map $\overline{\pi} \circ \varphi$ factorizes uniquely through σ :

$$\overline{\pi} \circ \varphi = \sigma \circ \eta.$$

The map $\varphi' \circ \eta$ is constant on the exceptional fibers of φ and the space \tilde{Z} is normal, so it gives a unique holomorphic map

$$\overline{\eta}: \tilde{Z} \to \tilde{Z}'$$

such that $\overline{\eta} \circ \varphi = \varphi' \circ \eta$.

Necessarily, because of the uniqueness of the factorizations, $\overline{\eta}$ is the inverse of $\overline{\theta}$.

So, we have proved:

4.2. Lemma. The map $\overline{\pi}' : \tilde{Z}' \to (Z, z)$ obtained by contraction is the normalized blowing-up of I.

The preceding results yields:

4.3. Theorem. Let $(\mathcal{O}_{Z,z}, \mathfrak{M}_{Z,z})$ be the analytic local ring of the germ of a non-singular complex surface (Z, z). Let I be a $\mathfrak{M}_{Z,z}$ -primary ideal of $\mathcal{O}_{Z,z}$. Consider f and g, such that, the Milnor number of f and g at z is minimum among the Milnor numbers at z of the elements of I and assume that the ideal I is integral over the ideal (f,g) generated by f and g. The normalized blowing-up of I in (Z, z) is obtained from the minimal embedded resolution of the curve fg = 0 by contracting the exceptional components which do not intersect the strict transform of fg = 0.

Recall that the Milnor number of f at z (introduced in [12]) is a topological invariant of the germ of f = 0 at z (see [6] p. 261). It is the number of vanishing cycles of f = 0 at z and equals the first Betti number of $\{f = t\} \cap B_{\varepsilon}(z)$, where $B_{\varepsilon}(z)$ is a sufficiently small ball centered at zand $\varepsilon \gg |t| > 0$.

Elements f with the minimum Milnor number in I have the same topology by using the results of [9]. Moreover, since f and g belongs the linear system $\lambda f + \nu g$ and have the minimum Milnor number in this linear system, because $\lambda f + \nu g \in I$, one can show that they have the same embedded resolution (see e.g. [10] §2).

Theorem 4.3 indicates that one can choose superficial elements (f, g) of I to be elements of I with minimum Milnor number at z and such that I and the ideal (f, g) have the same multiplicity.

In this context Theorem 3.1 tells us that the multiplicity of I equals the intersection number of the strict transform $\tilde{H}(f)$ of f by the normalized blowing-up of I and the exceptional divisor of this normalized blowing-up.

The preceding discussion also gives the following result:

Let f be an element of I having the smallest Milnor number at z. Let $\tau : \mathcal{Z} \to (Z, z)$ be the minimal embedded resolution of f = 0.

4.4. Corollary. The ideal sheaf is τ^*I is invertible except possibly at the points where the strict transform of f = 0 intersects the exceptional divisor of τ . It becomes invertible after a sequence of blowing-ups which separates non-singular branches at these points.

Proof: As we indicate above, elements of I with the minimum Milnor number have the same embedded resolution. So, the minimal embedded resolution of f is also the minimal embedded resolution of g. However the minimal embedded resolution of f might not be the minimal embedded resolution of fg = 0, if the strict transforms of f = 0 and g = 0 in the

minimal embedded resolution of f = 0 have common points on the exceptional divisor, in which case one has to separate the strict transforms of f = 0 and g = 0, by a sequence of point blowing-ups to separate tangent non-singular branches.

We have already seen above that, in the embedded resolution of fg = 0, the pull-back of I is invertible. In fact, one can check that the points of the embedded minimal resolution of f = 0, where the strict transforms of f = 0 and g = 0 have common points, are precisely the points where the pull-back of I is not invertible.

In summary, the ideal $\tau^*(f,g)$ is invertible on the minimal embedded resolution of f = 0 or on the modification of this minimal embedded resolution obtained by a sequence of point blowing-ups to separate the branches of f = 0 and g = 0 passing through common points on the exceptional divisor. Since this embedded resolution of fg = 0 is non-singular, it is normal. So, it dominates the normalized blowing-up of (f,g) which is also the normalized blowing-up of I by corollary 1.3.

M.S. Narasimhan showed me the following result of D. Mumford (see [14] Lemma p. 91-92) which can be obtained by using this viewpoint.

Consider $(Z, z) = (\mathbb{C}^2, O)$ and the ideal I generated by the monomials $x^{r_0}y^{s_0}, \ldots, x^{r_n}y^{s_n}$. Let $\alpha = p/q$ (p and q being relatively prime). Denote by ν_{α} the discrete valuation of rank 1 on $\mathcal{O}_{\mathbb{C}^2,O}$ centered at O such that

$$\nu_{\alpha}(\sum_{i,j} a_{i,j} x^i y^j) = \min_{a_{i,j} \neq 0} (ip + jq).$$

4.5. **Proposition.** The exceptional divisors of the normalized blowing-up of I are those prime divisors of the field of fractions of $\mathcal{O}_{\mathbb{C}^2,O}$ corresponding to valuations ν_{α} with $\alpha = p/q$ where the least integer in the sequence of integers $r_i p + s_i q$ ($0 \le i \le n$) occurs at least twice.

Proof: First, notice that the ideal I might not be primary for the maximal ideal $\mathfrak{M}_{\mathbb{C}^2,O}$ of $\mathcal{O}_{\mathbb{C}^2,O}$. However, there are unique integers a and b and a unique $\mathfrak{M}_{\mathbb{C}^2,O}$ -primary ideal I, such that:

$$I = (x^a)(y^b)I'.$$

Now, it is clear that, since the ideal (x^a) and (y^b) are invertible, the normalized blowing-up of I' is also the normalized blowing-up of I.

Let $x^{r'_0}y^{s'_0}, \ldots, x^{r'_n}y^{s'_n}$ be the generators of I', so, for $0 \le i \le n$: $r'_i = r_i - a$ and $s'_i = s_i - b$.

As we have seen in our example above, the components of the normalized blowing-up of the $\mathfrak{M}_{\mathbb{C}^2,O}$ -primary ideal I' come from components of the

minimal embedded resolution:

$$\pi: Z \to (\mathbb{C}^2, O)$$

of FG, where F and G are two linear combinations:

$$\sum_{i=o}^{i=n} \lambda_i^j x^{r_i'} y^{s_i'}, \text{ with } j=0,1$$

having the minimal Milnor number at O and such that I' and (F, G) have the same multiplicity. Precisely, consider the exceptional components D_{α} , $\alpha \in A$, of this embedded resolution which intersect the strict transforms of FG = 0. Now contract the exceptional components of π which are not among the D_{α} 's. We obtain:

$$\gamma: Z \to Z_1$$

and π defines a unique morphism $\pi_1 : Z_1 \to (\mathbb{C}^2, O)$, such that $\pi = \pi_1 \circ \gamma$. We saw above that π_1 is the normalized blowing-up of I.

Corollary 4.4 suggests to consider first the minimal embedded resolution

 $Z' \to (\mathbb{C}^2, O)$

of F = 0.

Consider the set B of exponents (r'_i, s'_i) , for $0 \leq i \leq n$, in the real plane. The convex hull of B is called the *Newton Polyhedron* of the set of exponents B. The *Newton Polygon* $\mathcal{N}(B)$ of B is the set of faces viewed from the origin (0,0). Call A_1, \ldots, A_ℓ the sides of the Newton Polygon $\mathcal{N}(B)$ with respective slopes

$$-\frac{p_1}{q_1} \le -\frac{p_2}{q_2} \le \ldots \le -\frac{p_\ell}{q_\ell}$$

Notice that the slopes of the edges of $\mathcal{N}(B)$ are given by the linear forms $p\alpha + q\beta$ which attain their minimum at two exponents of B at least.

Denote $F_{A_j} := \sum_{(r'_i, s'_i) \in A_j} \lambda_i x^{r'_i} y^{s'_i}$ where the λ_i are general complex numbers.

4.6. Lemma. In the linear family of polynomials

$$F = \sum_{i=0}^{i=n} \lambda_i x^{r'_i} y^{s'_i}$$

where $\lambda_i \neq 0$, for $0 \leq i \leq n$, are general complex numbers, the plane curve singularity F = 0 at O is isolated and has the topological type at O of

$$F_1 = F_{A_1} \dots F_{A_\ell}.$$

Proof: Consider a polynomial $F_0(x, y) = \sum_{i=0}^{i=n} \beta_i x^{r'_i} y^{s'_i} = G_{A_1} + \ldots + G_{A_\ell}$ of this linear family, where:

$$G_{A_j} = \sum_{(r'_i, s'_i) \in A_j} \beta_i x^{r'_i} y^{s'_i}.$$

The proof of Puiseux Theorem (see [19] Chap, IV \S 3) shows that the series:

$$y - cx^{\gamma_i} - \dots$$

where $\gamma_i = q_i/p_i$ and c is a root of $P_i(t) := \sum_{(r'_j, s'_j) \in A_i} \beta_j t^{s'_j}$ divide F_0 in the ring $\bigcup_{n \ge 1} \mathbb{C}[y][[x^{1/n}]]$. For a general choice of the coefficients β_j , the polynomial P_i has b_i distinct solutions, where:

$$b_i := \sup_{(r'_j, s'_j) \in A_i} s'_j - \inf_{(r'_j, s'_j) \in A_i} s'_j.$$

Therefore, for a general choice of the coefficients β_j , the Puiseux series are all distinct which implies that the product:

$$\prod_{i=1}^{i=\ell} \prod_{P_i(c)=0} (y - cx^{\gamma_i} - \ldots)$$

divides F_0 :

$$F_0 = u \prod_{i=1}^{i=\ell} \prod_{P_i(c)=0} (y - cx^{\gamma_i} - \ldots),$$

where u is a unit in $\mathbb{C}[[x, y]]$, because $\sum_{i=1}^{i=\ell} b_i = \sup_{(r'_i, s'_i) \in \mathcal{N}(B)} s'_i$. This shows that $F_0 = 0$ has an isolated singularity at O and:

$$G_{A_i} = u_i \prod_{P_i(c)=0} (y - cx^{\gamma_i} - \ldots),$$

where u_i is a unit in $\mathbb{C}[[x, y]]$.

In particular, for a general choice of the β_i , each plane curve $G_{A_i} = 0$ has an isolated singularity at O. Moreover, since G_{A_i} is a weighted homogeneous polynomial, each branch of $G_{A_i} = 0$ is also defined by a weighted homogeneous polynomial with the same weights. This implies that in each Puiseux series above has the simple form $y - cx^{\gamma_i}$. The Milnor number of these branches is $(p_i - 1)(q_i - 1)$ and their pairwise intersection numbers are $p_i q_i$.

One can also prove:

4.7. Lemma. The minimum Milnor number of a linear combination of elements of I' equals the Kushnirenko number 2S - a - b + 1, where S is the area below the Newton polygon $\mathcal{N}(B)$, a is $\sup_{\alpha_i \neq 0} r'_i$ and b is $\sup_{\alpha_i \neq 0} s'_i$.

Proof: The number of branches of $G_{A_i} = 0$ at O equals b_i/q_i and the Milnor number each branch of $G_{A_i} = 0$ at O is $(p_i - 1)(q_i - 1)$. The pairwise intersection numbers of these branches are equal to p_iq_i .

Defining:

$$a_i := \sup_{(r'_j, s'_j) \in A_i} r'_j - \inf_{(r'_j, s'_j) \in A_i} r'_j,$$

the number of branches of $G_{A_i} = 0$ at O also equals a_i/p_i .

The pairwise intersection numbers of branches of $G_{A_i} = 0$ and $G_{A_j} = 0$, for i < j, are equal to $p_i q_j$.

So, the Milnor number $\mu(F_0, O)$ at O of F_0 for a general choice of the coefficients β_i equals (see [12] Theorem 10.5 and Remark 10.10):

$$\sum_{i=1}^{i=\ell} \frac{b_i}{q_i} (p_i - 1)(q_i - 1) + \sum_{i=1}^{i=\ell} 2p_i q_i \frac{b_i}{2q_i} (\frac{b_i}{q_i} - 1) + 2\sum_{i=1}^{i=\ell} \sum_{i$$

On the other hand:

$$2S = \sum_{i=1}^{i=\ell} \frac{b_i^2}{q_i^2} p_i q_i + 2 \sum_{i=1}^{i=\ell-1} a_i b_{i+1}$$
$$a = \sum_{i=1}^{i=\ell} a_i \quad \text{and} \quad b = \sum_{i=1}^{i=\ell} b_i.$$

Using the equality:

$$\frac{a_i}{p_i} = \frac{b_i}{q_i}$$

we obtain:

$$\mu(F_0, O) = 2S - a - b + 1.$$

To finish the proof of Lemma 4.6, it is enough to notice that F and F_1 belong to the same linear system and the minimum Milnor number is the minimum Milnor number among the analytic functions having the support of their Newton principal part on $\mathcal{N}(B)$, i.e. the Kushnirenko number (see [5] 1.10), as stated in the main theorem of Kushnirenko [5].

Now, the minimal embedded resolution of $F_0 = 0$ for a general choice of the coefficients β_i , is also an embedded resolution for $G_{A_i} = 0$. We have noticed that the branches of $G_{A_i} = 0$ are weighted homogeneous curves $\lambda x^{q_i} + \nu y^{p_i} = 0$. This implies that the multiplicities of the coordinates

x and y along the component intersected by the the strict transforms of the branches of $G_{A_i} = 0$ are respectively equal to p_i and q_i . Thus, this component defines a divisorial valuation of the field of fractions of $\mathcal{O}_{\mathbb{C}^2,O}$ given by $v_i(x) = p_i$ and $v_i(y) = q_i$. Therefore:

$$v_i(\sum c_{\alpha,\beta}x^{\alpha}y^{\beta}) = \inf_{\substack{c_{\alpha,\beta}\neq 0}} (p_i\alpha, q_i\beta).$$

Each slope $-p_i/q_i$ of the Newton Polygon of *B* defines such a valuation. By definition of the Newton Polygon, these valuations are defined by pairs of integers (p,q), for which the minimum of the linear form $p\alpha + q\beta$ is obtained for at least two distinct pairs among $\{(r'_i, s'_i)\}$. These valuations correspond to the ones given by Proposition 4.5. To prove that these are the divisorial valuations of the exceptional components of the normalized blowing-up of I', it remains to prove that the minimal embedded resolution of $F_0 = 0$ already gives after contraction the normalized blowing-up of I'.

As remarked before, we have to prove that the strict transform of a curve singularity G = 0 defined by a general element G of I', such that I' and the ideal (F_0, G) have the same multiplicity, is disjoint from the strict transform of $F_0 = 0$ in the minimal embedded resolution of $F_0 = 0$.

To obtain this last assertion, notice that, in the minimal embedded resolution of $F_0 = 0$, the strict transforms of the branches $\lambda x^{q_i} + \nu y^{p_i} = 0$ given by the edges of the Newton polygon for distinct ($\lambda : \nu$) are disjoint. This implies that the strict transform of $G_0 = 0$, given by another general choice of the coefficients β_i , is disjoint from the strict transform of $F_0 = 0$.

As seen in §3 above, a general element G of I' to be considered can be chosen as $G = G_0 + H$, where H is a general linear combination of monomial of B which are not on $\mathcal{N}(B)$. The Puiseux series associated to Gare of the type $y - cx^{\gamma_i} + \ldots$ This shows that the strict transforms of the branches of G = 0 intersect the strict transforms of the branches of $G_0 = 0$ in the minimal embedded resolution of $F_0 = 0$. This yields that the strict transforms of the branches of G = 0 are disjoint from the strict transforms of the branches of $F_0 = 0$ in the minimal embedded resolution of $F_0 = 0$.

So, the normalized blowing-up of I' is already obtained from the minimal embedded resolution of $F_0 = 0$.

Therefore, the components of the minimal embedded resolution of $F_0 = 0$ intersected by the strict transforms of the branches of $F_0 = 0$ give the components of the normalized blowing-up of I'. As we proved above, the divisorial valuations of the exceptional components of the normalized blowing-up of I' are effectively the valuations given in the Proposition 4.5.

This ends our proof.

References

- W. Barth, K. Hulek, C. Peters, A. Van de Ven, Compact complex surfaces. Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A (2004).
 Séminaire Cartan 1960/1961, Familles d'espaces complexes, Institut Henri
- Poincaré, Paris (1962).
- [3] A. Grothendieck, Eléments de Géométrie Algébrique IV, Pub. IHES no 20 (1964).
- R. Hartshorne, Algebraic Geometry, Graduate Text in Maths 52, Springer-Verlag (1977).
- [5] A. Kushnirenko, Polyèdres de Newton et nombres de Milnor, Inv. Math. 32 (1976)
 1- 31.
- [6] Lê Dũng Tráng, Calcul du nombre de cycles évanouissants d'une hypersurface complexe, Ann. Inst. Fourier 23 (1973), 261-270.
- [7] Lê Dũng Tráng, Algebraic Methods in the Study of Singularities, Notes, Tokyo University, Komaba, 1977.
- [8] Lê Dũng Tráng, Les singularités sandwich, in Resolution of singularities (Obergurgl, 1997), 457–483, Progr. Math., 181, Birkhäuser, Basel, 2000.
- [9] Lê Dũng Tráng, C.P. Ramanujam, The invariance of Milnor's number implies the invariance of the topological type, Amer. J. Math. 98 (1976), 67-78.
- [10] Lê Dũng Tráng, C. Weber, Equisingularité dans les pinceaux de Germes de Courbes Planes et C⁰-suffisance, Ens. Math. 43 (1997), 355-380.
- [11] M. Lejeune-Jalabert, B. Teissier, Clôture intégrale des idéaux et équisingularité, Notes, Institut Fourier, Université de Grenoble. To appear in Ann. Univ. Toulouse. On web at: http://people.math.jussieu.fr/~teissier/old-papers.html
- [12] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61 Princeton University Press, Princeton, N.J. (1968)
- [13] M. Morales, Polynôme de Hilbert-Samuel des clôtures intégrales des puissances d'un idéal M-primaire P, Bull. Soc. Math. Fr. 112 (1984), 343-358.
- [14] D. Mumford, Geometric Invariant Theory, Erg. der Math. und ihrer Grenzgebiete, Springer Verlag, Berlin-Heidelberg-New York, 1965.
- [15] C.P. Ramanujam, On a Geometric Interpretation of Multiplicity, Inv. math. 22 (1973), 63-67.
- [16] D. Rees, Lectures on the Asymptotic Theory of Ideals, LMS, LNS 113, 1988, Cambridge U.P.
- [17] P. Samuel, La notion de multiplicité en Algèbre et en Géométrie algébrique, Journ. de Math. pures et appl. 30 (1951), 159-274.
- [18] M. Spivakovsky, Sandwiched singularities and desingularization of surfaces by normalized Nash transformations, Ann. of Math. (2) 131 (1990), 411-491.
- [19] H. Whitney, Tangents to an Analytic Variety, Ann. Math. 81 (1965), 496-549.