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Introduction

A result of P. Samuel ([17] p. 186, Chap.II, Théorème 5) says that in a
local noetherian ring (O,M) of Krull dimension d in which the residual
field k is infinite, the multiplicity of a M-primary ideal I is equal to the
multiplicity of an ideal (x1, . . . , xd) generated by some parameter sequence
x1, . . . , xd contained in I. By a theorem of Rees ([16] p.142 Theorem 9.44),
this implies that the ideals I and (x1, . . . , xd) have the same integral closure
in the ring O.

In fact Samuel’s proof shows that the elements of the parameter sequence
can be chosen to be general elements of I, namely superficial elements of
I.

An interesting consequence of Samuel’s result is that, in the case the
local ring O is a Cohen-Macaulay ring, e.g. a regular or a local complete
intersection ring, the multiplicity of the ideal I in O is the length of the
O-module

O/(x1, . . . , xd)

Using a geometric interpretation of the multiplicity by C. P. Ramanujam
([15]), we shall give a geometric way to calculate the multiplicity. We shall
consider the particular case of a non-singular complex surface and give an
example with a geometric proof of a result of Mumford, as it was suggested
to the author by M.S. Narasimhan.

Most of this note is written in the language of complex analytic spaces
(see [2] and [1]), but the results can be stated and proved in the case of
schemes of finite type (see definition in [3] Chap. IV 1.6.1) over an infinite
field with equicharacteristic local rings.
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1. Integral closures and blowing-ups.

Let (O,M) be a reduced complex analytic local ring and let J be an ideal
of O. We say that an element x of O is integral over the ideal J if there is
a relation

x
n +

n∑

i=1

aix
n−i = 0

where ai ∈ J i.

Elements of O which are integral over J form an ideal J in O which
contains J . This ideal is called the integral closure of J in O.

We know that an ideal J of O defines an order function νJ defined by

νJ(x) := sup{k , x ∈ J
k} ∈ N ∪ +∞

for any x ∈ O.

We can define

νJ(x) := lim inf
νJ(xk)

k
∈ N ∪ +∞

Notice that one can show that νJ(x) is in Q and not in R, as its definition
suggests.

Then, we have the important following theorem (see [11] Théorème 2.1
or [7]):

1.1. Theorem. Let (O,M) be a reduced analytic local ring, J be an ideal
of O and x ∈ O. Denote by (Z, z) a germ of complex analytic space such
that OZ,z = O. The following conditions are equivalent:

i) The element x is integral over the ideal J ;

ii) We have νJ(x) ≥ 1;

iii) There is a modification π : Z̃ → (Z, z) such that the space Z̃ is normal
and JOZ̃ is principal and x ◦ π is a section of JOZ̃ .

iv) Let π : Z̃ → (Z, z) be the normalized blowing-up of J , then x ◦ π is a
section of JOZ̃ .

On the other hand we have the following consequence of a theorem of D.
Rees ([16] p.142 Theorem 9.44):

1.2. Theorem. Let (O,M) be an analytic local ring which is an integral
domain. Let I ⊂ J be M-primary ideals of O. Then, these ideals have the
same multiplicity if and only if they have the same integral closure in O.

The preceding theorems give us the important corollary:
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1.3. Corollary. Let I be a M-primary ideal of a reduced analytic local ring
(O,M) and let x1, . . . , xd a sequence of parameters in I which generates
an ideal (x1, . . . , xd) having the same multiplicity as the one of I. The
normalized blowing-up of I equals the normalized blowing-up of (x1, . . . , xd).

Proof: Let (Z, z) be a germ of reduced complex analytic space such
that OZ,z = O. From the theorem of Rees, it is enough to prove that the

normalized blowing-up π : Z̃ → (Z, z) of I is also the normalized blowing-
up of the integral closure I of I in O. We have I ⊃ I, so IOZ̃ ⊃ IOZ̃ .

Theorem 1.1 implies that IOZ̃ ⊂ IOZ̃ , so

IOZ̃ = IOZ̃ .

Therefore IOZ̃ is invertible and π factorizes uniquely by σ through the

normalized blowing-up π : Z
′
→ (Z, z) of IO:

π = π ◦ σ.

Z̃ Z
′

(Z, z)
��

44
44

44
4

π

//σ

��











π̄

Now we show that IO
Z

′ = IO
Z

′ . First, notice that IO
Z

′ ⊂ IO
Z

′ , and, for

k ≥ 0 IkO
Z

′ ⊂ I
k
O

Z
′ . By definition we have that IO

Z
′ is locally principal.

Since OZ,z is noetherian, the ideal I is finitely generated. Let f1, . . . , fk

be generators of I. Let y ∈ π−1(z). Since IO
Z

′

,y
is principal, one of the

fi ◦ π’s, say f1 ◦ π, generates IO
Z

′

,y
. On the other hand f1 is integral over

I, there is a relation:

f
N
1 +

N∑

1

akf
N−k
1 = 0

where ak ∈ Ik. Therefore in IO
Z

′

,y
, we have:

(f1 ◦ π)N +

N∑

1

(ak ◦ π)p(f1 ◦ π)N−k = 0

and by dividing by (f1 ◦ π)N :

1 +
N∑

1

(ak ◦ π)

(f1 ◦ π)k
= 0,
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which yields

f1 ◦ π = −
N∑

1

(ak ◦ π)

(f1 ◦ π)k−1
.

Since ak ◦ π belongs to Ik, ak ◦ π ∈ I
k−1

IO
Z

′ and we have, for 1 ≤ k ≤ N ,

(ak ◦ π)

(f1 ◦ π)k−1
∈ IO

Z
′

,y
,

so f1 ◦ π ∈ IO
Z

′

,y
and at y:

IO
Z

′

,y
= IO

Z
′

,y
= (f1 ◦ π)O

Z
′

,y
.

Therefore the sheaf IO
Z

′ is invertible. It follows that π factorizes uniquely

by τ : Z
′
→ Z̃ through the morphism π:

π = π ◦ τ

Z
′

Z̃

(Z, z)
��

44
44

44
4

π̄

//τ

��











π

The uniqueness of the morphism implies that necessarily σ is the inverse
morphism of τ , which shows that the normalized blowing-ups of I and its
integral closure I in O are the same.

2. Geometry of Multiplicities

In [15], C. P. Ramanujam gave an interesting geometrical interpretation
of the multiplicity.

First recall that for an invertible sheaf L on a proper scheme X (resp. on
a compact analytic space), the Euler characteristic χ(Ln) of the cohomology
on X of the n-th power Ln of L is a function of n which coincides with a
polynomial PL(n) of degree m ≤ d := dimX in n. The coefficient of nd in
this polynomial is

1

d!
d(L)

and d(L) is called the degree of L.

In the case of local analytic rings the result of C.P. Ramanujam (see [15]
Theorem p. 64 and Remark (1) p. 66) can be stated in the following way:

São Paulo J.Math.Sci. 3, 2 (2009), 161–178
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2.1. Theorem. Let (O,M) be a reduced local analytic local ring and I a
M-primary ideal of O. Let (Z, z) be a germ of analytic space such that
OZ,z = O. Let π : Z ′ → (Z, z) be a bimeromorphic map such that π∗I is
an invertible sheaf on Z ′. The degree of the restriction of π∗I to the space
defined by π∗I is equal to the multiplicity of the ideal I.

Considering the space defined by the coherent ideal sheaf π∗I = IOZ′ ,
we have the exact sequence

0 → I
n+1OZ′ → I

nOZ′ → I
nOZ′ ⊗OZ′

OZ′/IOZ′ → 0

which yields that the degree of the restriction of π∗I to the space < π∗I >

defined by π∗I itself equals the degree of IOZ′ because

χ(InOZ′) − χ(In+1OZ′) = χ(InOZ′ ⊗OZ′
OZ′/IOZ′)

and χ(InOZ′) − χ(In+1OZ′) = PIOZ′
(n) − PIOZ′

(n + 1) is a polynomial of
degree d − 1 with a term of degree d − 1 equal to

−
1

(d − 1)!
d(IOZ′)nd−1

.

Since χ(InOZ′ ⊗OZ′
OZ′/IOZ′) has a term of degree d − 1 equal to

1

(d − 1)!
d(IOZ′ |<π∗I>)nd−1

,

Ramanujam’s theorem implies

2.2. Corollary. The multiplicity of I equals:

d(IOZ′ |<π∗I>) = −d(IOZ′).

Ramanujam’s theorem in particular applies to the cases when π is the
normalized blowing-up of I or a resolution of (Z, z) in which π∗I is an
invertible sheaf.

For instance, when the bimeromorphic map π of the preceding theorem
is a resolution of singularities π of (Z, z) for which π∗I is invertible, we
have:

2.3. Corollary. Assume that the map π of the preceding theorem is a reso-
lution of singularities for which π∗I is invertible and (O,M) is an integral
domain, then the multiplicity of I equals (−1)d−1(D)d, where d is the Krull
dimension of O, D is the divisor defined by π∗I on Z ′ and (D)d the d-th
self-intersection of D.

Proof: According to Ramanujam’s theorem the multiplicity of I equals

d(IOZ′ |<π∗I>).
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The preceding corollary gives

d(IOZ′ |<π∗I>) = −d(IOZ′).

Let D =< π∗I > be the divisor of Z ′ defined by the invertible sheaf
IOZ′ . Hirzebruch-Riemann-Roch theorem (see [H] Theorem 4.1 Appen-
dix A) gives that the degree d(IOZ′) of IOZ′ equals (−1)d(D)d. Precisely,

χ(InOZ′) = ch(InOZ′)Todd(TZ′) ∩ [Z ′]

where [Z ′] is the fundamental class of Z ′ and ch(InOZ′) is the Chern char-
acter and Todd(TZ′) is the Todd class of the tangent bundle of Z ′:

Todd(TZ′) = 1 +
1

2
c1(TZ′) + . . . ,

and, since InOZ′ is invertible, we have:

ch(InOZ′) = 1 + nc1(IOZ′) + . . . +
1

d!
n

d
c
d
1(IOZ′).

By comparing the terms of degree d in n, for n � 0, on each side of the
equality of Hirzebruch-Riemann-Roch theorem, we have:

d(IOZ′) = c
d
1(IOZ′) ∩ [Z ′].

Since IOZ′ is O(−D) we have:

c
d
1(IOZ′) ∩ [Z ′] = (−D)d

and the multipilicity of I is −d(IOZ′) = −(−D)d = (−1)d−1(D)d.

3. Linear Systems

Let (y1, . . . , yk) be generators of an ideal J of the reduced analytic local
ring OZ,z. We can construct the blowing-up of J in the following way.

Let Z be a representative of the germ (Z, z) such that the germs yi

(1 ≤ i ≤ k) are defined by holomorphic functions defined on Z also denoted
by yk and let Y be a representative of the support of J in Z. Then on Z \Y

we define the map λ into the complex projective space Pk−1 by:

λ(z′) = (y1(z
′) : . . . : yk(z

′))

for any z′ ∈ Z \ Y .

The graph G of λ is an analytic subspace of Z × Pk−1. The topological
closure G of G is naturally an analytic subspace of Z × Pk−1, because G is
the difference of the analytic set defined by

(y1 : . . . : yk) = (u1 : . . . : uk)

in Z × Pk−1, the ui’s are the homogeneous coordinates of Pd−1, and the
analytic set Y × Pk−1 (use e.g. Lemma 3.9 of [19]). One can show that
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the restriction to G of the first projection onto Z is a representative of the
blowing-up p : ZJ → (Z, z) of the ideal J = (y1, . . . , yk) in (Z, z). Notice
that ZJ is reduced.

Let n be the normalization of G, then by corollary 1.3 the composition
p ◦ n is also the normalized blowing-up π : Z̃ → (Z, z) of I in (Z, z).

Consider the special case J is generated by d ≥ 2 generators where d is
the Krull dimension of OZ,z and Y = {z}. The blowing-up ZJ of J is given

in Z × Pd−1 by the equations

ui+1yi − uiyi+1 = 0

where 1 ≤ i ≤ d − 1. Therefore the second projection induces a map

λJ : ZJ → Pd−1

which can be viewed as the family of curves defined by the linear system
generated by y1, . . . , yd. On the other hand the underlying set |p−1(z)| of
the exceptional divisor of the blowing-up p : ZJ → (Z, z) is contained in
{z} × Pd−1, so

|p−1(z)| = {z} × Pd−1
.

Let a = (a1, . . . , ad) be a general point of Pd−1. Since both ZJ and
Pd−1 are reduced, the general fiber λ

−1
J (a) is a general reduced curve in the

linear system of curves generated by y1, . . . , yd (see [13]). Therefore, after
normalization, the inverse image n−1(λ−1

J (a)) is a non-singular (reduced)
curve transverse to the exceptional divisor of the normalized blowing-up
p ◦ n. Since all the components of the exceptional divisor of p ◦ n project
onto Pd−1, the curve n−1(λ−1

J a)) intersects all these components.

Apply these results to the case of a MZ,z-primary ideal I of the reduced
analytic local ring OZ,z. The result of P. Samuel tells us that the ideal I

is integral over a ideal J generated by d general elements x1, . . . , xd of I,
where d is the Krull dimension of OZ,z. We have seen that the normalized

blowing-up π : Z̃ → (Z, z) of I coincides with the normalized blowing-
up of the ideal generated by x1, . . . , xd. Let Γ be a general curve in the
linear system of curves generated by x1, . . . , xd. From what precedes we
observe that Γ is reduced and the strict transform Γ̃ of Γ by π is a non-
singular curve which intersects transversally all the components Dα, α ∈ A

of |π−1(z)|. This strict transform of a general curve in the linear system of
curves generated by x1, . . . , xd can be obtained in the following way:

• Let πJ : ZJ → (Z, z) be the blowing-up of the ideal J . We have a
map λJ : ZJ → Pd−1 defined by the generators x1, . . . , xd of J .

São Paulo J.Math.Sci. 3, 2 (2009), 161–178
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• Consider a general point m of Pd−1, it is defined by d − 1 linear

equations
∑d

i=1 α
j
i ξi = 0, 1 ≤ j ≤ d − 1, where ξ1, . . . , ξd are the

homogeneous coordinates of Pd−1.
• The fiber λ

−1
J (m) of λJ over m is the strict transform by the

blowing-up πJ of the curve Γ on (Z, z) defined by
∑d

i=1 α
j
ixi = 0,

1 ≤ j ≤ d−1. Since m is a general point of Pd−1, the germ of curve
(Γ, z) is a general curve in the linear system of curves generated by
x1, . . . , xd. The strict transform of Γ by the normalized blowing-up
π is n−1(λ−1

J (m)).

Let dα be the number of components of the strict transform Γ̃ which
have a non-empty intersection with Dα. Let eα be the multiplicity of Dα
in the divisor defined by IOZ̃ . Then, we have:

3.1. Theorem. The multiplicity of the ideal I equals
∑

α∈A eαdα.

Proof: Let ϕ : Z → Z̃ be a resolution of singularities of Z̃. The sheaf
(p◦ϕ)∗IOZ = IOZ generated by I on Z is invertible. Let D be the divisor
of Z defined by IOZ . According to corollary 2.3, the multiplicity of I

equals (−1)d−1(D)d. We shall prove:

3.2. Lemma.

(−1)d−1(D)d =
∑

α∈A

eαdα.

Using Ramanujam’s result, this lemma obviously implies our theorem.

Proof of the lemma: First we observe that, since the image of D by the
map p ◦ ϕ is a point {z}, we have

D.div(f ◦ p ◦ ϕ) = 0,

for any germ of functions f ∈ MZ,z ⊂ OZ,z. In particular, if f is a general
element of the ideal I, we have:

div(f ◦ p ◦ ϕ) = D + H(f)

where H(f) is the strict transform of {f = 0}.

Now let us choose α
j
i ∈ C, such that the d − 1 linear equations∑d

i=1 α
j
i ξi = 0, 1 ≤ j ≤ d − 1, are general and define a general point

of Pd−1. Let fj :=
∑d

i=1 α
j
ixi = 0, 1 ≤ j ≤ d − 1. The functions fj,

1 ≤ j ≤ d − 1, are general elements of the ideal I. The curve Γ on Z

defined by {f1 = . . . = fd−1} is a general curve in the linear system of
curves generated by x1, . . . , xd. The strict transform of Γ by p ◦ ϕ is the
curve H(f1) ∩ . . . ∩ H(fd−1).
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The lemma will be consequence of the equality

(−1)d−1(Dd) = (D.H(f1). . . . .H(fd−1)).

In fact, since (D.D + H(fi)) = 0, for 1 ≤ i ≤ d − 1, we have

(D.H(f1). . . . .H(fd−1)) = −(D.H(f1). . . . .H(fd−2).D)

Therefore, by induction we can prove

(D.H(f1). . . . .H(fd−1)) = (−1)d−2(D.H(f1).D. . . . .D) = (−1)d−1(Dd).

It remains to prove that (D.H(f1). . . . .H(fd−1)) =
∑

α∈A eαdα. The
curve Γ being a general curve in the linear system of curves generated by
x1, . . . , xd the strict transform Γ̃ of Γ by π is non-singular and transverse to
the components of |π−1(z)|. Since ϕ is a resolution of singularities Z̃ and

ϕ
−1(Γ̃) = H(f1) ∩ . . . ∩ H(fd−1)

the intersection points of H(f1)∩. . .∩H(fd−1) and D are the inverse images

by ϕ of the intersection points of Γ̃ and |π−1(z)| and the multiplicity eα of

Dα in Z̃ equals the multiplicity of the corresponding component in Z. Since
the intersection of Γ̃ with the divisor of Z̃ defined by IOZ̃ is

∑
α∈A eαdα,

we have
(D.H(f1). . . . .H(fd−1)) =

∑

α∈A

eαdα.

4. An example

Let us consider the simple case when OZ,z is a regular local ring of
Krull dimension 2. The multiplicity e(I) of a MZ,z-primary ideal I is the
multiplicity of an ideal generated (f, g) by two general elements of I. Since
OZ,z is regular, it is Cohen-Macaulay, so:

e(I) = dimC

OZ,z

(f, g)
.

Therefore, the multiplicity of I is the intersection number of f = 0 and
g = 0 at z.

The blowing-up πJ of the ideal J := (f, g) gives the surface ZJ defined
by βf − αg = 0 in Z × P1. The projection onto Z restricted to ZJ is
the blowing-up πJ and the projection onto P1 restricted to ZJ extends to
ZJ the map λ from Z \ {z} into P1 defined by λ(z′) = (f(z′) : g(z′)), for
z′ ∈ Z \ {z}.

In [18] M. Spivakovsky shows that the singularities of the normalization

Z̃ of ZJ are rational. He calls these singularities Sandwich singularities (see
also [8]).
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Let ϕ : Z → Z̃ be the minimal resolution of Z̃. The map πJ ◦n◦ϕ, where
n is the normalization of ZJ , is a bimeromorphic map from a non-singular
surface Z onto Z:

Z
ϕ
→ Z̃

n
→ ZJ

πJ→ (Z, z).

Therefore, it is the composition of a sequence of point blowing-ups. In
fact, since the strict transforms H(f) and H(g) of f = 0 and g = 0 by
πJ ◦ n ◦ ϕ are non-singular, distinct and transverse to |(πJ ◦ n)−1(z)|, the
map πJ ◦ n ◦ ϕ is an embedded resolution of the plane curve fg = 0.

Conversally let σ : Z ′ → (Z, z) be the minimal embedded resolution of
the germ of curve {fg = 0} in (Z, z). Let Dα, α ∈ A, be the components
of the exceptional divisor E of σ which intersect the strict transform of
the curve {fg = 0}. Consider the connected components of the closure of

E \ ∪α∈ADα and the singular surface Z̃ ′ obtained from Z ′ by contracting
these components:

ϕ
′ : Z ′ → Z̃

′
.

Since σ is the minimal embedded resolution of the germ of curve {fg = 0}
in (Z, z), the only components of E which might be of self-intersection −1
are among the components Dα, α ∈ A. Therefore, the contraction ϕ′ is the
minimal resolution of Z̃ ′.

The contraction of the components Dα, α ∈ A, defines a holomorphic
map:

π
′ : Z̃

′ → (Z, z)

Z
′

Z̃

(Z, z)
��

44
44

44
4

σ

//ϕ′

��











π̄′

We have:

4.1. Lemma. The ideal sheaf (f, g)OZ̃′ = π′∗(f, g)OZ is invertible.

Proof: Let H̃(f) and H̃(g) be the strict transforms of f = 0 and g = 0
by π′, then the valuation along ϕ′(Dα) of any function h = uf + vg of
OZ,z being more that the one of f or g, at any non-singular point y of

∪α∈Aϕ′(Dα) which is neither a singular point of Z̃ ′ nor a point of H̃(f)

(resp. a point of H̃(g)), f ◦ π′ (resp. g ◦ π′) is a generator of (f, g)OZ̃′,y.

On the other hand f ◦ π′ (resp. g ◦ π′) does not vanish on

Z̃
′ \ (H̃(f) ∪α∈A ϕ

′(Dα)) (resp. Z̃
′ \ (H̃(g) ∪α∈A ϕ

′(Dα))).
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Therefore, for any function h in (f, g), the meromorphic function (h/f)◦π′

is bounded on
Z̃ ′ \ (H̃(f) ∪ Σ ∪ ΣZ̃′),

where Σ is the finite set of singular points of ∪α∈Aϕ′(Dα) and ΣZ̃′ is the

finite set of singular points of Z̃ ′. Since Z̃ ′ is normal, this implies that
(h/f) ◦ π′ is holomorphic on Z̃ ′ \ H̃(f). Similarly (h/g) ◦ π′ is holomorphic

on Z̃ ′ \ H̃(g). It shows that the ideal sheaf (f, g)OZ̃′ = π′∗(f, g)OZ is
invertible.

Thus, the contraction π′ factorizes uniquely through the normalized
blowing-up

π̄ := πJ ◦ n : Z̃ → (Z, z)

of the ideal (f, g):
π
′ = π ◦ θ

Z̃ ′ Z̃

(Z, z)
��

44
44

44
4

π̄′

//θ̄

��











π̄

Since σ : Z ′ → (Z, z) is the minimal embedded resolution of {fg = 0} in
Z, the map π ◦ ϕ factorizes uniquely through σ:

π ◦ ϕ = σ ◦ η.

The map ϕ′ ◦ η is constant on the exceptional fibers of ϕ and the space Z̃

is normal, so it gives a unique holomorphic map

η : Z̃ → Z̃
′

such that η ◦ ϕ = ϕ′ ◦ η.

Z

Z ′
Z̃Z̃ ′

(Z, z)

����
��

��
��

�
η

��
??

??
??

??
?

ϕ

//ϕ′
oo

η̄

��

π̄′

��
??

??
??

??

σ
����

��
��

��

π̄

Necessarily, because of the uniqueness of the factorizations, η is the in-
verse of θ.

So, we have proved:
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4.2. Lemma. The map π′ : Z̃ ′ → (Z, z) obtained by contraction is the
normalized blowing-up of I.

The preceding results yields:

4.3. Theorem. Let (OZ,z,MZ,z) be the analytic local ring of the germ of
a non-singular complex surface (Z, z). Let I be a MZ,z-primary ideal of
OZ,z. Consider f and g, such that, the Milnor number of f and g at z is
minimum among the Milnor numbers at z of the elements of I and assume
that the ideal I is integral over the ideal (f, g) generated by f and g. The
normalized blowing-up of I in (Z, z) is obtained from the minimal embedded
resolution of the curve fg = 0 by contracting the exceptional components
which do not intersect the strict transform of fg = 0.

Recall that the Milnor number of f at z (introduced in [12]) is a topo-
logical invariant of the germ of f = 0 at z (see [6] p. 261). It is the
number of vanishing cycles of f = 0 at z and equals the first Betti number
of {f = t} ∩ Bε(z), where Bε(z) is a sufficiently small ball centered at z

and ε � |t| > 0.

Elements f with the minimum Milnor number in I have the same topo-
logy by using the results of [9]. Moreover, since f and g belongs the linear
system λf +νg and have the minimum Milnor number in this linear system,
because λf + νg ∈ I, one can show that they have the same embedded
resolution (see e.g. [10] §2).

Theorem 4.3 indicates that one can choose superficial elements (f, g) of
I to be elements of I with minimum Milnor number at z and such that I

and the ideal (f, g) have the same multiplicity.

In this context Theorem 3.1 tells us that the multiplicity of I equals the
intersection number of the strict transform H̃(f) of f by the normalized
blowing-up of I and the exceptional divisor of this normalized blowing-up.

The preceding discussion also gives the following result:

Let f be an element of I having the smallest Milnor number at z. Let
τ : Z → (Z, z) be the minimal embedded resolution of f = 0.

4.4. Corollary. The ideal sheaf is τ∗I is invertible except possibly at the
points where the strict transform of f = 0 intersects the exceptional divisor
of τ . It becomes invertible after a sequence of blowing-ups which separates
non-singular branches at these points.

Proof: As we indicate above, elements of I with the minimum Milnor
number have the same embedded resolution. So, the minimal embedded
resolution of f is also the minimal embedded resolution of g. However the
minimal embedded resolution of f might not be the minimal embedded
resolution of fg = 0, if the strict transforms of f = 0 and g = 0 in the
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minimal embedded resolution of f = 0 have common points on the excep-
tional divisor, in which case one has to separate the strict transforms of
f = 0 and g = 0, by a sequence of point blowing-ups to separate tangent
non-singular branches.

We have already seen above that, in the embedded resolution of fg = 0,
the pull-back of I is invertible. In fact, one can check that the points of
the embedded minimal resolution of f = 0, where the strict transforms of
f = 0 and g = 0 have common points, are precisely the points where the
pull-back of I is not invertible.

In summary, the ideal τ∗(f, g) is invertible on the minimal embedded res-
olution of f = 0 or on the modification of this minimal embedded resolution
obtained by a sequence of point blowing-ups to separate the branches of
f = 0 and g = 0 passing through common points on the exceptional divisor.
Since this embedded resolution of fg = 0 is non-singular, it is normal. So, it
dominates the normalized blowing-up of (f, g) which is also the normalized
blowing-up of I by corollary 1.3.

M.S. Narasimhan showed me the following result of D. Mumford (see
[14] Lemma p. 91-92) which can be obtained by using this viewpoint.

Consider (Z, z) = (C2, O) and the ideal I generated by the monomials
xr0ys0, . . . , xrnysn . Let α = p/q (p and q being relatively prime). Denote
by να the discrete valuation of rank 1 on OC2,O centered at O such that

να(
∑

i,j

ai,jx
i
y

j) = min
ai,j 6=0

(ip + jq).

4.5. Proposition. The exceptional divisors of the normalized blowing-up of
I are those prime divisors of the field of fractions of OC2,O corresponding
to valuations να with α = p/q where the least integer in the sequence of
integers rip + siq (0 ≤ i ≤ n) occurs at least twice.

Proof: First, notice that the ideal I might not be primary for the maximal
ideal MC2,O of OC2,O. However, there are unique integers a and b and a
unique MC2,O-primary ideal I, such that:

I = (xa)(yb)I ′.

Now, it is clear that, since the ideal (xa) and (yb) are invertible, the nor-
malized blowing-up of I ′ is also the normalized blowing-up of I.

Let xr′
0ys′

0, . . . , xr′nys′n be the generators of I ′, so, for 0 ≤ i ≤ n:

r
′
i = ri − a and s

′
i = si − b.

As we have seen in our example above, the components of the normalized
blowing-up of the MC2,O-primary ideal I ′ come from components of the
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minimal embedded resolution:

π : Z → (C2
, O)

of FG, where F and G are two linear combinations:
i=n∑

i=o

λ
j
ix

r′iy
s′i , with j = 0, 1

having the minimal Milnor number at O and such that I ′ and (F,G) have
the same multiplicity. Precisely, consider the exceptional components Dα,
α ∈ A, of this embedded resolution which intersect the strict transforms
of FG = 0. Now contract the exceptional components of π which are not
among the Dα’s. We obtain:

γ : Z → Z1

and π defines a unique morphism π1 : Z1 → (C2, O), such that π = π1 ◦ γ.
We saw above that π1 is the normalized blowing-up of I.

Corollary 4.4 suggests to consider first the minimal embedded resolution

Z
′ → (C2

, O)

of F = 0.

Consider the set B of exponents (r′i, s
′
i), for 0 ≤ i ≤ n, in the real

plane. The convex hull of B is called the Newton Polyhedron of the set of
exponents B. The Newton Polygon N (B) of B is the set of faces viewed
from the origin (0, 0). Call A1, . . . , A` the sides of the Newton Polygon
N (B) with respective slopes

−
p1

q1
≤ −

p2

q2
≤ . . . ≤ −

p`

q`
.

Notice that the slopes of the edges of N (B) are given by the linear forms
pα + qβ which attain their minimum at two exponents of B at least.

Denote FAj
:=

∑
(r′i,s

′

i)∈Aj
λix

r′iys′i where the λi are general complex

numbers.

4.6. Lemma. In the linear family of polynomials

F =

i=n∑

i=o

λix
r′iy

s′i

where λi 6= 0, for 0 ≤ i ≤ n, are general complex numbers, the plane curve
singularity F = 0 at O is isolated and has the topological type at O of

F1 = FA1
. . . FA`

.
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Proof: Consider a polynomial F0(x, y) =
∑i=n

i=o βix
r′iys′i = GA1

+ . . . + GA`

of this linear family, where:

GAj
=

∑

(r′i,s
′

i)∈Aj

βix
r′iy

s′i .

The proof of Puiseux Theorem (see [19] Chap, IV §3) shows that the
series:

y − cx
γi − . . .

where γi = qi/pi and c is a root of Pi(t) :=
∑

(r′j ,s′j)∈Ai
βjt

s′j divide F0 in

the ring ∪n≥1C[y][[x1/n]]. For a general choice of the coefficients βj , the
polynomial Pi has bi distinct solutions, where:

bi := sup
(r′j ,s′j)∈Ai

s
′
j − inf

(r′j ,s′j)∈Ai

s
′
j.

Therefore, for a general choice of the coefficients βj , the Puiseux series are
all distinct which implies that the product:

i=∏̀

i=1

∏

Pi(c)=0

(y − cx
γi − . . .)

divides F0:

F0 = u

i=∏̀

i=1

∏

Pi(c)=0

(y − cx
γi − . . .),

where u is a unit in C[[x, y]], because
∑i=`

i=1 bi = sup(r′i,s
′

i)∈N (B) s′i. This

shows that F0 = 0 has an isolated singularity at O and:

GAi
= ui

∏

Pi(c)=0

(y − cx
γi − . . .),

where ui is a unit in C[[x, y]].

In particular, for a general choice of the βi, each plane curve GAi
=

0 has an isolated singularity at O. Moreover, since GAi
is a weighted

homogeneous polynomial, each branch of GAi
= 0 is also defined by a

weighted homogeneous polynomial with the same weights. This implies
that in each Puiseux series above has the simple form y− cxγi . The Milnor
number of these branches is (pi − 1)(qi − 1) and their pairwise intersection
numbers are piqi.

One can also prove:
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4.7. Lemma. The minimum Milnor number of a linear combination of
elements of I ′ equals the Kushnirenko number 2S−a−b+1, where S is the
area below the Newton polygon N (B), a is supαi 6=0 r′i and b is supαi 6=0 s′i.

Proof: The number of branches of GAi
= 0 at O equals bi/qi and the

Milnor number each branch of GAi
= 0 at O is (pi − 1)(qi − 1). The

pairwise intersection numbers of these branches are equal to piqi.

Defining:
ai := sup

(r′j ,s′j)∈Ai

r
′
j − inf

(r′
j
,s′

j
)∈Ai

r
′
j,

the number of branches of GAi
= 0 at O also equals ai/pi.

The pairwise intersection numbers of branches of GAi
= 0 and GAj

= 0,
for i < j, are equal to piqj.

So, the Milnor number µ(F0, O) at O of F0 for a general choice of the
coefficients βi equals (see [12] Theorem 10.5 and Remark 10.10):

i=∑̀

i=1

bi

qi
(pi −1)(qi −1)+

i=∑̀

i=1

2piqi
bi

2qi
(
bi

qi
−1)+2

i=∑̀

i=1

∑

i<j

piqj
bi

qi

bj

qj
−

i=∑̀

i=1

bi

qi
+1.

On the other hand:

2S =
i=∑̀

i=1

b2
i

q2
i

piqi + 2
i=`−1∑

i=1

aibi+1

a =

i=∑̀

i=1

ai and b =

i=∑̀

i=1

bi.

Using the equality:
ai

pi
=

bi

qi

we obtain:
µ(F0, O) = 2S − a − b + 1.

To finish the proof of Lemma 4.6, it is enough to notice that F and F1

belong to the same linear system and the minimum Milnor number is the
minimum Milnor number among the analytic functions having the support
of their Newton principal part on N (B), i.e. the Kushnirenko number (see
[5] 1.10), as stated in the main theorem of Kushnirenko [5].

Now, the minimal embedded resolution of F0 = 0 for a general choice of
the coefficients βi, is also an embedded resolution for GAi

= 0. We have
noticed that the branches of GAi

= 0 are weighted homogeneous curves
λxqi + νypi = 0. This implies that the multiplicities of the coordinates
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x and y along the component intersected by the the strict transforms of
the branches of GAi

= 0 are respectively equal to pi and qi. Thus, this
component defines a divisorial valuation of the field of fractions of OC2,O

given by vi(x) = pi and vi(y) = qi. Therefore:

vi(
∑

cα,βx
α
y

β) = inf
cα β 6=0

(piα, qiβ).

Each slope −pi/qi of the Newton Polygon of B defines such a valuation.
By definition of the Newton Polygon, these valuations are defined by pairs
of integers (p, q), for which the minimum of the linear form pα + qβ is
obtained for at least two distinct pairs among {(r′i, s

′
i)}. These valuations

correspond to the ones given by Proposition 4.5. To prove that these are
the divisorial valuations of the exceptional components of the normalized
blowing-up of I ′, it remains to prove that the minimal embedded resolution
of F0 = 0 already gives after contraction the normalized blowing-up of I ′.

As remarked before, we have to prove that the strict transform of a curve
singularity G = 0 defined by a general element G of I ′, such that I ′ and the
ideal (F0, G) have the same multiplicity, is disjoint from the strict transform
of F0 = 0 in the minimal embedded resolution of F0 = 0.

To obtain this last assertion, notice that, in the minimal embedded res-
olution of F0 = 0, the strict transforms of the branches λxqi + νypi = 0
given by the edges of the Newton polygon for distinct (λ : ν) are disjoint.
This implies that the strict transform of G0 = 0, given by another general
choice of the coefficients βi, is disjoint from the strict transform of F0 = 0.

As seen in §3 above, a general element G of I ′ to be considered can
be chosen as G = G0 + H, where H is a general linear combination of
monomial of B which are not on N (B). The Puiseux series associated to G

are of the type y − cxγi + . . .. This shows that the strict transforms of the
branches of G = 0 intersect the strict transforms of the branches of G0 = 0
in the minimal embedded resolution of F0 = 0. This yields that the strict
transforms of the branches of G = 0 are disjoint from the strict transforms
of the branches of F0 = 0 in the minimal embedded resolution of F0 = 0.

So, the normalized blowing-up of I ′ is already obtained from the minimal
embedded resolution of F0 = 0.

Therefore, the components of the minimal embedded resolution of F0 = 0
intersected by the strict transforms of the branches of F0 = 0 give the com-
ponents of the normalized blowing-up of I ′. As we proved above, the diviso-
rial valuations of the exceptional components of the normalized blowing-up
of I ′ are effectively the valuations given in the Proposition 4.5.

This ends our proof.
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d’un idéal M-primaire P , Bull. Soc. Math. Fr. 112 (1984), 343-358.

[14] D. Mumford, Geometric Invariant Theory, Erg. der Math. und ihrer Grenzgebiete,
Springer Verlag, Berlin-Heidelberg-New York, 1965.

[15] C.P. Ramanujam, On a Geometric Interpretation of Multiplicity, Inv. math. 22

(1973), 63-67.
[16] D. Rees, Lectures on the Asymptotic Theory of Ideals, LMS, LNS 113, 1988,

Cambridge U.P.
[17] P. Samuel, La notion de multiplicité en Algèbre et en Géométrie algébrique, Journ.
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