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1. Introduction

Let F be a field of characteristic zero. The set of polynomial identities
satisfied by a F -algebra A, denoted by Id(A), is a T -ideal of the free algebra
F 〈X〉 of polinomials over F , i.e., Id(A) is invariant over all endomorphisms
of F 〈X〉. One of the main goals of the theory of PI-algebras, which are
algebras satisfying non-trivial polynomial identities, is to determine their
T -ideals. For each one of the T -prime algebras, classified by Kemer in [7],
the T -ideal has been insistently studied and there are few known results.
For example, we have the complete description just for Id(E), Id(M2(F ))
and Id(M1,1(E)) (see [9], [2] and [11], respectively). Remember that Kemer
showed that the only non-trivial T -prime algebras in characteristic zero are
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the full matrix algebra Mk(F ), the algebra Mk(E) of matrices over the the
Grassmann algebra E and Mr,s(E), a particular subalgebra of Mr+s(E).

Trying to get new identities for an algebra A we can consider the set
C(A) of central polynomials of A which consists of f(x1, · · · , xn) ∈ F 〈X〉
such that f(a1, · · · , an) belongs to the center of A, ∀a1, · · · , an ∈ A. The
existence of central polynomails is of great interest not only for the develop-
ment of the structure theory of PI-algebras, but also for the combinatorial
PI-theory (as a reference, see[4]). Since Id(A) ⊂ C(A) it is interesting to
construct central polynomials which are non identities of A, called non-
trivial central polynomials. Once we have a non-trivial central polynomial
f = f(x1, · · · , xn) of degree k of A we get a new polynomial from the
commutator [f, x] of degree k + 1 which belongs to Id(A).

For the T -prime algebras, the existence of non-trivial central polynomials
was proved by Kemer in [8] but in spite of the importance of the these
algebras, the concrete form of the set of their central polynomials is far from
being known, the only case which is completely settled is that of M2(F )
(see [10]). Several attempts of getting new results have been considered.
For example, in [1], Bondari developed a computational method to find all
central polynomials of degree less than 9 for M3(F ). In [3], V. Drensky
constructed an element in C(Mk(F )) \ Id(Mk(F )) of degree (k − 1)2 + 4
for any k ≥ 3 and it is the minimal degree known for a non-trivial central
polynomial of Mk(F ) until this moment. Non-trivial central polynomials
for the algebras Mk,l(E) were constructed by Razmyslov in [12].

In this work we present a method to construct elements in C(Mk(E)) \
Id(Mk(E)) based on the explicited decomposition of the group algebra
FSk. The technics developed here were described from an algorithmic
process which was implemented by using the free software GAP [5] for the
case k = 2. We were able to show that the minimal degree of a non-trivial
central polynomial in M2(E) is ≥ 9.

2. The algebra FSn, PI-algebras and central polynomials

The representation theory of the symmetric group Sn over a field of
characteristic zero is a very useful tool in the developing of the theory of
PI-algebras. We start this section with some basic facts on this topic.

By fixing a partition λ = (λ1, . . . , λh) of n, we associate to it the Young
diagram Dλ which consists of n boxes � in the following way

We observe that the lengths of the columns form a new partition of n,

λ′ := (λ′1, . . . , λ
′
r), where λ′i =

∑

ν

λν≥i

1, called conjugate partition of λ.
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A Young tableau Tλ of a diagram Dλ is a filling of boxes of Dλ with the
integers 1, 2, ..., n. We say that Tλ is a standard Young tableau of shape λ if
the integers in each row and in each column increase from left to right and
from top to bottom, respectively. For example, for the partition λ = (2, 1)
of n = 3 we have 6 Young tableaux of shape λ and only two of them are
standard:

1 2

3
and

1 3

2

In general, the number of standard Young tableaux of shape λ is given by
the hook formula (see [6]). During this text we consider dλ the number of
Young standard tableau of shape λ and the set {T1, T2, · · · , Tdλ

} of such
tableaux in lexicographic order, that is, T1 < T2 < · · · < Tdλ

.

The row-stabilizer of a Young tableau Tλ is defined as

RTλ
= Sλ1

(a11, · · · , a1λ1
) × . . .× Sλh

(ah1, · · · , ahλh
)

where Sλi
(ai1, · · · , aiλi

) denotes the symmetric group on the integers
ai1, · · · , aiλi

. Analogously, the column-stabilizer of Tλ is

CTλ
= Sλ′

1
(a11, · · · , aλ′

1
1) × . . .× Sλ′

r
(a1λ1

, · · · , aλ′

rλ1
)

where λ′ = (λ′1, · · · , λ
′
r) is the conjugate partition of λ.

Furthermore, we define the essential idempotent associated to Tλ by

eTλ
:=

∑

ρ∈RTλ

∑

σ∈CTλ

(sgn σ)ρσ.

We will use ei (or eλi if necessary) to denote the essential idempotent
eTi

. In general, the e′js are not orthogonal but we have that ejei = 0, when
Ti < Tj .

We observe that eγTλ
= γeTλ

γ−1 for all γ ∈ Sn. Moreover it is possible
to prove that there exists a non-zero integer q such that e2Tλ

= qeTλ
for

all Young tableaux Tλ; it follows that the element e = 1
q eTλ

∈ FSn is

idempotent. As an important property of the essential idempotents, we
have that the left FSn-modules FSneTλ

and FSneT̃λ
are isomorphic when

Tλ and T̃λ are Young tableaux of same shape λ. Whereas Tλ and Tµ are of
different shape, the modules FSneTλ

and FSneTµ are not isomorphic. The
next theorem shows that the standard Young tableaux come into play if one
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wants to find, amoung the n! essential idempotents arising from tableaux
of shape λ, some orthogonal ones (see [6]).

Theorem 2.1. We have

FSn =
⊕

λ`n

Iλ, with Iλ =
⊕

Tλ standard

FSneTλ

where Iλ is a two-sided ideal with dim Iλ = d2
λ. Moreover, each left module

FSneTλ
is minimal and dimFSneTλ

= dλ.

It follows from the theorem above that eTλ
eTµ = 0, when λ and µ are

different partitions of n.

By considering λ ` n a fixed partition, we denote by Sij (or Sλ
ij) the

permutation of Sn which takes the tableau Tj to the tableau Ti, that is,

SijTj = Ti. Obviously, S−1
ij = Sji. And as we have observed above, it

follows that Sijej = eiSij and the following is true.

Lemma 2.2. By a fixed partition λ of n, we have

(1) For each k ∈ {1, · · · , dλ}, the set {eiSik}
dλ

i=1 is a F -basis of FSnek.

(2) The set {eiSij}
dλ

i,j=1 is a F -basis of Iλ.

Proof. Since eiSik = Sikek for a fixed k, we have Ji =span{eiSik} is a
unidimensional space of FSnek for all i = 1, · · · , dλ. As we have observed,
ejei = 0 when Ti < Tj in the set {T1, T2, · · · , Tdλ

} of standard Young
tableaux of shape λ; thus the sum J1 + · · · + Jdλ

is direct. So, dim(J1 ⊕
· · · ⊕ Jdλ

) = dλ and then J1 ⊕ · · · ⊕ Jdλ
= FSnek, from Theorem 2.1.

Now since

Iλ =
⊕

Tλ standard

FSneTλ

we have the set {eiSij}
dλ

i,j=1 generates Iλ and using Theorem 2.1, we get

dim Iλ = d2
λ. Then {eiSij}

dλ

i,j=1 forms a basis of Iλ.

Now, if a F -algebra A satisfies a non trivial polynomial identity
f(x1, · · · , xn) ∈ F 〈X〉, i.e. f(a1, · · · , an) = 0, for all a1, · · · , an ∈ A then
denote it by f ≡ 0 in A and say that A is a PI-algebra. In characteristic
zero, it is well known that the ideal Id(A) of identities satisfied by A is
finitely generated by its multilinear ones (which are linear in each of its
variables) so we consider the F -space of multilinear polynomials in the first
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n variables x1, · · · , xn, that is, Pn = spanF {xσ(1) · · · xσ(n)|σ ∈ Sn} and
define the following left action of Sn over Pn

σf(x1, · · · , xn) = f(xσ(1), · · · , xσ(n)), (1)

where σ ∈ Sn. We observe that FSn and Pn are isomorphic (as F -vector
spaces) from the linear isomorphism ψ : FSn → Pn given by

ψ(σ) = xσ−1(1)xσ−1(2) · · · xσ−1(n).

Recording that f(x1, · · · , xn) is a central polynomial of A if f(a1, · · · , an)
belongs to the center of A for all a1, · · · , an ∈ A, it is well known that the
set

C(A) = {f ∈ F 〈X〉 | [f, x] ∈ Id(A)}

formed by all central polynomials of A is generated, as a T -space, by its
multilinear polynomials.

In this work, we are interested in constructing polynomials in C(A)∩Pn
which are not identities of A for a particular algebra A. Then by using
the isomorphism ψ, we have to take elements α ∈ FSn such that ψ(α) ∈
C(A)\Id(A) ∩ Pn.

Definition 2.3. We say that α ∈ FSn is an element (or multilinear ele-
ment) of degree n of A if and only if ψ(α) ∈ C(A).

We observe the following fact.

Lemma 2.4. (1) If α ∈ FSn is an element of degree n of A then α.β

is also an element of degree n of A for any β ∈ FSn.
(2) If λ is a partition of n and gλ ∈ Iλ is such that gλ = g1

λ + g2
λ + · · ·+

g
dλ

λ ∈ Iλ where gk
λ ∈ FSnek, for all k = 1, · · · , dλ and q is the non

zero integer such that e2k = qek, then we have

(a) gk
λ(1

qekSkk) = gk
λ for all k = 1, · · · , dλ.

(b) gk
λ(1

qerSrr) = 0 if k > r.

(c) Recursively defining θλ
k by θλ

1 = 1
qe1S11 and

θλ
k = (1 − θλ

1 − θλ
2 − · · · − θλ

k−1)
1
qekSkk, for all k = 2, · · · , dλ

we have
(i) gλ.θ

λ
k = gk

λ, for all k = 1, · · · , dλ.

(ii) gµ.θ
λ
k = 0, for all partition µ of n different from λ.

Proof. To show the first item, let α =
∑
ασσ, β =

∑
βτ τ be elements

of FSn and for each τ , consider the endomorphism ϕτ of F 〈X〉 such that
xi 7→ xτ−1(i) for all i = 1, · · · , n and fixes all the remaining variables. Thus
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for each τ ∈ Sn we have

ψ(α.τ) = ψ ((
∑
ασσ) .τ) =

∑
ασψ(σ.τ)

=
∑
ασxτ−1(σ−1(1))xτ−1(σ−1(2)) · · · xτ−1(σ−1(n))

=
∑
ασϕτ (xσ−1(1)xσ−1(2) · · · xσ−1(n))

=
∑
ασϕτ (ψ(σ)) = ϕτ (ψ(α))

and for a fixed variable x,

[ψ(α.β), x] = [ψ (α. (
∑
βττ)) , x]

=
∑
βτ [ψ(α.τ), x]

=
∑
βτ [ϕτ (ψ(α)), ϕτ (x)]

=
∑
βτϕτ ([ψ(α), x]).

It follows that if ψ(α) ∈ C(A), i.e., [ψ(α), x] ∈ Id(A) then ψ(α.β) ∈ C(A).

Now we fix a partition λ and consider gλ = g1
λ + g2

λ + · · ·+ g
dλ

λ ∈ Iλ such

that gk
λ ∈ FSnek, for all k = 1, · · · , dλ. For a fixed k ∈ {1, · · · , dλ}, since

{eiSik}
dλ

i=1 is a basis for FSnek it follows that there exist αi’s in F such

that gk
λ =

dλ∑

i=1

αieiSik. On the other hand for all i = 1, · · · , dλ we have

eiSik

(
1

q
ekSkk

)
=

1

q
eieiSikSkk =

1

q
e
2
iSik =

1

q
qeiSik = eiSik

that implies gk
λ(1

q ekSkk) = gk
λ. Moreover if k > r then

eiSik

(
1

q
erSrr

)
=

1

q
SikekerSrr = 0.

In this way we have proved 2.(a) and 2.(b). To see item 2.(c).ii, it is enough
to note that gµ ∈ Iµ and θλ

k ∈ Iλ so that IµIλ = {0} if µ and λ are different
partitions of n. The item 2.(c).i. can be proved by induction on k and we
are done.

The Theorem 2.1 and last lemma show that we can write each element
g of degree n of A as a sum

g =
⊕

λ`n

gλ (2)

where gλ = g1
λ + g2

λ + · · · + g
dλ

λ ∈ Iλ and gk
λ ∈ FSnek is also an element of

degree n of A, for each partition λ of n. In fact, from item 1 of Lemma
2.4, we have that g.(θλ

1 + θλ
2 + · · ·+ θλ

dλ
) is an element of degree n of A. By

using item 2.(c), we have

g.(θλ
1 + θ

λ
2 + · · ·+ θ

λ
dλ

) = gλ.(θ
λ
1 + θ

λ
2 + · · ·+ θ

λ
dλ

) = g
1
λ + g

2
λ + · · ·+ g

dλ

λ = gλ.
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Furthermore, since gλ = g1
λ + g2

λ + · · · + g
dλ

λ where dλ is the number of

standard Young tableaux of shape λ and gk
λ ∈ FSnek, it follows from items

1 and 2.(c) of the last lemma that gk
λ is also an element of degree n of A.

Thus
gλ is an element of degree n of A⇔

ψ(gλ) = ψ(g1
λ) + ψ(g2

λ) + · · · + ψ(gdλ

λ ) ∈ ψ(Iλ) ∩ C(A) ⇔

ψ(gk
λ) ∈ ψ(FSneTλ

) ∩C(A), for all k = 1, · · · , dλ ⇔

g
k
λ is an element of degree n of A, for all k = 1, · · · , dλ.

In this way, by fixing a partition λ of n and taking d = dλ; for each
k = 1, · · · , d, we will use that {eiSik}

d
i=1 is abasis of FSnek, and construct

just the elements of degree n of A. In particular, we are interested in
elements of type

α1e1S1k + α2e2S2k + · · · + αdedSdk, αi ∈ F.

Note that for each partition λ ` n, we can consider T1 the standard
Young tableau which the columns, from the first to the last one, were
filling from the top to the bottom in increasing order with 1, · · · , n and we
call it canonical tableau.

Now the isomorphism between FSne1 and FSnek can be given by γ 7→
γS1k and so for an element of degree n of A

f = α1e1S11 + α2e2S21 + · · · + αdedSd1

in FSne1 we have, from item 1 of Lemma 2.4, an element of degree n of A

fS1k = α1e1S1k + α2e2S2k + · · · + αdedSdk

in FSnek and vice-versa.

Definition 2.5. The elements of degree n which are linear combinations
of eiSi1, with i = 1, · · · , dλ are called elements of type T of A.

We conclude that in order to determine the multilinear elements of degree
n of A it is enough to consider, for each partition λ of n, elements of type
T of A and so we have proved the next result.

Theorem 2.6. The elements of degree n of A for a fixed partition λ ` n

are linear combinations over F of elements of type T

d∑

i=1

αieiSi1,

where αi ∈ F , for all i = 1, · · · , d and d is the number of standard Young
tableaux of shape λ.
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3. Elements of type T in M2(F ) and central polynomials of
M2(E)

We consider the T -prime algebra M2(E), where E is the Grassmann alge-
bra of infinite dimension over the field F generated by {1, v1, v2, · · · |vivj =
−vjvi} and want to apply the method developed in the last section to de-
termine elements of type T of a specifical degree n which are non-trivial
central polynomials of M2(E). In order to do it, for each partition λ of
n, we inicially construct the elements of type T in C(M2(F )). Since the
minimal degree of an identity of M2(E) is 8 (see [13]), it is natural to start
the calculations with n = 7.

The arguments used in this work produce a systematic process and now
we describe how we constructed computational routines (CR) which were
implemented in the software GAP [5] in order to determine central poly-
nomials of M2(F ).

CR “CentralCoeffTest(n)” : We know that if f = f(x1, · · · , xn) is an
element of degree n of A of type T then there exist α1, . . . , αd ∈ F such
that

f =

d∑

k=1

αkSk1e1 =

d∑

k=1

αkFk(x1, · · · , xn).

On the other hand, for each k = 1, . . . , d,

Fk = Fk(x1, · · · , xn) =
∑

p∈RT1

∑

q∈CT1

(sgn q)Sk1pq

and from the isomorphism ψ we have

Fk =
∑

p∈RT1

∑

q∈CT1

(sgn q)x(Sk1pq)−1(1)x(Sk1pq)−1(2) · · · x(Sk1pq)−1(n)

where T1 is the canonical Young tableau of shape λ. We observe that to
determine Fk it is enough to construct RT1

, CT1
and Sk1. Since we work

with multilinear polynomials, in the substitutions it is enough to consider
the elementary matrices Eij , that is, whose entries are equal to 0 except
the (i, j) entry which is 1.

Now we have to find α′
ks such that [f, xn+1] ≡ 0 in M2(F ), that is

d∑

k=1

αk[Fk(x1, · · · , xn), xn+1] ≡ 0 in M2(F ).
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In this way, for any set {A1, · · · , An+1} of elementary matrices of M2(F )
we have

d∑

k=1

αk[Fk(A1, · · · , An), An+1] = 0.

By considering for each k

[Fk(A1, · · · , An), An+1] =

(
xk yk
zk wk

)
∈M2(Q) ⊆M2(F )

and replacing it in the equality above, we get

d∑

k=1

αk

(
xk yk
zk wk

)
= 0 ⇔




x1 · · · xd
y1 · · · yd
z1 · · · zd
w1 · · · wd





︸ ︷︷ ︸
C





α1
α2
...
αd





︸ ︷︷ ︸
X

=





0
0
...
0



 .

• We have 4n+1 possibilities to choose the elementary matrices E11, E12,

E21, E22 to form a colection of n+ 1 matrices.

• After testing all of the possibilities we can form a system BX = 0 where
B is the reduced echelon form of the matrix formed by the aglutination of
matrices C in each possibility, having 4n+2 rows and d columns.

• The next step is solving the system.

• A new routine “ProbablePolynomials (B,n)” describes the possible
polynomials to be f . This routine uses other routine, called “Monomi-
alTest (Partition)”, to determine the polynomials F1, F2, · · · , Fd which
works in the following way:

∗ If the rank of B is less than d we have nonzero values for αk’s which
will form a list of candidates different from zero.

∗ If the rank of B is d we have α1 = α2 = · · · = αd = 0 and so f = 0. It
means that is there is no element different from zero of degree n of M2(F )
for the partition λ.

∗ Finally, if B = 0 then for each one of 4n+1 possibilities, the matrix

[Fk(A1, A2, · · · , An), An+1] =

(
xk yk
zk wk

)
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is null, for all k = 1, 2, · · · , d. Thus for all k = 1, 2, · · · , d, we have that

[Fk(A1, A2, · · · , An), An+1] ≡ 0 in M2(F )

and so the polynomials F1, · · · , Fd are elements of degree n of type T of
M2(F ).

The next result guarantees that the elements of type T of M2(E) comes
from the elements of type T of M2(F ).

Proposition 3.1. Let A and B be F -algebras such that B ⊆ A and consider
λ ` n a fixed partition. If ψ(Iλ) ∩ C(B) = spanF {ψ(f1), · · ·ψ(fr)} where

f ′js are of form
d∑

i=1

αieiSikj
∈ FSnekj

with kj ∈ {1, ..., d} and j ∈ {1, ..., r}

then ψ(Iλ) ∩ C(A) = spanF {ψ(fi1), ..., ψ(fis)} where i1, ..., is ∈ {1, ..., r}.

Proof. If ψ(g) ∈ ψ(Iλ) ∩ C(A) then for all k = 1, ...d there exist ψ(gk
λ) ∈

ψ(FSnek)∩C(A) ⊆ ψ(FSnek)∩C(B) such that ψ(gλ) = ψ(g1
λ)+...+ψ(gd

λ).

On the other hand, since ψ(g) ∈ ψ(Iλ) ∩ C(A) ⊆ ψ(Iλ) ∩ C(B) there
exist β′js ∈ F such that ψ(gλ) = β1ψ(f1) + ...+ βrψ(fr). It implies

ψ(gλ) = ψ(β1f1) + ...+ ψ(βrfr) = ψ(g1
λ) + ...+ ψ(gd

λ).

Using that ψ(βjfj) ∈ ψ(FSnekj
) ∩ C(B) by the uniqueness of the decom-

position it follows that

ψ(g
kj

λ ) = ψ(βjfj) for all j ∈ {1, 2, ..., r}

ψ(gk
λ) = 0 if k /∈ {k1, ..., kr} .

So ψ(fj) ∈ C(A), ∀j ∈ {1, ..., r} such that βj 6= 0 and the result follows.

Now we will see the results which are important to decide whether an
element of degree n of type T of M2(F ) is an element of degree n of type
T of M2(E) or not.

We have the following remark from Vishne [13].

Remark 3.2. Let f ∈ Pn. Then for all k ≥ 2:

f ≡ 0 in Mk(E) if and only if for any choice of elementary matrices
Ai = Eaibi

and either v∗i = vi or v∗i = 1, the substitution xi 7→ Aiv
∗
i in f

gives zero.

Next we have an important result to finish our algorithms.

Proposition 3.3. Let {j1, · · · , jq} ⊂ {1, · · · , n} with j1 < · · · < jq and
M = M(x1, · · · , xn) = ασxσ(1) . . . xσ(n) a monomial in Pn. If r1 < · · · < rq

such that σ(ri) = jli where li ∈ {1, · · · , q} for all i ∈ {1, · · · , q} then the
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substitution xi 7→ Aiv
∗
i in the monomial M where Ai is an unitary matrix

and v∗i = vi if i ∈ {j1, · · · , jq} and v∗i = 1 if i ∈ {1, · · · , n} \ {j1, · · · , jq}
we have

M(A1v
∗
1 , · · · , Anv

∗
n) = (sgn τσ)ασAσ(1) . . . Aσ(n)(vj1 . . . vjq)

where τσ ∈ Sq with τσ(1) = l1, · · · , τσ(q) = lq.

Proof. In fact the substitution xi 7→ Aiv
∗
i in the monomial M where

v∗i = vi if i ∈ {j1, ..., jq} and v∗i = 1 if i ∈ {1, ..., n} \ {j1, ..., jq} is the
same as xσ(t) 7→ Aσ(t)v

∗
σ(t) for all t ∈ {1, ..., n}, where v∗σ(t) = vσ(t) if

t ∈ {r1, ..., rq} and v∗σ(t) = 1 if t ∈ {1, ..., n} \ {r1, ..., rq} . Thus

M(A1v
∗
1 , ..., Anv

∗
n) = ασAσ(1)v

∗
σ(1) . . . Aσ(n)v

∗
σ(n)

= ασAσ(1) . . . Aσ(n)(vσ(r1) . . . vσ(rq))

= ασAσ(1) . . . Aσ(n)(vjτσ(1)
. . . vjτσ(q)

)

= (sgn τσ)ασAσ(1) . . . Aσ(n)(vj1 . . . vjq).

Now let us explain how to construct elements in C(M2(E)).

CR “CentralPolynomialTest(h)”: verifies if a polynomial h(x1, · · · , xn)
belongs to C(M2(E)) and it works from some steps.

(1) Let

f = f(x1, · · · , xn) =
∑

σ∈Sn

ασxσ(1) . . . xσ(n) ∈ Pn.

We have:
• According to Remark 3.2, f ∈ Id(M2(E)) if and only if for any

choice {A1v
∗
1, · · · , Anv

∗
n} where Ai’s are elementary matrices and

v∗i = vi or 1, we have

f(A1v
∗
1 , · · · , Anv

∗
n) = 0.

• There exist 4n.2n ways to make that choice: 4n possibilities
to the sequence {A1, · · · , An} and 2n possibilities to the sequence
v∗1 , · · · , v

∗
n.

• We identify

{v∗1, · · · , v
∗
n} ↔ {j1, · · · , jq} ⊆ {1, · · · , n} , with j1 < · · · < jq

where v∗i = vi if i ∈ {j1, · · · , jq} and

v
∗
i = 1 if i ∈ {1, · · · , n} \ {j1, · · · , jq} .
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• For all 4n.2n choices {A1v
∗
1, · · · , Anv

∗
n} we have

f(A1v
∗
1, · · · , Anv

∗
n) = 0

⇔
∑

σ∈Sn

(sgn τσ)ασAσ(1) . . . Aσ(n)(vj1 . . . vjq) = 0

⇔
∑

σ∈Sn

(sgn τσ)ασAσ(1) . . . Aσ(n) = 0.

(2) For

h = h(x1, · · · , xn) =
∑

σ∈Sn

ασxσ(1) . . . xσ(n) ∈ Pn

and each sequence {A1, · · · , An+1} of elementary matrices and each
subset {j1, · · · , jq} ⊆ {1, · · · , n+ 1}, the routine constructs a new
polynomial

f = f(x1, · · · , xn) = [h, xn+1] =
∑

γ∈Sn+1

αγxγ(1) . . . xγ(n+1) ∈ Pn+1.

(3) For each monomial of f the routine constructs the permutation τγ

as in the Proposition 3.3 and computes the product
Aγ(1) . . . Aγ(n)Aγ(n+1) to form the matrix

A =
∑

γ∈Sn+1

(sgn τγ)αγAγ(1) . . . Aγ(n)Aγ(n+1).

(4) If A = 0 for all sequences {A1, · · · , An+1} and all subsets
{j1, · · · , jq} ⊆ {1, · · · , n + 1} then f ∈ Id(M2(E)). As a conse-
quence, h ∈ C(M2(E)).

To finish, we use a new routine “PolynomialIdentitiesTest(h)” to
determine if a polynomial h ∈ C(M2(E)) is or not an identity, since our
interest is to find non-trivial central polynomials. The idea used in this
routine is analogous to that one used in the previous, where the difference
consists in considering h instead of f .

The implementation of the routines above guaranteed the following.

Theorem 3.4. If f is a non-trivial central polynomial of M2(E) then degree
of f ≥ 9.

São Paulo J.Math.Sci. 3, 2 (2009), 179–191



Central polynomials for matrix algebras over the Grassmann algebra 191

4. Final remarks

The procedure was designed to find central polynomials of arbitrary de-
gree of the matrix algebra Mk(E), for any k ≥ 2. The tests done using
the software GAP showed that the algebra M2(E) doesn’t contain central
polynomials of degree 7. Since Vishne informed the only elements of degree
8 of C(M2(E)) are the identities, to construct central polynomials of bigger
degree, we have to consider n = 9. The work in this case requires a large
number of computations and our next goal is improving the algorithms to
finally determine the minimal degree of a non-trivial element in C(M2(E)).
The sources of the computional routines and procedures, together with
some examples, are available upon request by e-mail.
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