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Abstract. The study of associativity of the commutator operation in
groups goes back to the work of F. W. Levi in 1942. In the 1960’s
Richard J. Thompson created a group F whose elements are repre-
sentatives of the generalized associative law for an arbitrary binary
operation. In 2006, Geoghegan and Guzmán proved that a group G is
solvable if and only if the commutator operation in G eventually satis-
fies ALL instances of the associative law, and also showed that many
non-solvable groups do not satisfy any instance of the generalized asso-
ciative law. We will address the question: Is there a non-solvable group
which satisfies SOME instance of the generalized associative law? For
finite groups, we prove that the answer is no.
AMS Classification 2000: Primary: 20D05 ; Secondary: 20F16, 20N02,
20F38.

1. Introduction

In 1942 F. W. Levi [3] proved that the commutator operation in a group
is associative if and only if the group is nilpotent of class ≤ 2. That, in a
sense, settled the question of associativity of the commutator operation in
groups.

In the 1960’s Richard Thompson [4], studying the logical connections
between the three-variable associative law and the generalized associative
law, created the group F whose elements can be thought of as (equivalence
classes of) instances of the generalized associative law. More details on this
below. Thompson’s notes were circulated but never published. In 1996,
Cannon, Floyd and Parry [1] published what became the main introductory
reference to Thompson’s groups. We refer the reader to that paper for full
details.
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In 2006 Geoghegan and Guzmán [2] used subgroups of Thompson’s group
F to “measure” the associativity of a binary operation. That is, a non-
associative binary operation may still satisfy some instances of the gener-
alized associative law. In particular, for a group which is not nilpotent
of class ≤ 2, its commutator operation may satisfy some instances of the
generalized associative law, and this reopens the issue of the associativity
of the commutator operation in groups, in this generalized sense.

For any magma S, the set Assoc(S) of instances of the generalized asso-
ciative law that are (eventually) satisfied by S, forms a subgroup of F . It is
proved in [2] that when we take S to be a group G with its commutator op-
eration [· , ·], G is a solvable group if and only if Assoc(G) = F . Moreover,
for many non-solvable groups G it was shown that Assoc(G) = 1. That
opened the question of whether there is a non-solvable group G for which

1 � Assoc(G) � F

i.e. such that the commutator operation of G satisfies some instance of the
generalized associative law.

In this paper, we answer the question for finite groups. We prove:

Theorem. If the commutator operation in a finite group G satisfies some
instance of the generalized associative law, then G is solvable.

2. The Generalized Associative Law and Thompson’s group
F

Given a magma (S, ?), i.e. a non-empty set S with a binary operation
?, the Generalized Associative Law states that for any n ≥ 1, any two par-
enthizations of the expression

X1 ? X2 ? · · · ? Xn (1)

evaluate the same in S. An instance of the Generalized Associative Law
consists of a choice of n ≥ 1, and two parenthizations for (1). When the
two parenthizations are different we may emphasize this fact by referring
to it as a non-trivial instance of the Generalized Associative Law. The first
non-trivial instance of the Generalized Associative Law occurs with n = 3,
and it is the usual (three-variable) Associative Law.

There are several alternative ways to construct/look at Thompson’s
group F . Here we sketch one of them, referring the reader to [1] for full
details.

We can encode a parenthezation of a product of n factors, using a binary
tree with n leaves. Each instance of the generalized associative law, is
then encoded with a pair of binary trees having the same number of leaves.
The set T of all pairs of binary trees, with both trees in each pair having
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the same number of leaves, is the beginning of one of the constructions of
Thompson’s group F .

In order to define a binary operation on pairs of trees, an equivalence
relation is introduced, by which two pairs of trees are declared to be equiv-
alent when one pair is obtained from the other by doing a “common ex-
pansion” on both trees. For example, if t1, t2, t3 are any binary trees then
the following two pairs of trees



������
//

//
//

������
//

//
// ,

������
//

//
//

������
//

//
//



 and





������
//

//
//

������
//

//
//

t1 t2

t3
,

������
//

//
//

t1
������

//
//

//

t2 t3



 (2)

are equivalent, since the second pair is obtained from the first pair by
expanding both trees the same way, i.e. by “hanging” t1 from the first
leaf, t2 from the second leaf and t3 from the third leaf. Note that the left
pair encodes the three-variable associative law. In general, if (s, t) is a
pair of binary trees with n leaves each, and t1, . . . , tn are n binary trees,
then (s(t1, . . . , tn), t(t1, . . . , tn)) is a pair of trees with k leaves each, where
k = k1 + · · · + kn and ki denotes the number of leaves of ti. We call the
pair (s(t1, . . . , tn), t(t1, . . . , tn)) a common expansion of the pair (s, t). We
consider the equivalence relation on T generated by declaring each pair (s, t)
equivalent to each of its common expansions (s(t1, . . . , tn), t(t1, . . . , tn)).
The equivalence class of (s, t) is denoted by 〈s, t〉. It can be shown that
in each equivalence class, there is exactly one representative pair which is
not a common expansion of any other pair. We call such pair of trees a
reduced pair, and it can be shown that each pair is a common expansion of
the reduced pair representative in its class. A free caret in a binary tree,
is a caret on two consecutive leaves. The first tree in the left pair of (2)
has a free caret on the first and second leaves. The second tree of that pair
has a free caret on the second a third leaves. When the two trees in a pair
both have a free caret with the same two leaves, we say that they have a
“matching” free caret. Reduced pairs are characterized by the fact that the
two trees do not have any matching free caret. The left pair in (2) above
is a reduced pair of trees.

Given two elements 〈s, t〉, 〈u, v〉 ∈ F the product is defined as

〈s, t〉 · 〈u, v〉 = 〈s′, v′〉

where 〈s, t〉 = 〈s′, t′〉, 〈u, v〉 = 〈u′, v′〉, and t′ = u′. Clearly, the identity
element of F is 〈t, t〉, and the inverse of 〈s, t〉 is 〈t, s〉.

Because the elements of F are equivalence classes, they don’t encode
individual instances of the Generalized Associative Law, rather equivalence
classes of such instances. We say that a magma “eventually satisfies” an
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instance of the Generalized Associative Law, if it satisfies some common
expansion of it, that is, an instance in the same equivalence class.

3. Commutator Notation

Let G be a group x, y ∈ G. We will use the standard notation

[x, y] := x
−1

y
−1

xy

for the commutator of x and y. We will use binary trees to denote general
commutator expressions, according to the following recursive definition. If
s and t are commutator expressions, then the binary tree

������
//

//
//

s t

denotes the commutator expression [s, t]. This way, the 3-variable associa-
tive law for the commutator operation in a group can be written as

������
//

//
//

������
//

//
//

x y

z
≈

������
//

//
//

x ������
//

//
//

y z

A tree-like expression in a group G is a commutator expression, where
each leaf of the corresponding binary tree is labelled with either a variable,
or an element of the group G. We will refer to the elements of G in a tree-
like expression as constants. In particular, if we take the trivial binary tree,
the one having a single leaf, then any element of G is a constant tree-like
expression in G.

Given two tree-like expressions s and t in a group G, and a subset X ⊆ G,
we say that X satisfies the identity s ≈ t, and write X |= s ≈ t, if we get
equality whenever we substitute elements of X for the variables of s and t.
Given a tree-like expression t in a group G, and a subset X ⊆ G, we denote
by t(X) the set of all values obtained by substituting elements of X for the
variables of t.

A subset X ⊆ G of a group is said to be normal if it is closed under
conjugation by every element of G, and it is said to be inverse if it contains
the inverse of each of its elements. We denote by Bp the full binary tree
of height p. The set Bp(G) is a normal, inverse, generating set of the p-th

derived group G(p).
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4. Basic Results

The commutator operation satisfies a number of identities in all groups,
some of which we need to refer to explicitly.

[xy, z] = [x, z]y · [y, z] (3)

[x, yz] = [x, z] · [x, y]z (4)

[y, x] = [x, y]−1 = [xy
, y

−1] = [x−1
, y

x] (5)

If G is a group and s, t, s′, t′ are tree-like expressions such that (s′, t′)
is a common expansion of (s, t), then G |= s ≈ t clearly implies that
G |= s′ ≈ t′. The converse does not hold; but if the common expansion
from (s, t) to (s′, t′) involves hanging trees of height at most p then when
G |= s′ ≈ t′ it follows that Bp(G) |= s ≈ t. We can take this one step
further when one side of the identity is trivial.

Lemma 1. Let G be a group, t a tree-like expression and t′ the result of
hanging from each non-constant leaf of t a tree of height at most p.
If G |= t′ ≈ 1 then Bp(G) |= t ≈ 1 and G(p) |= t ≈ 1.

Proof. Since every tree of height at most p can be expanded to a full binary
tree Bp of height p, from G |= t′ ≈ 1 we immediately get Bp(G) |= t ≈ 1.
Now, the commutator identities (3) and (4) and the fact that Bp(G) is a

normal, inverse, generating set of G(p), yield G(p) |= t ≈ 1. �

The next lemma follows by a straight forward calculation. When eval-
uating t and s in G/Z(G) the constants are to be replaced by their corre-
sponding cosets.

Lemma 2. Let G be a group, Z(G) its center, and let s, t be tree-like
expressions in G. Let x be a variable, different from all variables that occur
in s and t.

G/Z(G) |= s ≈ t iff G |=
������

//
//

//

s x

≈
������

//
//

//

t x

iff G |=
������

//
//

//

x s

≈
������

//
//

//

x t

Each non-trivial binary tree has at least one free caret; if it has exactly
one free caret, we call it a vine. The left vine of height n, denoted ln is the
vine of height n, whose free caret holds the two leftmost leaves of the vine.
In the following picture we see a vine v5 of height 5 and the left vine l5.
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v5 :

���� ::
::

���� ::
::

���� ::
::

���� ::
::

���� ::
::

l5 :

���� ::
::

���� ::
::

���� ::
::

���� ::
::

���� ::
::

Given a vine vn of height n, a ∈ G, u = (x1, x2, . . . , xn) we denote by
vn.l(a, u) (resp. vn.r(a, u)) the tree-like expression in G obtained by placing
a at the left (resp. right) leaf of the free caret in vn and x1, . . . , xn at the
other leaves of vn from bottom to top. In the previous example we have

v5,l(a, u) :

���� ::
::

x5
���� ::

::

���� ::
::

x3
���� ::

::

x2
���� ::

::

a x1

x4
v5,r(a, u) :

���� ::
::

x5
���� ::

::

���� ::
::

x3
���� ::

::

x2
���� ::

::

x1 a

x4

Lemma 3. Let vn be a vine of height n, G a group, a ∈ G, and u =
(x1, x2, . . . , xn). Then

vn,l(a, u) = ln,l(a, u) = ln,l(a, û)±1

where a ∈ {a, a−1} and each xi, x̂i are conjugates of xi. Similarly,

vn,r(a, u) = ln,l(a, u) = ln,l(a, û)±1

where a ∈ {a, a−1} and xi, x̂i are conjugates of xi.

Proof. When n = 1, it follows from the commutator identities (5).
When n > 1, it follows from those same identities and induction. There
are four cases to consider, two for vn,l(a, u) and two for vn,r(a, u). If

vn,l(a, x1, . . . , xn) = [xn, vn−1,l(a, x1, . . . , xn−1)] =
������� ??

??
??

?

xn vn−1,l(a, u)

,

by induction, vn−1,l(a, x1, . . . , xn−1)
−1 = ln−1,l(a, x1, . . . , xn−1) where a ∈

{a, a−1} and each xi is a conjugate of xi, i = 1, . . . n − 1. Now, using (5),
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we get

vn,l(a, x1, . . . , xn) = [xn, ln−1,l(a, x1, . . . , xn−1)
−1] =

������� ??
??

??
?

xn ln−1,l(a, u)−1

= [ln−1,l(a, x1, . . . , xn−1), xn] =
������� ??

??
??

?

ln−1,l(a, u) xn

= ln,l(a, x1, . . . , xn−1, xn)

where xn = (xn)ln−1,l(a
′,x′

1
,...,x′

n−1
)−1

. The other case for vl,n

vn,l(a, x1, . . . , xn) = [vn−1,l(a, x1, . . . , xn−1), xn] =
������� ??

??
??

?

vn−1,l(a, u) xn

,

and the two cases for vn,r are treated similarly. The second equality of the
statement, i.e.

ln,l(a, u) = ln,l(a, û)±1

is obtained using (5) repeatedly to “pull” the inverse out of the commutator
when the exponent of a is −1. �

We illustrate the first part of this lemma with the following example:

���� ::
::

x5
���� ::

::

���� ::
::

x3
���� ::

::

x2
���� ::

::

a x1

x4
=

���� ::
::

���� ::
::

���� ::
::

x3
���� ::

::

x2
���� ::

::

a x1

x4

x5

−1

=

���� ::
::

���� ::
::

���� ::
::

x3
���� ::

::

x2
���� ::

::

a x1

−1
x4

x5

=

���� ::
::

���� ::
::

���� ::
::

���� ::
::

x2
���� ::

::

a x1

x3

x4

x5

=

���� ::
::

���� ::
::

���� ::
::

���� ::
::

���� ::
::

a−1 x1

x2

x3

x4

x5

As an immediate consequence of Lemma 3 we obtain:

Proposition 4. Let G be a group, a, b ∈ G, and vn a vine of height n.
If b centralizes ln,l(a, u) for all u, then it also centralizes vn,l(a, u) and
vn,r(a, u) for all u.

5. The Main Result

Before we prove the main result of this paper, we will need a counting
argument which can be expressed in terms of coloring of the leaves of a full
binary tree.
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Given two leaves in a full binary tree, we’ll refer to the distance to their
closest common ancestor, as the distance between the leaves.

Proposition 5. Suppose we color the leaves of a full binary tree of height
nj + 1 so that the coloring satisfies the following condition: any two leaves
at a distance

d ≡ 1 (mod j)

must have different color. Then the number of colors has to be ≥ 2n.

Proof. The proof is by induction on n. When n = 1, any leaf on the left
subtree is at a distance j + 1 from any leaf on the right subtree. Hence at
least two colors are needed. For n > 1, consider the 2j subtrees, t1, . . . , t2j

which are full binary of height (n − 1)j + 1. Each one of them needs at
least 2n−1 colors. Each of the leaves on the leftmost subtree, t1, are at a
distance nj +1 from each of the leaves on the rightmost subtree, t2j , hence
all the 2n−1 colors used for t1 must be different from the 2n used for t2j ,
and we need 2n colors. �

Although we don’t need it here, it is not hard to see that this lower
bound is tight, i.e. one can always do the coloring with 2n colors.

We now get to the main result of this paper.

Theorem 6. If the commutator operation in a finite group G satisfies some
instance of the generalized associative law, then G is solvable.

Proof. Let s′, t′ be two binary trees with the same number of leaves, so

t :

•

k

.
.
.
.
.
..
.

.
.

.
.

������
//

//
//

xi ������
//

//
//

//
//

//

������
//

//
//

xi+1

that s′ ≈ t′ is an instance of the generalized associative law.
Let G be a finite group such that G |= s′ ≈ t′. Let (s, t) be a
reduced pair of trees, which represents the equivalence class
〈s′, t′〉 ∈ F . Since (s′, t′) is obtained from (s, t) by a common
expansion, there is a p ≥ 0 such that Bp(G) |= s ≈ t. In
fact, p can be taken to be the max of the heights of the
trees used to expand (s, t) into (s′, t′). Label the variables
of both s and t with variable names x1, x2, . . . from left to
right, and let

���� ??
??

xi xi+1
be the leftmost free caret in either

s or t; without lost of generality, let’s say in s. Let k be
the lowest common ancestor of xi and xi+1 in t, and r the
subtree of t rooted at k. Since t has no free caret to the
left of xi+1, the left child of r has no free caret, and hence
it has to be the leaf xi; xi+1 is the first leaf of the right

child of r. So r is an expansion of

oooooo OOO
OOO

xi lj,l(xi+1, y) for
variables y1, . . . , yj. Consider the path from the root of t

to the leaf xi+1. This path goes through the vertex k, and
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determines a vine vm,l(xi, lj,l(xi+1, y), z2, . . . , zm), so that t

is an expansion of this vine. Let p′ be the max of the heights of the trees
hanged at y1, . . . , yj, z2, . . . , zm to get t. For any a and b that commute,
putting them in the place of variables xi and xi+1, evaluates s to 1, and
therefore, by Lemma 1

Bp+p′(G) |= vm,l(b, lj,l(a, y), z2, . . . , zm) ≈ 1

and

G
(p+p′) |= vm,l(b, lj,l(a, y), z2, . . . , zm) ≈ 1

Repeated application of Lemma 2 yields

G
(p+p′)

/Zm−1(G
(p+p′)) |= [b, lj,l(a, y)] ≈ 1

Let H = G(p+p′)/Zm−1(G
(p+p′)). Thus, we have shown the following fact for

H: if b commutes with a then b centralizes lj,l(a, u) for all ui ∈ H. Applying
this fact to b and lj,l(a, u), we conclude that b centralizes l2j,l(a, u), and by
induction on q we get that b centralizes lqj,l(a, u). By Proposition 4, we get
that for any vine vqj , b centralizes vqj,l(a, u) and vqj,r(a, u). Now, applying
the fact to vqj,l/r(a, u) and b, induction, and Proposition 4, we conclude
that vqj,l/r(a, u) commutes with wqj,l/r(b, u

′) for any vines vqj and wqj, and
any u, u′ ∈ H. So, in a full binary tree of height qj + 1, if two of the
leaves, one in the left subtree and one in the right subtree, are labelled
with elements that commute, the whole tree evaluates to 1.

qj






������� ??
??

??
?

a

......
.
.
.
.
.
..
.
.
.

...........
b

. . .
.
.
.
.
..
.
.
.
.
.

≈ 1

Choose n such that 2n > |H|. Let Bnj+1 be the full binary tree of height
nj + 1. By Proposition 5, if we label the leaves with elements of H, there
must be at least two leaves at a distance qj + 1 having the same label,
for some q ≤ n. The full binary tree Bqj+1 containing these two leaves
evaluates to 1, and so does Bnj+1. That means Bnj+1(H) = 1 and by

Lemma 1, H(nj+1) = 1; so H is solvable, and so is G. �
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