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Abstract. Kauffman [16] and Kim [17] defined the group of a virtual
knot by extending, in a natural way, the Wirtinger presentation of the
fundamental group of classical knot. In this paper we present the group
of a virtual knot by using the concept of combinatorial knot, introduced
by Toro [21]. We show the advantages of this approach, that provides
natural algorithms. We present examples of combinatorial knots whose
groups have properties that are false, or unknown, in the category of
the classical knots.
Keywords: Knots, Virtual Knots, Combinatorial Knots, Knot Groups,
Virtual Knot Groups.

1. Introduction

In this paper we study the group of a virtual knot by using the con-
cept of combinatorial knot. The group of a virtual knot was introduced
by Kauffman [16] as a generalization of the group of a classical knot. This
definition relies on a virtual knot diagram, so we do not have easy algo-
rithms and computations are cumbersome. One of the advantages of using
combinatorial knots to approach virtual knots is that we are not required
to use diagrams and the definitions and proofs are presented in algorithmic
form, easy to implement using a symbolic computation software such as
Mathematica. We used combinatorial knots, instead of Gauss codes, intro-
duced by Kauffman [16], because the combinatorial knot theory gives us an
easy way to extend definitions and invariants from the classical knot theory
to virtual knot theory. The second author has used combinatorial knots
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to obtain an algorithm to construct an n-butterfly of a classical knot, see
[11] and [21]. In our research, we use combinatorial knots, not only as a
computational tool, but also as theoretical one, for instance, using combi-
natorial knots we found an easy way to compute an invariant that provides
a necessary condition for a virtual knot to be a classical knot, see [22].

The paper is organized as follows. In section 2 we present a brief review of
virtual knots [16] and combinatorial knots [21] and we sketch the proof that
the virtual knot category is equivalent to the combinatorial knot category.
Using this fact, in the rest of the paper we use combinatorial knots to
present all the definitions and results and we do not differentiate between
virtual knots and combinatorial knots. Section 3 provides the definition
of the group of a combinatorial knot by using a presentation that extends
the Wirtinger presentation of a classical knot. Given the correspondence
between combinatorial knots and virtual knots, we define the group of a
virtual knot. This definition is the same as the one given by Kauffman.
In Section 4 we present properties of combinatorial knot groups and give
several relevant examples. We present Kim’s result [17], in which he gave
conditions to determine when G is the fundamental group of a virtual knot.
In the case that G corresponds to the group of a virtual knot, we give an
algorithm to construct a combinatorial knot from the group presentation.
Our proof of this result and the algorithm we get, show the advantages and
power of working with combinatorial knots.

In the paper we work only with combinatorial knots and virtual knots, but
there exists the concept of combinatorial link that corresponds to virtual
link, and all our work can be extended to the group of a virtual link. It is
important to note that there are properties that are different in the case of
virtual link groups and this topic is the subject of our current research.

2. Virtual knots and combinatorial knots

The concept of a virtual knot was introduced by Kauffman [16] as a gen-
eralization of classical knot diagram. A virtual knot diagram is an oriented
4-valent planar connected graph, whose crossings are classified according
to Figure 1a. An example of a virtual knot diagram is shown in Figure 1b.

The moves of virtual knot diagrams, illustrated in Figure 2 are called gen-
eralized Reidemeister moves. Two virtual knot diagrams D and D′ are
equivalent if D can be transformed into D′ by a finite number of general-
ized Reidemeister moves. A virtual knot is an equivalence class of virtual
knot diagrams.

Goussarov, Polyak and Viro [8] showed that the entire theory of classical
knots is contained in the theory of virtual knots. Kauffman [16] gave ex-
amples of non classical virtual knots. In this sense virtual knot theory is
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Figure 1. Cossing types.
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Figure 2. I), II) and III) are the classical Reidemeister moves.

a nontrivial extension of the classical theory. Many invariants of classical
knots have been extended to invariants of virtual knots, among them, the
group of a classical knot.

Combinatorial knot theory was proposed by Toro [21] as a computational
extension of knot theory. Figure 3 shows a diagram of a classical knot and
its combinatorial knot.
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Figure 3. ((−1, 2,−3, 4,−5, 1,−2, 5,−4, 3), (1, 1, 1, 1, 1))
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Definition 1. A knot code of n crossings is defined as

((i1, i2, · · · , i2n) , (e1, · · · , em)) ,

where, as sets, {i1, i2, · · · , i2n} = {a1, · · · , an} ∪ {−a1, · · · ,−an},
a1, ..., an ∈ N, m ≥ max{a1, a2, · · · , an} and ej ∈ {1,−1}, j = 1, 2, · · · ,m.
The sequences (i1, i2, · · · , i2n) and (e1, · · · , em) are called crossing list and
sign list, respectively.

Two knot codes K1 and K2 are said to be equivalent if K1 can be trans-
formed into K2 by a finite number of the following moves:

TYPE A: (Rotation)
((i1, i2, · · · , i2n), (e1, · · · , em)) ≈ ((i2, i3, · · · , i2n, i1), (e1, · · · , em)) ≈
≈ · · · ≈ ((i2n, i1, i2, · · · , i2n−1), (e1, · · · , em)).

TYPE B: (Renumbering)
((i1, i2, · · · , i2n), (e1, · · · , em)) ≈ ((j1, j2, · · · , j2n), (ε1, · · · , εl))
if there exist a bijective map ϕ : {i1, · · · , i2n} → {j1, · · · , j2n}, such that,
for every k = 1, 2, · · · , n, ϕ(−ik) = −ϕ(ik) and ε|ϕ(ik)| = e|ik|.

TYPE C: (Simplification)

((i1, i2, · · · , i2n), (e1, · · · , em, em+1)) ≈ ((i1, i2, · · · , i2n), (e1, · · · , em)) ,

if m ≥ |ij | for all j = 1, · · · , 2n.

TYPE I:
((i1, · · · , ir−1, ir,−ir, ir+2, · · · , i2n), (e1, · · · , em)) ≈
((i1, · · · , ir−1, ir+2, · · · i2n), (e1, · · · , em)).

TYPE II:
((i1, i2, · · · , ik−1, h, j, ik+2, · · · , it−1,−h,−j, it+2, · · · , i2n), (e1, · · · , em))
≈ ((i1, i2, · · · , ik−1, ik+2, · · · , it−1, it+2, · · · i2n), (e1, · · · , em))

or

((i1, i2, · · · , ik−1, h, j, ik+2, · · · , it−1,−j,−h, it+2, · · · , i2n), (e1, · · · , em))
≈ ((i1, i2, · · · , ik−1, ik+2, · · · , it−1, it+2, · · · i2n), (e1, · · · , em))

if and only if j.h > 0 and e|j| = −e|h|.

TYPE III:
((i1, · · · , j, h, · · · , p, q, · · · , v, w, · · · , i2n), (e1, · · · , em)) ≈
≈ ((i1, · · · , h, j, · · · , q, p, · · · , w, v, · · · , i2n), (e1, · · · , em)) if and only if
j.h > 0, p 6= q, w 6= v and {p, q, v, w} = {−j,−h, k,−k}, for some crossing
k.

The relations Type I, II and III are denominated Reidemeister moves, in a
similar way to the classical case.

Note that in the type I and II moves we do not change the list of signs. In
this way, we do not need to renumber the crosses and it could be information
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about crossings that do not exist anymore. This is a special feature of
combinatorial knots, that is extremely useful in computations. Note also
that we have only a set of Reidemeister moves.

A combinatorial knot is defined as an equivalence class of knot codes under
the relation ≈. A combinatorial knot is called trivial or unknot if it is
equivalent to ((), ()).

The category of combinatorial knots is equivalent to the category of virtual
knots (and also to the category of Gauss diagrams and abstract knots), see
[22], [15], [8] and [16].

We describe briefly a biyection between the set of virtual knot diagrams and
the set of combinatorial knots. This correspondence extends to a biyective
correspondence between the category of virtual knots and the category of
combinatorial knots, see [22] for details.

Let K be a virtual knot diagram. We label its classical crossings with the
numbers 1, 2, ..., n, where n is the number of classical crossing of K. We
take a point over K, not a crossing, and we follow the diagram writing down
the list of crossing labels, with the convention that if we pass through an
undercrossing i, we add −i to the list, but if we pass through an overcrossing
i, we add i to the list. The resulting collection is called crossing list of K.
We construct also the list (e1, e2, ..., en), where ei = 1 if the crossing i is
positive or ei = −1 if it is negative. This list is called list of signs of K.
The list formed by these two lists is a knot code that represents the virtual
knot diagram K. It is denoted σK .

Now, we present a sketch of a construction of a virtual knot diagram
from a knot code. Let σ = ((i1, i2, · · · , i2n), (e1, · · · , em)) be a knot code,
where {i1, i2, · · · , i2n} = {a1, · · · , an}∪{−a1, · · · ,−an} . Let Iσ be a graph
with vertices given by the set {a1, · · · , an} and its edges given by the set
{(i1, i2), ..., (in, i1)}, where (ik, ik+1) connects the vertices ai and aj if and
only if |ik| = ai and |ik+1| = aj . We classify the vertices of Iσ according to
Figure 4a.

Now, we consider the transformations shown in Figure 4b. If we take a
plane realization of Iσ and apply these transformations to each vertex, we
obtain a virtual knot diagram corresponding to the combinatorial knot σ.

It is denoted Kσ.

As an example, for the combinatorial knot σ = ((−1,−2, 3, 1,−3, 2), (−1,
1, 1)), we get the diagram Kσ shown in Figure 5.

Definition 2. A combinatorial knot σ is called admissible or classical if
Kσ is equivalent to a diagram without virtual crossings.

The combinatorial knot ((1,−2, 7,−4, 5,−1, 2,−5, 4,−7)) , (−1,−1, 1,−1,
1, 1,−1)) is classical, because it represents the classical knot of Figure 6.
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Figure 4. Transforming vertices to classical crossing.
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Figure 5. Diagram Kσ for σ = ((−1,−2, 3, 1,−3, 2), (−1, 1, 1)).

This combinatorial knot is equivalent to the combinatorial knot
((−1, 2,−3, 1,−4, 5,−2, 3,−5, 4), (−1,−1,−1,−1,−1)).

Figure 6. Clasical knot.

We will show in Example 1 that the combinatorial knot in Figure 5 is
not classical, using the group of a combinatorial knot.
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3. Definition of Combinatorial Knot Group

In this section we introduce the concept of combinatorial knot group and by
using the correspondence between virtual knots and combinatorial knots,
we recover Kaufmann’s definition of virtual knot group.

Let σ = ((i1, i2, · · · , i2n), (e1, e2, · · · , em)) be a combinatorial knot and let
a1, ..., an ∈ Z+ be such that {i1, i2, · · · , i2n} = {−a1,−a2, ...,−an} ∪
{a1, a2, ..., an}. Without lost of generality we suppose that

σ = ((−a1, i2, · · · ir,−a2, ir+2, ...,−an, it+2, ..., i2n) , (e1, e2, · · · , em)),
(3.1)

and that between −ai and −ai+1, i = 1, ..., n − 1, there are no numbers or
only positive numbers. We define the arcs of σ as the subsequences Sai

=
(−ai, · · · ,−ai+1), i = 1, 2, ..., n − 1 and San = (−an, it+2 · · · , i2n,−a1).

For example, for the combinatorial knot σ = ((−1, 2,−3,−4, 1,−2, 4, 3),
(1,−1, 1, 1)) the arcs are S1 = (−1, 2,−3), S3 = (−3,−4), S4 = (−4, 1,−2)
and S2 = (−2, 4, 3,−1).

Definition 3. Let σ = ((i1, i2, · · · , i2n) , (e1, e2, · · · , em)) be a non trivial
knot code as in (3.1) and let Sa1

,...,San to be its arcs. We define the group
of σ as

G(σ) = 〈Sa1
, Sa2

, · · · , San : r1, r2, · · · , rn〉 ,

where r1 = S
−ea1

t1 SanS
ea1

t1 S−1
a1

, rj = S
−eaj

tj
Saj−1

S
eaj

tj
S−1

aj
, for j = 2, ..., n,

and aj ∈ Stj , tj ∈ {a1, ..., an}, j = 1, 2, ..., n.

We define the group of ((), ()) as Z.

It is straightforward to prove that the group is invariant under moves A,
B, C and Reidemeister moves. This allows us to define the group of a
combinatorial knot.

To simplify notation, in the rest of the paper we will take all combinatorial
knots to be of the form

((i1, i2, · · · , i2n) , (e1, · · · , en)) ,

with {i1, i2, · · · , i2n} = {1, · · · , n} ∪ {−1, · · · ,−n} .

Definition 4. The group of a combinatorial knot K is defined by G(K) =
G(σ), where σ is any knot code in the class of K. For a virtual knot K we
define the group of K as G(K) = G(σK), where σK is a knot code that
represents K.

This definition of the group of a virtual knots corresponds to the definition
given by Kauffman and Kim, see [16] and [17]. In the case of a classical
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knot K, it corresponds to the fundamental group of the knot complement,
π

(
S3 − K

)
.

4. Properties of Combinatorial Knot Groups

In this section we establish some properties of the group of a combina-
torial knot and we give several examples.

Lemma 1. Let K be a combinatorial knot. If G = G(K) then Gab
∼= Z.

Proof. We know that if K is a combinatorial knot then G(K) has presen-
tation

G(K) = 〈S1, S2, · · · , Sn : r1, r2, · · · , rn〉 ,

where rj = S
−ej

tj
Sj−1S

ej

tj
S
−1
j , j = 2, ..., n and r1 = S

−e1

t1 SnS
e1

t1 S
−1
1 . A

presentation for Gab is

〈S1, S2, · · · , Sn : r1, r2, · · · , rn, [Si, Sj ], i, j = 1, 2, ..., n〉 ,

where [Si, Sj] = SiSjS
−1
i S

−1
j . Therefore,

Gab
∼= 〈S1, S2, · · · , Sn : r1, r2, · · · , rn, SiSj = SjSi, i, j = 1, 2, ..., n〉
∼= 〈S1, S2, · · · , Sn : S1 = S2, S2 = S3, ..., Sn−1 = Sn〉
∼= 〈Si〉 , i = 1, 2, ..., n.

�

For a classical combinatorial knot K, the group G(K) has a known and
important topological interpretation.

Theorem 1. If K is a classical combinatorial knot and K∗ is a knot in S3

that is represented by K then G(K) is the fundamental group π1(S
3 −K∗).

In the rest of the paper we do not distinguish between a classical combina-
torial knot and the corresponding knot in S3.

The following result is central in classical knot theory, but it is not true in
combinatorial knot theory, as Example 1 shows.

Theorem 2. [6]If K is a classical combinatorial knot such that G(K) is
isomorphic to Z, then K is trivial.

Example 1. For the combinatorial knot L = ((−1,−2, 3, 1,−3, 2), (−1, 1,
1)) we have

G(L) =
〈
S1, S2, S3 : S2S3S

−1
2 S

−1
1 , S

−1
3 S1S3S

−1
2 , S

−1
2 S2S2S

−1
3

〉
∼= Z.

However, it is known that L is not equivalent to the trivial knot, see [10]
and [23]. For the proof they use the polynomial invariant P , see also [22].
So, L is not a classical combinatorial knot.
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Example 2. Consider K = ((−1, 2, 3,−4,−3, 4, 1,−2), (1, 1,−1,−1)). The
arcs of K are: S1 = (−1, 2, 3,−4), S2 = (−2,−1), S3 = (−3, 4, 1,−2) and
S4 = (−4,−3). The relators for G(K) are:

r1 : S
−1
3 S2S3S

−1
1 , r2 : S

−1
1 S3S1S

−1
2 ,

r3 : S1S4S
−1
1 S

−1
3 , r4 : S3S1S

−1
3 S

−1
4 ,

therefore,

G(K) = 〈S2, S3 : S2S3S2 = S3S2S3〉 ∼=
〈
y, z : z

3 = y
2
〉
.

As G(K) is not isomorphic to Z, see [1], we obtain that K is not the trivial
knot. We will probe in the next section that K is not a classical knot.

4.1. The Over Presentation.

Definition 5. Let σ = ((i1, i2, · · · , i2n)), (e1, e2, · · · , en) be a non trivial
knot code and let S1, S2,..., Sn be the arcs of σ. We denote by |Si| the
cardinality of Si. We say that Si is a bridge of σ if |Si| > 2. For a
knot code σ the number of bridges is called the bridge number, and is
denoted by br(σ). For a combinatorial knot K its bridge number is defined
by br(K) = min{br(σ) : [σ] = K}.

Remark 1.

(b) If K is a classical combinatorial knot and br(K) = 1, then K is
trivial.

(c) In general, if br(K) = 1, not necessary K is trivial. For example,
for K = ((1, −2, −1, 2), (1, 1)) we have that br(K) = 1 but it is possible
to prove that K is not trivial, see [22].

Let K a combinatorial knot and yt = (−t, ...,−(t + 1)), yt+1 = (−(t + p +
1), ...,−(t + p + 2)) be the bridges of K. Without loss of generality we may
assume that K is given by

K = ((i1, · · · ,−t, · · · ,−(t + 1), · · · ,−(t + p),−(t + p + 1), · · · ,−(t + p+

2), · · · , i2n), (e1, · · · , en)),

where there is no crossing between −(t+i) and −(t+i+1), for i = 1, 2, ..., p.

We construct the relator

rt = w
−1
t ytwty

−1
t+1, wt = y

et+1

a1
y

et+2

a2
...y

et+p
ap y

et+p+1

ap+1
, (4.1)

where ya1
, ya2

, ..., yap+1
are bridges of K such that −(t + i) ∈ yai

, i =
1, 2, ..., p + 1.

The following theorem provides another presentation for G (K) that is
called the over presentation.
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Theorem 3. Let K be a non trivial combinatorial knot and let y1, y2,...,
ym be the bridges of K, then

G(K) ∼= 〈y1, y2, ..., ym : r1, ..., rm〉 ,

where r1,...,rm are as in (4.1).

Proof. Let K be a combinatorial knot, G(K) = 〈S1, S2, · · · , Sn : r1, r2, · · · ,

rn〉 the group of K, and Si1, Si2 , ..., Siv arcs of K such that
∣∣Sij

∣∣ = 2,
j = 1, 2, ..., v. To simplify notation, xj = Sij , j = 1, 2, ..., v and yu = Sv+u,
u = 1, ...,m = n− v are the bridges of K. By Type A movements, we may
assume that

K = ((i1, · · · ,−t, · · · ,−(t + 1), · · · ,−(t + p),−(t + p + 1), · · · ,−(t + p+

2), · · · , i2n), (e1, ..., em)),

yt = (−t, · · · ,−(t + 1)), xi = (−(t + i),−(t + i + 1)), i = 1, ..., p, and
yt+1 = (−(t + p + 1), ...,−(t + p + 2)). Let ya1

, ya2
, ..., yap+1

be the bridges
of K such that −(t + i) ∈ yai

, i = 1, 2, ..., p + 1. The relators of G(σ) for
the crossings −(t + 1),−(t + 2), ...,−(t + p),−(t + p + 1) are:

rt+1 = y
−et+1

a1
yty

et+1

a1
x
−1
1 , rt+i = y

−et+i
ai xi−1y

et+i
ai x

−1
i , i = 2, ..., p,

(4.2)

rt+p+1 = y
−et+p+1

ap+1
xpy

et+p+1

ap+1
y
−1
t+1.

From the relator rt+1 we get x1 = y
−et+1

a1
ytS

et+1

a1
. Replacing into the relator

rt+2 we have

x2 = y
−et+2

a2
y
−et+1

a1
yty

et+1

a1
y

et+2

a2
,

from the relator rt+3 we get

x3 = y
−et+3

a3
y
−et+2

a2
y
−et+1

a1
yty

et+1

a1
y

et+2

a2
y

et+3

a3

then

xi = y
−et+i
ai ...y

−et+3

a3
y
−et+2

a2
y
−et+1

a1
yty

et+1

a1
y

et+2

a2
y

et+3

a3
...y

et+i
ai , i = 1, 2, ..., p.

(4.3)
Now, if we replace xp in the relator rt+p+1 we obtain the relator

yt+1 = y
−et+p+1

ap+1
y
−et+p
ap ...y

−et+3

a3
y
−et+2

a2
y
−et+1

a1
yty

et+1

a1
y

et+2

a2
y

et+3

a3
...y

et+p
ap y

et+p+1

ap+1
.

If wt = y
et+1

a1
y

et+2

a2
y

et+3

a3
...y

et+p
ap y

et+p+1

ap+1
, then yt+1 = w

−1
t ytwt. Since x1, ..., xp

appear only in the relators rt+1, ..., rt+p and rt+p+1 respectively, then we
have

G ∼= 〈y1, ..., ym : r1, ..., rm〉 , where rt = w
−1
t ytwty

−1
t+1 for t = 1, ...,m.

�
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Example 3. Let K be the combinatorial knot ((1, 3,−4,−3, 4, 2,−1,−2),
(1, 1, 1, 1)). Then

G(K) ∼=
〈
y1, y2 : y

(y2y1)
1 y

−1
2 , y

(y1y2)
2 y

−1
1

〉
∼=

〈
y, z : z

3 = y
2
〉

� Z.

Given a combinatorial knot K, we define another group, denoted Gu(K),
as

Gu(K) = G(K∗),

where, if K = ((i1, i2, · · · , i2n), (e1, e2, · · · , en),

K
∗ = ((−i1,−i2, · · · ,−i2n) , (−e1,−e2, · · · ,−en)) .

This group Gu(K) is called the under group of K and we sometimes call
the group G(K) the over group of K.

For combinatorial knots these two groups may not coincide. For the com-
binatorial knot in Example 2, we have

Gu(K) ∼= Z and G(K) =
〈
y, z : z

3 = y
2
〉
6∼= Z.

In the classical case, however they do coincide.

Lemma 2. If K is a classical knot then G(K) ∼= Gu(K).

Proof. Let K be a classical knot, then π1(S
3 − K) ∼= π1(S

3 − K∗). Since
G(K) and G(K∗) are presentations of the same group, then they are iso-
morphic. �

This lemma allows as to conclude that the combinatorial knot of Example
2 is not a classical combinatorial knot.

4.2. Peripheral system. Let K = ((i1, i2, · · · , i2n), (e1, e2, · · · , en)) be a
combinatorial knot and let G = G(K) = 〈S1, S2, · · · , Sn : r1, r2, · · · , rn〉 be
its group.

Let l = S
e1

k1
S

e2

k2
· · ·Sen

kn
, where i ∈ Ski

, i = 1, 2, ..., n and p = e1 + ... + en.

Define lα = S
e1

k1
S

e2

k2
· · ·Sen

kn
S
−p
α for all α = 1, 2, ..., n.

Lemma 3. With the above notation, lα ∈ [G,G] = G′ for all α = 1, 2, ..., n.

Proof. Given that Gab
∼= Z, by Lemma 1, we may see Gab as the cyclic

group generated by the lateral left class SαG′ and SiG
′ = SαG′, for every

i ∈ {1, 2, ..., n}, therefore

S
e1

k1
S

e2

k2
· · ·Sen

kn
G

′ = (Se1

k1
G

′)(Se2

k2
)...(Sen

kn
G

′) = S
e1+e2+...+en
α G

′,

then lα = S
e1

k1
S

e2

k2
· · ·Sen

kn
S
−p
α ∈ G′. �
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Since S
e1

k1
S

e2

k2
· · ·Sen

kn
and S

et

kt
S

et+1

t+1 ...S
en

kn
S

e1

k1
...S

et−1

t−1 represent the same lateral

left class in Gab, we assume that lα = S
e1

k1
S

e2

k2
· · ·Sen

kn
S
−p
α =

S
et

kt
S

et+1

kt+1
...S

en

kn
S

e1

k1
...S

et−1

kt−1
S
−p
α , t = 1, 2, ..., n.

Definition 6. Let K be a combinatorial knot. For α = 1, 2, ..., n, each arc
Sα of K is called a meridian of K and lα is called a longitude of K. A
peripheral pair of a combinatorial knot K is the pair (mα, lα).

In the classical knot theory the peripheral pair has an important geomet-
ric role, but in combinatorial knot theory we do not have any geometric
interpretation yet.

Example 4. Let K = ((−1, 2,−3, 1,−2, 3), (−1,−1,−1)) a longitude for
K is l = S

−1
1 S

−1
2 S

−1
3 m3. Figure 7 shows how we can get such longitude in

the classical case.

s1

s2

s3

s
-1

1

s
-1

2

s
-1

3

s
-1

1

s-1

2

s
-1

3

s1

s2

s3

Figure 7. A longitude in a classical knot diagram.

We say that two peripheral pairs (mi, li) and (mj, lj) are conjugate in G(K)
if there exists w ∈ G(K) such that mi = w−1mjw and li = w−1ljw.

A peripheral structure of a combinatorial knot K is the conjugated class in
G(K) of a peripheral pair of K.

Proposition 1. The peripheral structure of a combinatorial knot is unique
up to conjugation.

Proof. Let (Si, li) and (Sj , lj) be two peripheral pairs of a combinatorial
knot K. We may assume that j > i. From the relators ri+1, ...., rj we get
that

Sj = S
−ej

tj
S
−ej−1

tj−1
...S

−ei+1

ti+1
SiS

ei+1

ti+1
...S

ej−1

tj−1
S

ej

tj
,

where v ∈ Stv , v = i+ 1, ..., j, thus, if w1 = w1(i, j) =S
ei+1

ti+1
...S

ej−1

tj−1
S

ej

tj
, then

Sj = w
−1
1 Siw1.

lj = S
ej+1

tj+1
...S

en
tn S

e1

t1 ...S
ei
ti

S
ei+1

ti+1
...S

ej

tj
S
−p
j = w2w1S

−p
j ,
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where w2 = S
ej+1

tj+1
...S

en
tn S

e1

t1 ...S
ei
ti

. Since S
−p
j = w

−1
1 S

−p
i w1, then lj =

w2S
−p
i w1 = w

−1
1 w1w2S

−p
i w1. Now,

li = S
ei+1

ti+1
...S

ej−1

tj−1
S

ej

tj
S

ej+1

tj+1
...S

en
tn S

e1

t1 ...S
ei
ti

S
−p
i = w1w2S

−p
i ,

so lj = w
−1
1 liw1, therefore (Si, li) and (Sj, lj) are conjugates in G(K). �

Let K be a combinatorial knot, G(K) its group and (m, l) = (Si, li)
the peripheral structure of K. The triplet (G(K),m, l) is called periph-
eral system of K. We say that two peripheral systems (G(K1),m, l) and
(G(K2),m

′, l′) are isomorphic if and only if there exists an isomorphism
ϕ : G(K1) → G(K2) such that ϕ(m) = m′ and ϕ(l) = l′. We have that the
peripheral system is an invariant of combinatorial knots.

Waldhausen’s theorem [24] implies that the equivalence class of classical
knots is determined by the fundamental group and the peripheral system,
see [9] for the proof.

Theorem 4. (Waldhausen) Two classical combinatorial knots K1 and K2,
with peripheral structures (G(Ki), li,mi), i = 1, 2, are equivalent if and only
if there exists an isomorphism ϕ : G(K1) → G(K2) such that ϕ(l1) = l2

and ϕ(m1) = m2.

Corollary 1. Let K be a classical combinatorial knot with trivial longitude,
then K is the trivial knot.

Example 5. For the combinatorial knot K = ((−1, 2, 3,−4,−3, 4, 1,−2),
(1, 1,−1,−1)) we have, G(K) � Z. The longitude l1 satisfies

l1 = S3S1S
−1
1 S

−1
3 a

0
2 = e.

By Waldhausen’s theorem K is not classical.

4.3. Wirtinger Presentation. Let G be a group. A Wirtinger presenta-
tion of G is a presentation of the form

G = 〈x1, x2, · · · , xp : r1, r2, · · · , rq〉 ,

where rk = x
wk

j x
−1
i , 1 ≤ i, j ≤ p and w1, · · · , wq are words in the free group

F (x1, ..., xp), not necessarily different in G.

A Wirtinger presentation is called cyclic if it is of the form

〈x1, x2, · · · , xn : r1, r2, · · · , rm〉 ,

where ri = x
wi

i x
−1
i+1, i = 1, 2, ...,m, w1, · · · , wm ∈ F (x1, ..., xn), not neces-

sarily different in G.

A Wirtinger presentation is called realizable if wi = x
εi

ki
, for i ∈ {1, 2, ..., n}

and εi ∈ {1,−1}.
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Note that the group of a combinatorial knot is given by a realizable
Wirtinger presentation, see Definition 3.

Definition 7. The deficiency of a finite group presentation is the number
of generators minus the number of relators. The deficiency of a group G,
def(G), is defined as the maximum deficiency of all finite group presenta-
tion for G.

If K is a combinatorial knot then G(K) has a realizable Wirtinger presen-
tation of deficiency 0 or 1.

The following result is central in the theory of virtual knots and its proof
shows the advantage of working with combinatorial knots.

Theorem 5. Let G be a group with realizable Wirtinger presentation of
deficiency 0, then there exist a combinatorial knot K such that G(K) ∼= G.

Proof. Let G a group such that G = 〈x1, x2, · · · , xn : r1, r2, · · · , rn〉, with
ri = x

−ei

ki
xix

ei

ki
x
−1
i+1, i = 1, 2, 3, ..., n, xn+1 = x1 and ei ∈ {1,−1}. Let K the

combinatorial knot given by K = ((A1,−1, A2,−1, A3,−3, ..., Ai,−i, Ai+1,

..., An,−n) (e1, e2, ..., en)), where {A1}, ..., {An} are subset of {1, 2, ..., n}
defined by {Ai} = {j ∈ {1, 2, ..., n} : x

ej

kj
= x

±1
i }. We have that ∪n

i=1{Ai} =

{1, 2, ..., n}. Is possible that some of Ai are empty.

If S1 = (−n,A1,−1), S2 = (−1, A2,−2),..., Sn = (−(n − 1), An,−n),
then i ∈ Ski

and

G(K) = 〈S1, S2, · · · , Sn : r1, r2, · · · , rn〉 ,

where ri = S
−ei

ki
SiS

ei

ki
S
−1
i+1, i = 1, 2, ..., n, Sn+1 = S1. So G(K) ∼= G. �

Example 6. Let G =

〈
x1, x2, x3 : x

x3

1 x
−1
2 , x

x−1

1

2 x
−1
3 , x

x−1

2

3 x
−1
1

〉
, then: r1 =

x
x3

1 x
−1
2 , r2 = x

x−1

1

2 x
−1
3 and r3 = x

x−1

2

3 x
−1
1 , so

A1 = (2), A2 = (3) and A3 = (1).

therefore, if

K = ((−1, 2,−2, 3,−3, 1), (−1, 1,−1)),

then G(K) = G. Moreover, a peripheral structure of K is

(x1, x
−1
2 x3x

−1
1 x1) = (x1, x

−1
2 x3).

Theorem 6. Let G be a group with cyclic Wirtinger presentation of defi-
ciency 0 or 1, then there exists a combinatorial knot K such that G(K) ∼= G.
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Proof. Suppose that G has a presentation of the form 〈x1, x2, · · · , xn : r1,

r2, · · · , rn−1〉, where ri = w
−1
i xiwix

−1
i+1, i = 1, 2, ..., n − 1. Let wn =

(w1w2...wn−1)
−1, then G is isomorphic to 〈x1, x2, · · · , xn : r1, r2, · · · , rn−1,

rn〉, with rn = w−1
n xnwnx

−1
1 . So, without loss of generality we may assume

that G has deficiency 0.

Suppose that wi = x
ε1

i1
x

ε1

i2
...x

εk

ik
, where k = k(i), and ε1, ..., εk ∈ {1,−1},

then
xi+1 = x

−εk

ik
...x

−ε1

i2
x
−ε1

i1
xix

ε1

i1
x

ε1

i2
...x

εk

ik
.

Let y(i,0) = xi, y(i,1) = x
−ε1

i1
y(i,0)x

ε1

i1
, · · · , y(i,k−1) = x

−εk−1

ik−1
y(i,k−2)x

εk−1

ik−1
. By

Tietze transformation, G is isomorphic to the presentation
〈
x1, x2, , xn, y(1,0), · · · , y(n,k(n)) : r1, r2, · · · , rn, R

〉
,

where R = {y(i,0) = xi, y
−1
(i,r)x

−εr

ir
y(i,r−1)x

εr

ir
}i=1,...,n

r=1,...,k(i)−1. thus,

G ∼=
〈
y(1,0), · · · , y(i,0), · · · , y(i,k(i)−1), · · · , y(n,k(n)) : T

〉
,

with,

T =
{
y
−1
(i,r)y

−εr

(ir ,0)y(i,r−1)y
εr

(ir,0)

}r=1,2,...,k(i)−1

i=1,2,...,n
.

which is a realizable Wirtinger presentation, by Theorem 5, there exists a
combinatorial knot K such that G(K) ∼= G. From Theorem 5, if G is a
group with a realizable Wirtinger presentation of deficiency 0, then G is
the group of a combinatorial knot. �

Example 7. Let G =
〈
x1, x2, x3 : x

−1
1 x

x2

2

3 , x
−1
2 x

x2

3

1 , x
−1
3 x

x2

1

2

〉
.

Let y1 = x3, y2 = x
−1
2 y1x2, y3 = x1, y4 = x

−1
3 y3x3, y5 = x2, y6 =

x
−1
1 y5x1. Then G has the following presentation,
〈
y1, y2, y3, y4, y5, y6 : y

−1
3 y

y5

2 , y
−1
5 y

y1

4 , y
−1
1 y

y3

6 , y
−1
2 y

y5

1 , y
−1
4 y

y1

3 , y
−1
6 y

y3

5

〉
∼=

∼=
〈
y1, y2, y3, y4, y5, y6 : y

−1
1 y

y3

6 , y
−1
2 y

y5

1 , y
−1
3 y

y5

2 , y
−1
4 y

y1

3 , y
−1
5 y

y1

4 , y
−1
6 y

y3

5

〉
.

So, if K = ((−1, 4, 5 − 2,−3, 1, 6 − 4,−5, 2, 3 −6), (1, 1, 1, 1, 1, 1)) then
G(K) ∼= G.

Theorem 7. If G is a group with Wirtinger presentation of deficiency 0
or 1 such that Gab

∼= Z, then G is a combinatorial knot group.

Proof. Let G = 〈x1, x2, · · · , xp : r1, r2, · · · , rq〉 a Wirtinger presentation,
where q = p or q = p − 1. By doubling any relators, we may assume that
q = p.

Let I(G) the graph such that its vertex are labeled with x1, x2, ..., xp.
xixj is a edge of I(G) if and only if there exist a relator in {r1, r2, ..., rp} of
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the form xw
i x

−1
j . Since Gab

∼= Z, then all xi are conjugated in G, so I(G) is
a connected graph. Consider the operation on the graph shown in Figure
8,

xj

xk

xi

w2

xi

-1

xk

w1
xj

-1

xj

xk

xi

w2

xi

xj

-1

xk

w1xj

-1 xk

w1

-1

Figure 8. Operation on the graph I(G)

I(G) can be transformed, using a finite number of the movements showed
in Figure 8, in a cycle Cp such that V (Cp) = V (I(G)) and E(Cp) =
E(I(G)), see [17]. Suppose that Cp = xi1xi2 ...xipxi1 , if we denote yt = xit ,
t = 1, 2, ..., p, then Cp = y1y2...ypy1 and the corresponding operations on
the relators of G give a cyclic Wirtinger presentation. By Theorem 6 G is
a combinatorial knot group. �

Example 8. The Baumslag-Solitar group G =
〈
x, y : x−1y2x = y3

〉
is the

group of a combinatorial knot. Since

G ∼=
〈
x, y, y1, y2 : y = x

−1
y

2
xy

−2
, y1 = x, y2 = y

2
xy

−2
〉
,

then G ∼= 〈y1, y2 : y2 = y
(y−1

1
y2)−2

1 , y1 = y
(y−1

1
y2)2

2 〉.

If x1 = y1, x2 = y2x1y
−1
2 , x3 = y1x2y

−1
1 , x4 = y2x3y

−1
2 , x5 = y2, x6 =

y
−1
1 x5y1, x7 = y

−1
2 x6y2 and x8 = y

−1
1 x7y1, then

G = 〈x1, x2, x3, x4, x5, x6, x7, x8 : x
x5

8 x
−1
1 , x

x−1

5

1 x
−1
2 , x

x−1

1

2 x
−1
3 , x

x−1

5

3 x
−1
4 ,

x
x−1

1

4 x
−1
5 , x

x1

5 x
−1
6 , x

x5

6 x
−1
7 , x

x5

6 x
−1
7 〉.

So G is the group of the combinatorial knot

K = ((−1, 3, 5, 6, 8,−2,−3,−4,−5, 1, 2, 4, 7,−6,−7,−8), (1,−1,−1,−1,
− 1, 1, 1, 1)).

The corresponding virtual knot is given in Figure 9.
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3 5 6 8

2 4 71

Figure 9. A virtual knot for the Baumslag-Solitar group

References

[1] Burde, G. and Zieschang, H.,. Knots. Walter de Gruyter, New York, NY (1985)..
[2] Carter, J., Classifying Immersed Curves, Proc. Amer. Math. Soc. 111, No. 1

(1991), 281-287.
[3] Cairns, G. and Elton, D., The Planarity Problem for Signed Gauss Words, Jour-

nal of Knot Theory and its Ramifications, Vol. 2, No. 4 (1993) 359-367.
[4] Carter, S. Kamada, S. and Saito, M., Stable Equivalence of Knots on surfaces

and Virtual Knots Cobordism, Journal of Knot Theory and its Ramifications,
Vol. 11, No. 6 (2002), 311-320.

[5] Cotta-Ramusino, P. and Rinaldi, M., On the Algebraic Structure of Link-Dia-
grams on a 2−Dimensional Surface, Communications in Mahematical Physics,
131, 137-173 (11).

[6] Crowell, R and Fox, R., Introduction to Knot Theory, Blaisdell Publishing Com-
pany, New York, 1963.

[7] Dye, H. Kauffman, L., Minimal Surface representations of virtual Knots and
Links, Algebraic and Geometric Topology, Vol. 5, (2005), 509-535.

[8] Goussarov, M. Polyak, M. and Viro, O., Finite Type Invariants of Classical and
Virtual Knots, Preprint: math. GT/1981/9810073.

[9] Hempis, J., 3-manifolds, Ann. of Math. Studios, 86, Princeton Univ. Press.
[10] Henrich, A., Ph.D. thesis, expected in Spring (2008).
[11] Hilden, M. H., Montesinos, J. M., Tejada, D. M. and Toro, M. M., Mariposas

and 3−variedades. Rev. Acad. Colomb. Cienc. 28(106), 71-78, 2004.
[12] Jaeger, F., Composition Products and Models for the HOMFLY polynomials, En-

seign. Math. 35 (1989), 323-361.
[13] Jaeger, F., Strongly Regular Graphs and Spin models for the Kauffman Polyno-

mials, Geom. Dedicata 44 (1992), 23-52.
[14] Jaeger, H. Kauffman, L. and Saleur, H., The Conway polynomials in R

3 and in
Thickened surfaces: A New Determinant Formulation, Journal of Combinatorial
theory, Series B 61, 237-259 (1994).

[15] Kamada, N. and Kamada, S., Abstract Links Diagrams and Virtual Knots, Jour-
nal of Knot Theory and its Ramifications, Vol. 9, No. 1 (2000), 93-106.

[16] Kauffman, L., Virtual Knot theory, Europ. J. Combinatorics vol. 20 (1999) 663-
691.

[17] Kim, S., Virtual Knot Groups and their Peripheral Structure, Journal of Knot
Theory and its Ramifications, Vol. 9, No. 6 (2000), 797-812.

[18] Kupenberg, G., What is a Virtual Knots?, Algebraic and Geometric Topology,
Vol. 3, (2003), 587-591.

[19] Read, R. and Rosenstiehl, P., On the Gauss Crossing Problems, Coll.Math.Soc.
Janos Bolyai 18 (1976), 843-876.

São Paulo J.Math.Sci. 3, 2 (2009), 299–316
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