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Quantum Stochastic Processes, Quantum Iterated
Function Systems and Entropy

A. Baraviera; C. F. Lardizabal

A. O. Lopes and M. Terra Cunha

Abstract. We describe some basic results for Quantum Stochastic
Processes and present some new results about a certain class of pro-
cesses which are associated to Quantum Iterated Function Systems
(QIFS). We discuss questions related to the Markov property and we
present a definition of entropy which is induced by a QIFS. This defi-
nition is a natural generalization of the Shannon-Kolmogorov entropy
from Ergodic Theory.

1. Introduction

We review and discuss some main properties of Quantum Stochastic
Processes (see [6] [18] [20]) and present some new results about a certain
class of processes which are associated to a Quantum Iterated Function
System (QIFS). The concept of QIFS was introduced in the work [14], and
it is a natural object in Quantum Information Theory.

We also present a definition of entropy which is suitable for the QIFS.
This definition is a natural generalization of the Shannon-Kolmogorov en-
tropy of Ergodic Theory. We describe a parallel between the classical Kol-
mogorov entropy and the one we present here, which is different from the
one seen in [1].

The present definition of entropy is obtained by adapting the reasoning
described in [5], [12] and [13] to the setting we present in this work. The
main idea is to define this concept via the Ruelle operator and to avoid the
use of partitions. Using this definition one can consider maximal pressure
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density states. This formulation can be seen as a mini-max problem (see [5]
[12] [13]). In [1] it is described some applications of the pressure problem.

Section 2 introduces basic notations and section 3 describes QSPs fol-
lowing [18]; section 4 and 5 describes Quantum Iterated Function Systems,
following [14]. Section 6 is a brief digression on the Chapman-Kolmogorov
equation and probability amplitudes. Section 7 defines probabilities mea-
sures and quantum stochastic processes induced by QIFS. Section 8 gives
a definition of entropy induced by a QIFS and we make a few remarks on
the variational problem of pressure.

Our work is inspired by results presented in [14] and [19]. We would like
to thank these authors for supplying us with the corresponding references.
Some other references related to the topic described here are [1] [2] [3] [4]
[19].

This work is part of the thesis dissertation of C. F. Lardizabal in Prog.
Pos-Grad. Mat. UFRGS (Brazil) [10].

2. Notations

We recall some basic notation which is used in Quantum Computing.
For a comprehensive introduction to the subject, see [16]. Let HN be a
Hilbert space of finite dimension N . A state in a quantum system is
described by |ψ〉 ∈ HN . Such states are normalized, so we have 〈ψ|ψ〉 =
1. For any phase α, we identify the elements |ψ′〉 = eiα|ψ〉 and |ψ〉, so
we get the space of pure states, denoted by PN . Topologically, it is the
complex projective space CPN−1 with the Fubini-Study metric, given by
DFS(|φ〉, |ψ〉) := arccos|〈φ|ψ〉|.

A qubit is a unit vector in a complex vector space of dimension 2

|ψ〉 = α|0〉+ β|1〉,

where |α|2 + |β|2 = 1. We can rewrite such equation as

|ψ〉 = eiγ(cos
θ

2
|0〉+ eiφsin

θ

2
|1〉),

where θ, φ, γ are real numbers. As we are in projective space, the factor eiγ

can be ignored, so we can write

|ψ〉 = cos
θ

2
|0〉+ eiφsin

θ

2
|1〉

The numbers θ and φ define a point on the unit sphere, the Bloch sphere,
which gives us an easy way to visualize the state of a qubit.
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Denote by ρ∗ the adjoint of ρ : HN → HN . We say that ρ : HN → HN
is hermitian if ρ = ρ∗. We say that a hermitian operator P : HN → HN is
positive, denoting such fact by P ≥ 0, if 〈Pv, v〉 ≥ 0, ∀v ∈ HN .

Definition 1. A density operator (or density matrix) is an operator ρ
acting on HN , with ρ = ρ∗, ρ ≥ 0 and trρ = 1. Denote by MN the space
of density operators.

If |ψ〉 ∈ HN is a state, denote its associated projection by |ψ〉〈ψ|
(which defines an associated density matrix). We denote by {|0〉, . . . , |N −
1〉} the canonical orthonormal basis for HN . A density operator ρ can
always be written as

ρ =

k∑
i=1

pi |ψi〉〈ψi| (1)

where the pi are positive numbers with
∑

i pi = 1, and |ψi〉, i = 1, 2, ...N−1,
is an orthonormal basis. So the |ψi〉 are eigenvectors of ρ with the pi as
their respective eigenvalues.

If a density operator satisfies tr(ρ2) = 1 then such operator is a projection
and we say that ρ represents a pure state. If ρ is a nontrivial convex
combination of projections then we say ρ represents a mixed state; in this
case we have tr(ρ2) < 1. Also an operator is a density operator if and only
if its trace equals 1 and if it is positive.

3. A description of quantum stochastic process

In this section the definitions and examples were taken from [18], where it
is presented a definition of quantum stochastic process. We briefly describe
some of the results obtained in that work.

Definition 2. A state space is a pair (V,K), where

(1) V is a real Banach space with norm ‖ · ‖.
(2) K is a closed cone in V .
(3) If u, v ∈ K then ‖u‖+ ‖v‖ = ‖u+ v‖
(4) If u ∈ V and ε > 0 then there are u1, u2 ∈ K such that u = u1− u2

and ‖u1‖+ ‖u2‖ < ‖u‖+ ε.

Definition 3. If (V,K) is a state space then there is a unique positive linear
functional τ : V → R such that τ(u) = ‖u‖ if u ∈ K, and τ(u) ≤ ‖u‖ if
u ∈ V . We say that u ∈ K is a state if τ(u) = 1.

Example 1. Let H be a finite dimensional Hilbert space and let V be the
space of hermitian operators in H. Let K be the set of positive operators
in V . In this case we have τ(B) = tr(B) for all B operator in V .
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♦

Definition 4. A phase space is a measurable space (Ω,Σ) where Ω repre-
sents the set of all possible results for a measurement and Σ is a σ-algebra
of subsets of Ω.

Let V ∗ be the dual space of V . We introduce a partial order on V ∗ by
defining φ ≥ ψ if φ(u) ≥ ψ(u), for all u ∈ K.

Definition 5. An effect is a mapping φ ∈ V ∗ such that 0 ≤ φ ≤ τ . We
denote the space of effects by E ⊂ V ∗.
Definition 6. We say that x : Σ→ E is an observable if x is a measure
taking values on the space of effects, such that x(Ω) = τ .

If E ∈ Σ, u ∈ K and τ(u) = 1 then x(E)u can be interpreted as the
probability that the result of the measurement of the physical quantity
represented by x, prepared in the state u, belongs to the set E. In the case of
quantum mechanics in Hilbert space, effects can be identified with bounded
operators A such that 0 ≤ A ≤ 1 by the formula φA(W ) = tr(AW ).

Definition 7. An operation is a positive linear operator T : V → V
satisfying 0 ≤ τ(Tu) ≤ τ(u) for all u ∈ K. The space of operations will be
denoted by O.

Definition 8. An operator valued measure, or an OVM on a phase
space is a map I : Σ → O such that if {En} is a sequence of disjoint sets
in Σ, then I(∪En) =

∑
I(En).

Definition 9. Let I : Σ → O be an OVM, then we say that I is an
instrument if

τ(I(Ω)u) = τ(u), ∀u ∈ V. (2)

We interpret such notion in the following way. Let I be an instrument,
E ∈ Σ, u ∈ K. If u is the state of the system before the measurement and
if I determines a value in E then the resulting state is given by

I(E)u

τ(I(E)u)
(3)

Note that for each instrument I, there is a unique observable xI : Σ → E
such that τ(I(E)u) = xI(E)u, E ∈ Σ, u ∈ K. Also, it is possible that two
instruments correspond to the same observable [18].

The following are examples of instruments:
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Example 2. Let H be a Hilbert space, and let F(H) be the space of
hermitian operators A in H such that∑

k∈N
〈ek, Aek〉 <∞

and have the same value in any orthonormal base {ek}k∈N for H. Let
Ω = {1, . . . , N}, or Ω = N, let {Pi}i∈Ω be a family of orthogonal projections
such that

∑
i Pi = I. Define

I : Σ→ O

xI : Σ→ E
as

I(E)ρ :=
∑
i∈E

PiρPi, (4)

xI(E)ρ :=
∑
i∈E

τ(Piρ), (5)

for all E ⊂ Ω and ρ ∈ F(H).

♦

Example 3. Let H be a Hilbert space, Ω a topological space, Σ a σ-
algebra for Ω and m a measure on (Ω,Σ). Let {Pa}a∈Ω be a family of
projections on H, such that the mapping a → Pa is strongly continuous
and

∫
Ω Padm(a) = I. Then define

I : Σ→ O

xI : Σ→ E
as

I(E)ρ :=

∫
E
PaρPadm(a) (6)

xI(E)ρ :=

∫
E
τ(Paρ)dm(a), (7)

for all E ⊂ Ω e ρ ∈ F(H).

♦

Example 4. Let X be a locally compact Hausdorff space, V the space
of the countably additive functions on the Borel σ-algebra B(X) for X
endowed with the norm of total variation. Let K be the set of nonnegative
measures on V . Let (Ω,Σ) = (X,B(X)). Then

I(E)µ(A) = µ(A ∩ E), (8)
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for µ ∈ V , A,E ∈ Σ is an instrument, called the sharp classical mea-
surement and the corresponding observable is

xI(E)µ = µ(E) (9)

♦

Definition 10. Following [18], a Quantum Stochastic Process, QSP,
is an arbitrary family of instruments {It}t∈J . Let J = Z or J = R for
discrete or continuous time, respectively.

The finite dimensional distributions of the process are measures
µut0,...,tn−1

defined in (Ωn, B(Ωn)) as being the natural extensions of the
functions given by

µut0,...,tn−1
(E0×· · ·×En−1) = τ((Itn−1(En−1)◦Itn−2(En−2)◦ · · · ◦It0(E0))u)

(10)
where n ∈ N, t0 ≤ · · · ≤ tn−1, ti ∈ J , u ∈ V and E0, . . . , En−1 ∈ Σ. The
meaning of such expression is the following: µut0,...,tn−1

(E0 × · · · × En−1)
is the joint probability that successive measurements of the system by
the instruments I0, . . . , In−1 in the moments t0, . . . , tn−1 produce values
in E0, . . . , En−1, when the pre-measurement state is u.

A probability transition is a function P : Ω × Σ → R such that
P (·, E) is measurable for all E ∈ Σ and P (x, ·) is a probability measure for
all x ∈ Ω.

Definition 11. We say that a QSP is Markov if there exists a family of
probability transitions {Ps,t}s<t such that

µut0,...,tn−1
(E0 × · · · × En−1)

=

∫
E0

∫
E1

· · ·
∫
En

Ptn−1,tn(yn−1, dyn) · · ·Pt0,t1(y0, dy1)µut0(dy0) (11)

for all t0 < · · · < tn, ti ∈ J , u ∈ V , E0, . . . , En ∈ Σ. A Markov QSP is ho-
mogeneous if the probability transitions Ps,t depend only on the difference
t− s.

Remark In contrast with the classic theory of stochastic processes,
the probability transitions of a Markov QSP do not satisfy in general the
Chapman-Kolmogorov equation.

♦
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Definition 12. Let I be an instrument. Assume that between the measure-
ments the system evolves and its evolution is described by a group {Tt}t∈J
of isometric automorphisms of V . Then define the QSP {It}t∈J , where

It(E) = T−1
t ◦ I(E) ◦ Tt (12)

is called a transformed instrument. For simplicity, we can choose J =
Z so Tn = Tn and we denote such process by C(T, I).

Now we show an example of a Markov QSP.

Example 5. Let I be the instrument given in example 4 and let Θ : X → X
be a measurable map. Then Θ generates an automorphism TΘ : V → V by

TΘ(µ)(A) = µ(Θ−1(A)), µ ∈ V,A ∈ B(X) (13)

Then we can show that C(TΘ, I) is a homogeneous Markov QSP and its
transition probability is given by

P (x,E) = XE(Θx), x ∈ X, E ∈ B(X) (14)

♦

4. Quantum IFS

This section follows [14]. We begin with a few definitions.

Definition 13. Let Gi : MN → MN , pi : MN → [0, 1], i = 1, . . . , k and
such that

∑
i pi(ρ) = 1. We call

FN = {MN , Gi, pi : i = 1, . . . , k} (15)

a Quantum Iterated Function System (QIFS).

Definition 14. A QIFS is homogeneous if pi and Gipi are affine map-
pings, i = 1, . . . , k.

Suppose that the QIFS considered is such that there are Vi and Wi linear

maps, i = 1, . . . , k, with
∑k

i=1W
∗
i Wi = I such that

Gi(ρ) =
ViρV

∗
i

tr(ViρV ∗i )
(16)

and
pi(ρ) = tr(WiρW

∗
i ) (17)

Then we have that a QIFS is homogeneous if Vi=Wi, i = 1, . . . , k. Now we
can define a Markov operator P :M(MN )→M(MN ),

(Pµ)(B) =

k∑
i=1

∫
G−1

i (B)
pi(ρ)dµ(ρ),
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where M(MN ) denotes the space of probability measure over MN . We
also define Λ :MN →MN ,

Λ(ρ) :=

k∑
i=1

pi(ρ)Gi(ρ)

If the QIFS considered is homogeneous then

Λ(ρ) =
∑
i

ViρV
∗
i (18)

We say that ρ ∈ MN is the integral of a mapping f : MN → MN ,
denoted by

ρ :=

∫
MN

fdµ

if

l(ρ) =

∫
MN

l ◦ fdµ,

for all l ∈M∗N .

Theorem 1. A mixed state ρ0 is Λ-invariant, if and only if,

ρ0 =

∫
MN

ρdµ(ρ), (19)

for some P -invariant measure µ.

For the proof, see [14], [19].

In order to define hyperbolic QIFS, we have to specify a distance on the
space of mixed states. The following are a few possibilities:

D1(ρ1, ρ2) =
√
tr[(ρ1 − ρ2)2]

D2(ρ1, ρ2) = tr
√

(ρ1 − ρ2)2

D3(ρ1, ρ2) =

√
2{1− tr[(ρ1/2

1 ρ2ρ
1/2
1 )1/2]}

Such metrics generate the same topology onMN . Considering the space of
mixed states with one of those metrics we can make the following definition.

Definition 15. We say a QIFS is hyperbolic if the quantum maps Gi are
contractions with respect to one of the distances on MN and if the maps pi
are Hölder-continuous and positive.

Proposition 1. [14] [19] If a QIFS (15) is homogeneous and hyperbolic
then the associated Markov operator admits a unique invariant measure µ.
Such invariant measure determines a unique Λ-invariant state ρ ∈ MN ,
given by (19).
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5. Examples of QIFS

Example 6. Ω = MN , k = 2, p1 = p2 = 1/2, G1(ρ) = U1ρU
∗
1 , G2(ρ) =

U2ρU
∗
2 . The normalized identity matrix ρ∗ = I/N is Λ-invariant, for any

choice of unitary U1 and U2. Note that we can write

ρ∗ =

∫
MN

ρdµ(ρ)

where the measure µ, uniformly distributed over PN , is P -invariant.

♦

Example 7. Let Ω = MN , k = 2, p1 = p2 = 1/2, G1(ρ) = (ρ + 2ρ1)/3,
G2(ρ) = (ρ + 2ρ2)/3, where we choose the projectors ρ1 = |1〉〈1| and
ρ2 = |2〉〈2| so that they are orthogonal. Since G1 and G2 are contractions
with Lipschitz constant equal to 1/3, this QIFS is hyperbolic and so there
is a unique invariant measure.

♦

Recall that a mapping Λ is completely positive (CP), if Λ⊗I is positive
for any extension of the original Hilbert space HN → HN ⊗HE . We know
that every trace preserving CP map can be represented (in a nonunique
way) in the Stinespring-Kraus form

Λ(ρ) =

k∑
j=1

VjρV
∗
j ,

k∑
j=1

V ∗j Vj = 1,

where the Vj are linear operators. Besides, if
∑k

j=1 VjV
∗
j = I then Λ(I/N) =

I/N and Λ will be called unital. This is the case if each of the Vj is normal,
that is, if VjV

∗
j = V ∗j Vj . Note that by writing Gi(ρ) = UiρU

∗
i , we have that

example 6 is contained in this class of QIFS. We call such QIFS unitary.
For a unitary QIFS we have that ρ∗ is an invariant state for ΛU and also
that δρ∗ is invariant for the Markov operator PU induced by this QIFS.

Definition 16. We say that unitary matrices of same dimension are com-
mon block diagonal if they are block diagonal in the same base and with
the same blocks.

The proof of the following lemma is presented in [14].

Proposition 2. Assume that pi, i = 1, . . . , k are strictly positive. The the
maximally mixed state ρ∗ is the unique invariant state for the operator ΛU
if and only if the unitary operators Ui, i = 1, . . . , k are not common block
diagonal.
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Example 8. Let Ω = P2, U1 = I, U2 = σ1, U3 = σ2, U4 = σ3, p1 = 1− p,
p2 = p3 = p4 = p/3 > 0, where σ1, σ2, σ3 are the Pauli matrices. Since
such matrices are not common block diagonal the maximally mixed state
ρ∗ is the unique invariant state for the mapping below, called a quantum
depolarizing channel [14]:

ΛU (ρ) =
∑

piUiρU
∗
i = (1− p)ρ+

p

3
(σ1ρσ1 + σ2ρσ2 + σ3ρσ3).

♦

Example 9. Let Ω = P2, p1 = 1− p, p2 = p,

U1 = exp(−iH0T/~),

U2 = exp(− i
~

(H0T +

∫ T

0
V (t)dt))

where V (t) = V (t+ T ). The maximally mixed state ρ∗ = I/2 is an invari-
ant state for the operator ΛU corresponding to this QIFS. For a generic
perturbation V , matrices U1 and U2 are not common block diagonal so ρ∗
is the unique invariant state for ΛU .

♦

6. On certain probability and amplitude calculations

We begin with a brief digression on the Chapman-Kolmogorov equation.
Let X = {Xn} be a sequence of measurable functions. Suppose that

P (Xn+1 = j|Xn = i) = P (X1 = j|X0 = i)

for all n, i, j. Suppose that X takes values on a finite set S. Define the
matrix P = (pij) of order |S|, with entries

pij = P (Xn+1 = j|Xn = i)

Define the matrix of n transitions Pn = (pij(n)), where

pij(n) = P (Xm+n = j|Xm = i)

Also suppose that it is a Markov chain, that is

P (Xn = xn|X0 = x0, X1 = x1, . . . , Xn−1 = xn−1) = (20)

P (Xn = xn|Xn−1 = xn−1)

for all n ≥ 1, and x0, . . . , xn ∈ S.

By using the fact that for any events A1, A2, A3, we have

P (A1 ∩A2|A3) = P (A1|A2 ∩A3)P (A2|A3) (21)
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we can write

pij(m+ n) = P (Xm+n = j|X0 = i) =
∑
k

P (Xm+n = j,Xm = k|X0 = i)

=
∑
k

P (Xm+n = j|Xm = k)P (Xm = k|X0 = i) (22)

So
pij(m+ n) =

∑
k

pik(m)pkj(n) (23)

which is the Chapman-Kolmogorov equation. We are interested in studying
quantum stochastic processes and in obtaining an adequate definition to
what we will call a Markov quantum stochastic process. First we recall
that in the previous section we have presented a description [18] of Markov
QSP in which the Chapman-Kolmogorov do not hold in general. This
fact can be seen as the general rule for quantum processes (but see [8] for
different settings).

In algebraic terms, we can argue that the deduction of (23) above is not
valid for quantum processes because of equation (21). Since we have to
take in consideration the interference between measurements, the problem
of understanding how probability measures work in a quantum setting is
a basic question. In quantum mechanics we could in principle consider
a probability space (Ω,Λ, µ) such as in classic measure theory. However,
we have that Λ is a σ-algebra and µ is a measure on Λ only when we are
restricted to a single measurement. When we perform several measurements
interference effects occur and so we are no longer considering a problem on
classic probability [7]. Results of more general nature are presented in [9].

We can think that interference occurs because, in contrast to classic
probability measures, which can be quite arbitrary, quantum probability
measures are obtained in a very specific way. In quantum mechanics we
have an amplitude function a : Ω → C, and if B ∈ Λ, we define the
amplitude of B as

A(B) =
∑
ω∈B

a(ω) (24)

and we define the probability that B occurs as

µ(B) = |A(B)|2 (25)

Let us describe a few more details on this point. For more on the subject,
see for instance [7]. Let Ω be a nonempty set and let a : Ω→ C. We say that
ω ∈ Ω is a sample point and the map a is a probability amplitude, and
(Ω, f) is called a quantum probability space. A set A ⊂ Ω is summable
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if
∑

ω∈Ω |a(ω)|2 <∞ and we denote the collection of summable sets by Σ0.
Now define A : Σ0 → C as A(∅) = 0 and

A(B) :=
∑
ω∈Ω

a(ω) (26)

We say that A(B) is the amplitude of B. Now define

A(B1|B2) :=
A(B1 ∩B2)

A(B2)
(27)

if A(B2) 6= 0 and equal to zero, otherwise. In the case that A(B2) 6= 0, we
have that A(·|B2) is a complex measure on P (Ω), with A(Ω|B2) = 1. We
say that A(B1|B2) is the conditional amplitude of B1, given B2. Note
that A(B) = 0 does not imply A(B ∩C) = 0 [7]. Because of that, formulas
of the kind A(B ∩ C) = A(B)A(C|B) might not be true when A(B) = 0.
However, when the conditioning sets have a nonzero amplitude, we have
the formula

A(B1∩· · ·∩Bn) = A(B1)A(B2|B1)A(B3|B1∩B2) · · ·A(Bn|B1∩· · ·∩Bn−1)
(28)

which is the amplitude counterpart for equation (21). Define the matrix
A = (aij), where aij = A(Xn+1 = j|Xn = i). Now suppose that the chain
{Xn}n∈N is quantum Markov, that is,

A(Xn = xn|X0 = x0, X1 = x1, . . . , Xn−1 = xn−1) = (29)

A(Xn = xn|Xn−1 = xn−1)

for all n ≥ 1, x0, . . . , xn ∈ S. So in a way which is similar to what we did
for probabilities, define the matrix of n transitions An = (aij(n)), where
aij(n) = A(Xm+n = j|Xm = i) and we get

aij(m+ n) =
∑
k

aik(m)akj(n) (30)

so we have that Am+n = AmAn and An = An.

♦

7. Probability measures induced by QIFS

In this section we present some new results. Consider a Hilbert space H
of dimension N = 2. Let q1, q2 ∈ R and also

V1 =

( √
p11

√
p12

0 0

)
, V2 =

(
0 0√
p21

√
p22

)
, ρ =

(
ρ1 ρ2

ρ3 ρ4

)
(31)

We would like to obtain the fixed points for

L(ρ) = q1V1ρV
∗

1 + q2V2ρV
∗

2
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Then
q1V1ρV

∗
1 + q2V2ρV

∗
2 = ρ (32)

implies

q1

[
(
√
p11ρ1 +

√
p12ρ3)

√
p11 + (

√
p11ρ2 +

√
p12ρ4)

√
p12

]
= ρ1

q2

[
(
√
p21ρ1 +

√
p22ρ3)

√
p21 + (

√
p21ρ2 +

√
p22ρ4)

√
p22

]
= ρ4

And (32) also implies that ρ2 = ρ3 = 0, so we rewrite the system as

q1

[√
p11ρ1

√
p11 +

√
p12ρ4

√
p12

]
= ρ1

q2

[√
p21ρ1

√
p21 +

√
p22ρ4

√
p22

]
= ρ4

or
aρ1 + fρ4 = ρ1 (33)

gρ1 + hρ4 = ρ4 (34)

where
a = q1p11, f = q1p12, g = q2p21, h = q2p22

We also get that

ρ1 =
f

1− a
ρ4

ρ1 =
1− h
g

ρ4

which is a restriction on the qi, namely

f

1− a
=

1− h
g

Therefore the solution of (33) and (34) is

ρ = ρ4

(
f

1−a 0
0 1

)
= ρ4

(
1−h
g 0
0 1

)
But ρ1 + ρ4 = 1 implies

ρ =

( q1p12
q1p12−q1p11+1 0

0 1−q1p11
q1p12−q1p11+1

)
=

( 1−q2p22
1−q2p22+q2p21

0

0 q2p21
1−q2p22+q2p21

)
(35)

Now assume that

P =

(
p11 p12

p21 p22

)
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is column stochastic, that is, we have pij ≥ 0 and
∑

i pij = 1, i, j = 1, 2.
Let π be such that Pπ = π. Such π is given by

π = (
p12

p12 − p11 + 1
,

1− p11

p12 − p11 + 1
) (36)

Compare (36) with (35). Then fix q1 = q2 = 1, so we get that the nonzero
entries of ρ are equal to the entries of π. Such a choice for the qi is unique.
In fact, comparing the (i, i)-th entry of ρ with the i-th coordinate of π,
we see that if there exists q′i which make ρ and π equal (i.e., the diagonal
entries of ρ correspond to the entries of π), then

q1p12

q1p12 − q1p11 + 1
=

q′1p12

q′1p12 − q′1p11 + 1
,

which implies

q1(q′1p12 − q′1p11 + 1) = q′1(q1p12 − q1p11 + 1)

⇒ q1q
′
1p12 − q1q

′
1p11 + q1 = q1q

′
1p12 − q1q

′
1p11 + q′1

and when we cancel terms we get q1 = q′1. In a similar way

1− q2p22

1− q2p22 + q2p21
=

1− q′2p22

1− q′2p22 + q′2p21

implies

(1− q2p22)(1− q′2p22 + q′2p21) = (1− q′2p22)(1− q2p22 + q2p21)

⇒ 1− q′2p22 + q′2p21 − q2p22 + q2q
′
2p

2
22 − q2q

′
2p22p21

= 1− q2p22 + q2p21 − q′2p22 + q2q
′
2p

2
22 − q2q

′
2p22p21

Then we get
q′2p21 = q2p21 ⇒ q′2 = q2

and therefore the choice for q1 and q2 is unique.

♦

Consider a homogeneous QIFS F = {MN , Fi, pi}i=1,...,k, where

Fi(ρ) =
ViρV

∗
i

tr(ViρV ∗i )

where the Vi are linear with
∑

i V
∗
i Vi = I and pi(ρ) = tr(ViρV

∗
i ). Then Λ

is written as
Λ(ρ) =

∑
i

piFi =
∑
i

ViρV
∗
i

By simplicity we will assume that the quantum system considered can as-
sume two states called 1 and 2.
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We say that the pair ({Xn}n∈N, µ), Xn : Ω→ {1, . . . , k}, is a Quantum
Stochastic Process, QSP (homogeneous case), associated to the QIFS F
whenever µ is defined as

µ(X1 = x1, . . . , Xn = xn) := tr(VxnVxn−1 · · ·Vx2Vx1ρ0V
∗
x1V

∗
x2 · · ·V

∗
xn−1

V ∗xn)

(37)
where ρ0 ∈MN is any density operator. The operator ρ0 is a pre-measure
ment state, that is, we have a quantum system and we prepare ρ0 as being
its initial state (for a similar treatment to a sequence of measurements, see
the definition of finite dimensional distributions in section 3).

So we can define for any r,

µ(Xr = xr|Xr−1 = xr−1) =
tr(VxrVxr−1ρ0V

∗
xr−1

V ∗xr)

tr(Vxr−1ρ0V ∗xr−1
)

(38)

Definition 17. We say that a QSP is Markov if

µ(Xn = xn|X1 = x1, . . . , Xn−1 = xn−1) = µ(Xn = xn|Xn−1 = xn−1) (39)

♦

Remark The condition
∑

i V
∗
i Vi = I is enough to show that the measure

of a partition of cylinder sets equals 1. For instance, for two states 1 and
2, for k = 2 and writing

µ(ij) := µ(X1 = i,X2 = j),

we have
µ(11) + µ(12) + µ(21) + µ(22)

= tr(V1V1ρV
∗

1 V
∗

1 ) + tr(V2V1ρV
∗

1 V
∗

2 ) + tr(V1V2ρV
∗

2 V
∗

1 ) + tr(V2V2ρV
∗

2 V
∗

2 )

= tr(V ∗1 V1[V1ρV
∗

1 ])+tr(V ∗2 V2[V1ρV
∗

1 ])+tr(V ∗1 V1[V2ρV
∗

2 ])+tr(V ∗2 V2[V2ρV
∗

2 ])

= tr
(

(V ∗1 V1 + V ∗2 V2)[V1ρV
∗

1 ]
)

+ tr
(

(V ∗1 V1 + V ∗2 V2)[V2ρV
∗

2 ]
)

= tr(V1ρV
∗

1 ) + tr(V2ρV
∗

2 ) = tr((V ∗1 V1 + V ∗2 V2)ρ) = 1 (40)

However, we note that there exist examples in which we can show that the
measure of a partition of cylinder sets equals 1 even if we do not suppose
that

∑
i V
∗
i Vi = I. This happens, for instance, in the following construction

involving stochastic matrices.

♦

Let us consider the particular case in which the operator ρ0 ∈MN , given

in the definition of QSP is a fixed point for Λ(ρ) =
∑k

i=1 ViρV
∗
i induced by

the QIFS F .
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Suppose that V1 and V2 are defined by (31). Suppose that the matrix
P = (pij) is column stochastic and that we have π such that Pπ = π. For
instance we have

µ(X1 = 1, X2 = 2) = tr(V2V1ρ0V
∗

1 V
∗

2 ) = p21(p11ρ11 + p12ρ22) = p21ρ11

(41)
because with the choice of Vi we made, we have that the nonzero entries of
ρ0 correspond to the entries of π. So we can interpret pij as being

pij = µ(X2 = j|X1 = i) (42)

In a similar way,

µ(X1 = 2, X2 = 1) = tr(V1V2ρ0V
∗

2 V
∗

1 ) = p12ρ22 (43)

and

µ(X1 = 1, X2 = 2, X3 = 1) = tr(V1V2V1ρ0V
∗

1 V
∗

2 V
∗

1 ) = p12p21ρ11 (44)

Remark A simple calculation shows that with the Vi given by (31) we
have that

∑
i V
∗
i Vi 6= I. However, we still have that

µ(11) + µ(12) + µ(21) + µ(22) = 1

♦

To prove that the choice (31) reduces to the classic case for any sequence,
we use the following lemma.

Lemma 1. Suppose N = 2, k = 2. Then for every m, for Vi given by
(31) and ρ0 corresponding to the stationary vector π for P , we have that
the product

VxmVxm−1 · · ·Vx1ρ0V
∗
x1V

∗
x2 · · ·V

∗
xm (45)

has the form (
∗ 0
0 0

)
ou

(
0 0
0 ∗

)
(46)

depending on whether xm = 1 or xm = 2, respectively.

Proof By induction. If m = 1 then

V1ρ0V
∗

1 =

(
p11ρ11 + p12ρ22 0

0 0

)
(47)

and

V2ρ0V
∗

2 =

(
0 0
0 p21ρ11 + p22ρ22

)
(48)

Suppose the lemma valid for m, we consider the product

Vxm+1Vxm · · ·Vx1ρ0V
∗
x1V

∗
x2 · · ·V

∗
xmV

∗
xm+1

(49)
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Suppose xm+1 = 1. Then a simple calculation shows that

V1

(
∗ 0
0 0

)
V ∗1 e V1

(
0 0
0 ∗

)
V ∗1 (50)

has only one nonzero entry, namely the (1, 1)-th entry. We proceed in a
similar way for the case that xm+1 = 2, that is

V2

(
∗ 0
0 0

)
V ∗2 e V2

(
0 0
0 ∗

)
V ∗2 (51)

has only one nonzero entry, namely the (2, 2)-th entry.

�

Proposition 3. If we set

V1 =

( √
p11

√
p12

0 0

)
, V2 =

(
0 0√
p21

√
p22

)
, (52)

then

µ(X1 = x1, X2 = x2, . . . , Xn = xn) = pxnxn−1pxn−1xn−2 · · · px3x2px2x1ρx1x1
(53)

where ρij denotes the (i, j)-th entry of ρ0, eigenstate for Λ(ρ) =
∑

i ViρV
∗
i .

Proof We prove by induction. Suppose n = 1. Then

µ(X1 = 1) = tr(V1ρ0V
∗

1 ) = p11ρ11 + p12ρ22 = ρ11

µ(X1 = 2) = tr(V2ρ0V
∗

2 ) = p21ρ11 + p22ρ22 = ρ22

For the sake of clarity we also show the case n = 2. We have, after some
routine calculations that

µ(X1 = 1, X2 = 1) = tr(V1V1ρ0V
∗

1 V
∗

1 ) = p11ρ11 (54)

µ(X1 = 1, X2 = 2) = tr(V2V1ρ0V
∗

1 V
∗

2 ) = p21ρ11 (55)

µ(X1 = 2, X2 = 1) = tr(V1V2ρ0V
∗

2 V
∗

1 ) = p12ρ22 (56)

µ(X1 = 2, X2 = 2) = tr(V2V2ρ0V
∗

2 V
∗

2 ) = p22ρ22 (57)

Now suppose the lemma holds for n, let us prove it for n+ 1.

First suppose xn+1 = 1. Then

µ(X1 = x1, . . . , Xn = xn, Xn+1 = 1)

= tr(V1Vxn · · ·Vx2Vx1ρ0V
∗
x1V

∗
x2 · · ·V

∗
xn−1

V ∗xnV
∗

1 ) (58)

Using lemma 1, we have two cases. If xn = 1 then

Vxn · · ·Vx2Vx1ρ0V
∗
x1V

∗
x2 · · ·V

∗
xn−1

V ∗xn =

(
∗ 0
0 0

)
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and therefore

V1Vxn · · ·Vx2Vx1ρ0V
∗
x1V

∗
x2 · · ·V

∗
xn−1

V ∗xnV
∗

1 = V1

(
∗ 0
0 0

)
V ∗1 =

(
∗p11 0

0 0

)
and so by taking the trace we get

tr(V1Vxn · · ·Vx2Vx1ρ0V
∗
x1V

∗
x2 · · ·V

∗
xn−1

V ∗xnV
∗

1 )

= p11p1xn−1pxn−1xn−2 · · · px3x2px2x1ρx1x1 (59)

In a similar way, if xn = 2,

Vxn · · ·Vx2Vx1ρ0V
∗
x1V

∗
x2 · · ·V

∗
xn−1

V ∗xn =

(
0 0
0 ∗

)
V1Vxn · · ·Vx2Vx1ρ0V

∗
x1V

∗
x2 · · ·V

∗
xn−1

V ∗xnV
∗

1 = V1

(
0 0
0 ∗

)
V ∗1 =

(
∗p12 0

0 0

)
and taking the trace gives

tr(V1Vxn · · ·Vx2Vx1ρ0V
∗
x1V

∗
x2 · · ·V

∗
xn−1

V ∗xnV
∗

1 )

= p12p2xn−1pxn−1xn−2 · · · px3x2px2x1ρx1x1 (60)

Now we suppose xn+1 = 2, and we proceed in an analogous way.

µ(X1 = x1, . . . , Xn = xn, Xn+1 = 2)

= tr(V2Vxn · · ·Vx2Vx1ρ0V
∗
x1V

∗
x2 · · ·V

∗
xn−1

V ∗xnV
∗

2 ) (61)

By lemma 1, we have two cases. If xn = 1 then

Vxn · · ·Vx2Vx1ρ0V
∗
x1V

∗
x2 · · ·V

∗
xn−1

V ∗xn =

(
∗ 0
0 0

)
therefore

V2Vxn · · ·Vx2Vx1ρ0V
∗
x1V

∗
x2 · · ·V

∗
xn−1

V ∗xnV
∗

2 = V2

(
∗ 0
0 0

)
V ∗2 =

(
∗p21 0

0 0

)
and taking the trace we get

tr(V2Vxn · · ·Vx2Vx1ρ0V
∗
x1V

∗
x2 · · ·V

∗
xn−1

V ∗xnV
∗

2 )

= p21p1xn−1pxn−1xn−2 · · · px3x2px2x1ρx1x1 (62)

Analogously if xn = 2

Vxn · · ·Vx2Vx1ρ0V
∗
x1V

∗
x2 · · ·V

∗
xn−1

V ∗xn =

(
0 0
0 ∗

)
V2Vxn · · ·Vx2Vx1ρ0V

∗
x1V

∗
x2 · · ·V

∗
xn−1

V ∗xnV
∗

2 = V2

(
0 0
0 ∗

)
V ∗2 =

(
∗p22 0

0 0

)
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and taking the trace

tr(V2Vxn · · ·Vx2Vx1ρ0V
∗
x1V

∗
x2 · · ·V

∗
xn−1

V ∗xnV
∗

2 )

= p22p2xn−1pxn−1xn−2 · · · px3x2px2x1ρx1x1 (63)

�

Corollary 1. The quantum stochastic process induced by

V1 =

( √
p11

√
p12

0 0

)
, V2 =

(
0 0√
p21

√
p22

)
, (64)

is Markov.

Proof By the proposition, we have that the measure µ reduces to the
Markov measure for matrices.

�

Lemma 2. For Vi linear maps and ρ0 fixed point for Λ =
∑

i ViρV
∗
i , we

have for any m,n,

µ(X1 = x1, X2 = x2, . . . , Xn = xn) =

µ(Xm = x1, Xm+1 = x2, . . . , Xm+n = xn)

Proof We prove the lemma for the case in which we have two possible
states 1 and 2. We have

µ(Xm = x1, Xm+1 = x2, . . . , Xm+n = xn)

=
∑

i1,...,im−1

µ(X1 = i1, X2 = i2, . . . , Xm−1 = im−1, Xm = x1, . . . , Xm+n = xn)

=
∑

i2,...,im−1

tr(Vxn · · ·Vx1Vim−1 · · ·Vi2V1ρ0V
∗

1 V
∗
i2 · · · )

+tr(Vxn · · ·Vx1Vim−1 · · ·Vi2V2ρ0V
∗

2 V
∗
i2 · · · )

=
∑

i2,...,im−1

tr(Vxn · · ·Vx1Vim−1 · · ·Vi2ρ0V
∗
i2V
∗
i3 · · ·V

∗
im−1

V ∗x1 · · ·V
∗
xn)

Repeating the procedure above for i2, i3, etc. we get

µ(Xm = x1, Xm+1 = x2, . . . , Xm+n = xn) = tr(Vxn · · ·Vx1ρ0V
∗
x1 · · ·V

∗
xn)

This concludes the proof.

�
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Example 10. Let us make an inspection with respect to the Chapman-
Kolmogorov equation, that is, we would like to know if the equality

µij(m+ n) =
∑
k

µik(m)µkj(n) (65)

holds, where
µij(n) = µ(Xm+n = j|Xm = i)

Take for instance, m = n = i = j = 1. Then∑
k

µik(m)µkj(n) = µ11(1)µ11(1) + µ12(1)µ21(1)

=
tr(V1V1ρV

∗
1 V
∗

1 )2

tr(V1ρV ∗1 )2
+
tr(V2V1ρV

∗
1 V
∗

2 )

tr(V1ρV ∗1 )

tr(V1V2ρV
∗

2 V
∗

1 )

tr(V2ρV ∗2 )
(66)

and
µij(m+ n) = µ11(2) = µ(X3 = 1|X1 = 1)

=
tr(V1V1V1ρV

∗
1 V
∗

1 V
∗

1 )

tr(V1ρV ∗1 )
+
tr(V1V2V1ρV

∗
1 V
∗

2 V
∗

1 )

tr(V1ρV ∗1 )
(67)

Now let V1, V2 be given by (52), then we obtain classic calculations, so the
Chapman-Kolmogorov equation holds. Now take

V1 =

(
1 0
0 0

)
, V2 =

(
1 0
0 2

)
(68)

then we get, from (66) and (67):

tr(V1V1ρV
∗

1 V
∗

1 )2

tr(V1ρV ∗1 )2
+
tr(V2V1ρV

∗
1 V
∗

2 )

tr(V1ρV ∗1 )

tr(V1V2ρV
∗

2 V
∗

1 )

tr(V2ρV ∗2 )
= 1 +

ρ11

ρ11 + 4ρ22
(69)

and
tr(V1V1V1ρV

∗
1 V
∗

1 V
∗

1 )

tr(V1ρV ∗1 )
+
tr(V1V2V1ρV

∗
1 V
∗

2 V
∗

1 )

tr(V1ρV ∗1 )
= 1 + 1 = 2 (70)

Then in this case we have that the Chapman-Kolmogorov equation holds
if and only if ρ22 = 0 that is, if ρ11 = 1. Also, we note that

∑
i V
∗
i Vi 6= I.

To conclude this example, we take V1 and V2 with
∑

i V
∗
i Vi = I, namely,

V1 =

(
1√
3

0

0 0

)
, V2 =

( √
2
3 0

0 1

)
(71)

Take for instance ρ0 = 1
4 |1〉〈1|+

3
4 |2〉〈2|, a fixed point for the associated Λ.

A simple calculation shows that (66) and (67) are different. Therefore our
calculation shows that the Chapman-Kolmogorov equation does not hold
in general (for our setting).

♦
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We would like to obtain a nonhomogeneous version for the measure we
defined in (37) in the homogeneous case, i.e., we are looking for a mea-
sure induced by a nonhomogeneous QIFS. Let Wi, i = 1, . . . , k be linear
operators such that

∑
iW

∗
i Wi = I. Let ρ0 ∈MN . Define

µ(X1 = x1, . . . , Xn = xn) :=

= tr(Wx1ρ0W
∗
x1)

tr(Wx2Vx1ρ0V
∗
x1W

∗
x2)

tr(Vx1ρ0V ∗x1)

tr(Wx3Vx2Vx1ρ0V
∗
x1V

∗
x2W

∗
x3)

tr(Vx2Vx1ρ0V ∗x1V
∗
x2)

× · · ·

· · · ×
tr(Wxn−1Vxn−2 · · ·Vx1ρ0V

∗
x1 · · ·V

∗
xn−2

W ∗xn−1
)

tr(Vxn−2 · · ·Vx1ρ0V ∗x1 · · ·V ∗xn−2
)

×

×
tr(WxnVxn−1 · · ·Vx1ρ0V

∗
x1 · · ·V

∗
xn−1

W ∗xn)

tr(Vxn−1 · · ·Vx1ρ0V ∗x1 · · ·V ∗xn−1
)

(72)

that is,
µ(X1 = x1, . . . , Xn = xn) :=

tr(Wx1ρ0W
∗
x1)

n∏
i=2

tr(WxiVxi−1 · · ·Vx1ρ0V
∗
x1 · · ·V

∗
xi−1

W ∗xi)

tr(Vxi−1Vxi−2 · · ·Vx1ρ0V ∗x1 · · ·V ∗xi−2
V ∗xi−1

)
(73)

Remark A calculation shows that if we suppose
∑

iW
∗
i Wi = I, then∑

i1,...in

µ(i1 · · · in) = 1

Besides, if we suppose that Wi = Vi for all i, then we recover the measure
definition for homogeneous QSP.

♦

Consider a QIFS F = {MN , Fi, pi}i=1,...,k, where

Fi(ρ) =
ViρV

∗
i

tr(ViρV ∗i )

where the Vi are linear and pi(ρ) = tr(WiρW
∗
i ), com

∑
iW

∗
i Wi = I.

Definition 18. We say that the pair ({Xn}n∈N, µ), Xn : Ω → {1, . . . , k},
is a Quantum Stochastic Process associated to the nonhomogeneous
QIFS F if µ is defined by (73), where ρ0 ∈MN is any density operator.

Remark In the definition above we can, of course, consider the particular
case in which ρ0 is a fixed point for

Λ(ρ) =
k∑
i=1

tr(WiρW
∗
i )

ViρV
∗
i

tr(ViρV ∗i )
,
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induced by the QIFS F .

♦

Recall that by lemma 2, a homogeneous QSP is always stationary. This
is no longer true in general for nonhomogeneous QSP.

Example 11. Let {Xn}n∈N be a QSP induced by a nonhomogeneous QIFS.
We would like to know whether

µ(X1 = 1, X2 = 2) = µ(X2 = 1, X3 = 2) (74)

By definition we have:

µ(X1 = 1, X2 = 2) = tr(W1ρ0W
∗
1 )
tr(W2V1ρ0V

∗
1 W

∗
2 )

tr(V1ρ0V ∗1 )
(75)

And also

µ(X2 = 1, X3 = 2) = µ(X1 = 1, X2 = 1, X3 = 2)+µ(X1 = 2, X2 = 1, X3 = 2)

= tr(W1ρ0W
∗
1 )
tr(W1V1ρ0V

∗
1 W

∗
1 )

tr(V1ρ0V ∗1 )

tr(W2V1V1ρ0V
∗

1 V
∗

1 W
∗
2 )

tr(V1V1ρ0V ∗1 V
∗

1 )

+tr(W2ρ0W
∗
2 )
tr(W1V2ρ0V

∗
2 W

∗
1 )

tr(V2ρ0V ∗2 )

tr(W2V1V2ρ0V
∗

2 V
∗

1 W
∗
2 )

tr(V1V2ρ0V ∗2 V
∗

1 )
(76)

= tr

[
W2V1

[
tr(W1ρ0W

∗
1 )

V1ρ0V
∗

1

tr(V1ρ0V ∗1 )

( tr(W1V1ρ0V
∗

1 W
∗
1 )

tr(V1V1ρ0V ∗1 V
∗

1 )

)
+

+tr(W2ρ0W
∗
2 )

V2ρ0V
∗

2

tr(V2ρ0V ∗2 )

( tr(W1V2ρ0V
∗

2 W
∗
1 )

tr(V1V2ρ0V ∗2 V
∗

1 )

)]
V ∗1 W

∗
2

]
(77)

Note that in the homogeneous case we have that both fractions in paren-
thesis on equation (77) are equal to 1, so if ρ0 is a fixed point for Λ, then
we have stationarity, a fact we have already proved. But in the nonhomo-
geneous case, the terms in parenthesis are not equal to 1 in general.

♦

8. A definition of entropy for QIFS

We will present a notion of entropy for “invariant” (or “stationary”)
measures with support on density matrices. This definition is obtained
by adapting the reasoning described in [5], [12] and [13] to the present
situation. The main idea is to define this concept via the Ruelle operator
and to avoid the use of partitions.
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Denote by p an arbitrary choice of mappings pi :MN → R, i = 1, . . . , k
for a certain k. Let

mb(MN ) := {f :MN → R : f is measurable and bounded}
Let Up : mb(MN )→ mb(MN ),

(Upf)(ρ) :=

k∑
i=1

pi(ρ)f(Fi(ρ))

Let us consider all possible choices of mappings pi :MN → R which satisfy

Up 1 = 1 (78)

Each p determines an operator Up. The set of all possible p that satisfy
(78) will be denoted by P .

Let (MN , Fi, pi)i=1,...k be a QIFS. An example of Markov operator for
measures is the one we defined before, given by Vp : M1(MN )→M1(MN ),

(Vpν)(B) =

k∑
i=1

∫
F−1
i (B)

pidν,

which we will call the Markov operator Markov induced by the pi.
That is, we will consider all Vp with p ∈ P . We say that ν is invariant for
the Fi if for some p ∈ P we have that Vpν = ν.

Let MF be the set of all invariant measures for a fixed choice of the
dynamics Fi, i = 1, . . . , k. For such measures ν ∈ MF , and based on [5],
[12] and [13], define

h0(ν) := inf
f∈B+

∫
log(

k∑
i=1

f ◦ Fi
f

)dν

Above, B+ denotes the bounded, positive, borelean functions on MN .

Proposition 4. For ν ∈MF , we have that 0 ≤ h0(ν) ≤ log k.

In order to prove this proposition, we need the following lemma.

Lemma 3. [13] Let β ≥ 1 + α and numbers ai ∈ [1 + α, β], i = 1, . . . , k.
Then there exists ε ≥ 1 such that

log
(
ε

k∑
i=1

ai

)
≥

k∑
i=1

log (εai).
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The proof of this lemma follows by choosing

ε = exp
(1

k

log
∑k

i=1 ai∑k
i=1 log ai

)
Lemma 4. If f ∈ B+ and ν ∈MF then

k∑
i=1

∫
f ◦ Fidν ≥

∫
fdν

Proof First suppose that f = 1B, where B is a measurable set. We have
that

k∑
i=1

∫
1B ◦ Fidν ≥

k∑
i=1

∫
pi(x)1B(Fi(x))dν(x) =

k∑
i=1

∫
F−1
i (B)

pi(x)dν(x)

= Vp(ν)(B) = ν(B) =

∫
1Bdν

Then, assume that f =
∑l

j=1 bj1Bj , i.e., a simple function. Then

k∑
i=1

∫ l∑
j=1

bj1Bj ◦ Fidν =
l∑

j=1

bj

k∑
i=1

∫
1Bj ◦ Fidν

≥
l∑

j=1

bj

k∑
i=1

∫
pi(x)1Bj (Fi(x))dν =

l∑
j=1

bjVp(ν)(Bj)

=
l∑

j=1

bjν(Bj) =

∫
fdν

Now let f = limn fn, a limit of a sequence of simple functions. Note that we
suppose f ∈ B+, so f is bounded, and since ν is a probability measure on
MN , it follows that f is integrable. By the bounded convergence theorem,
we have that

k∑
i=1

∫
f ◦ Fidν =

k∑
i=1

∫
lim
n
fn ◦ Fidν = lim

n

k∑
i=1

∫
fn ◦ Fidν

≥ lim
n

∫
fndν =

∫
lim
n
fndν =

∫
fdν

�
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The following proof is an adaptation of results seen in [13].

Proof of proposition 4 Let us restrict the proof for the case in which
we have a QIFS (MN , Fi, pi)i=1,...,k, where Fi(ρ) = ViρV

∗
i , with linear Vi.

First note that if f ≡ 1, we have
∫

log(
∑k

i=1 1)dν = log k, so h0(ν) ≤
log k.

Let I =
∫

log (
∑k

i=1
f◦Fi

f )dν and suppose, without loss of generality, that

1+α ≤ f ≤ β (note that this integral is invariant by the projective mapping
f → λf). Then

I =

∫
log (

k∑
i=1

εf ◦ Fi
εf

)dν =

∫
log (

k∑
i=1

εf ◦ Fi)dν −
∫

log (εf)dν (79)

Define

ai = f ◦ Fi(ρ)

Then

ε(ρ) = exp
(1

k

log
∑k

i=1 f ◦ Fi∑k
i=1 log f ◦ Fi

)
≥ ε0 ≥ 1,

by the compactness of MN . With such choice we obtain, by lemma (3),

log (ε0

k∑
i=1

f ◦ Fi) ≥
k∑
i=1

log (ε0f ◦ Fi) (80)

Apply (80) on (79), then

I ≥
k∑
i=1

∫
log (ε0f ◦ Fi)dν −

∫
log (ε0f)dν

Then by lemma (4) applied on the function log (εf) (note that we have
log (ε0f) ∈ B+ because ε0 ≥ 1), we get

I ≥
∫

log (εf)dν −
∫

log (εf)dν = 0

�

The computation in the next example shows that the concept of entropy
described here is different from the one presented in [1] [2].

Example 12. We will consider an example of a probability η such that
V(η) = η and we will compute the entropy of η.
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Suppose a QIFS, such that

pi(ρ) = tr(WiρW
∗
i ),

∑
i

W ∗i Wi = I, Fi(ρ) =
ViρV

∗
i

tr(ViρV ∗i )

for i = 1, . . . , k. Denote mb(MN ) the space of bounded and measurable
functions in MN .

Consider Λ :MN →MN ,

Λ(ρ) =
∑
i

pi(ρ)Fi(ρ) =
∑
i

tr(WiρW
∗
i )

ViρV
∗
i

tr(ViρV ∗i )

Suppose there exists a density matrix ρ which Λ-invariant. As we know,
such state is the barycenter of µ which is V-invariant [1].

Suppose Vµ = µ, then we can write∫
fdµ =

∫
fdVµ =

k∑
i=1

∫
pi(ρ)f(Fi(ρ))dµ(ρ) =

∑
i

∫
pi(ρ)f

( ViρV
∗
i

tr(ViρV ∗i )

)
dµ =

∑
i

∫
tr(WiρW

∗
i )f
( ViρV

∗
i

tr(ViρV ∗i )

)
dµ

Therefore, for any f ∈ mb(MN ), we got the condition∫
fdµ =

∑
i

∫
tr(WiρW

∗
i )f
( ViρV

∗
i

tr(ViρV ∗i )

)
dµ (81)

Let us consider a particular example where N = 2, k = 4, and

V1 =

( √
p11 0
0 0

)
, V2 =

(
0
√
p12

0 0

)
,

V3 =

(
0 0√
p21 0

)
, V4 =

(
0 0
0
√
p22

)
,

in such way that the pij are the entries of a column stochastic matrix P .
Let π = (π1, π2) be a vector such that Pπ = π. A simple calculation shows
that for ρ, the density matrix such that has entries ρij , we have

V1ρV
∗

1 =

(
p11ρ11 0

0 0

)
, V2ρV

∗
2 =

(
p12ρ22 0

0 0

)
(82)

V3ρV
∗

3 =

(
0 0
0 p21ρ11

)
, V4ρV

∗
4 =

(
0 0
0 p22ρ22

)
, (83)
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and therefore

V1ρV
∗

1

tr(V1ρV ∗1 )
=

(
1 0
0 0

)
,

V2ρV
∗

2

tr(V2ρV ∗2 )
=

(
1 0
0 0

)
(84)

V3ρV
∗

3

tr(V3ρV ∗3 )
=

(
0 0
0 1

)
,

V4ρV
∗

4

tr(V4ρV ∗4 )
=

(
0 0
0 1

)
(85)

that is, the above values do not depend on ρ.

Define

ρx =

(
1 0
0 0

)
, ρy =

(
0 0
0 1

)
(86)

and
η = π1δρx + π2δρy (87)

Note that the barycenter of η is

ρη = π1ρx + π2ρy = π1

(
1 0
0 0

)
+ π2

(
0 0
0 1

)
=

(
π1 0
0 π2

)
One can show directly that V(η) = η (see [1]). Define

ρ1 =

(
1 0
0 0

)
, ρ2 =

(
0 0
0 1

)
(88)

and also
η = π1δρ1 + π2δρ2 (89)

Note that the barycenter of η is

ρη = π1ρ1 + π2ρ2 = π1

(
1 0
0 0

)
+ π2

(
0 0
0 1

)
=

(
π1 0
0 π2

)
From this it will also follow that Vη = η [1]. We will show that the entropy
of such η is log(2)− π1 log(π1)− π2 log(π2). Remember that∫

log
(∑

i

f ◦ Fi
f

)
dµ

=

∫
log
(∑

i

f
( ViρV

∗
i

tr(ViρV ∗i )

))
dµ−

∑
i

∫
tr(WiρW

∗
i ) log f

( ViρV
∗
i

tr(ViρV ∗i )

)
dµ.

(90)
For such choice of Vi take

ci = f
( ViρV

∗
i

tr(ViρV ∗i )

)
, i = 1, . . . , 4 (91)

Note that
c1 = c2, c3 = c4 (92)
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Then we can write∫
log
(∑

i

f ◦ Fi
f

)
dη =

∫
log
(∑

i

ci

)
dη −

∑
i

∫
tr(WiρW

∗
i ) log cidη.

(93)

Therefore∫
log
(∑

i

f ◦ Fi
f

)
dη = π1 log

(∑
i

ci

)
+ π2 log

(∑
i

ci

)
−
∑
i

[
tr(Viρ1V

∗
i )π1 log (ci) + tr(Viρ2V

∗
i )π2 log (ci)

]
= π1 log (2c1 + 2c3) + π2 log (2c1 + 2c3)

−
∑
i

[
tr(Viρ1V

∗
i )π1 log (ci) + tr(Viρ2V

∗
i )π2 log (ci)

]
= log (2(c1 + c3))−

∑
i

[
tr(Viρ1V

∗
i )π1 log (ci) + tr(Viρ2V

∗
i )π2 log (ci)

]
= log (2(c1 + c3))

−
[
π1

(
p2

11 log(c1) + p12p21 log(c2) + p21p11 log(c3) + p22p21 log(c4)
)

+π2

(
p11p12 log(c1) + p12p22 log(c2) + p21p12 log(c3) + p2

22 log(c4)
)]

= log (2(c1 + c3))

−
[
p11 log(c1)(π1p11 + π2p12) + p12 log(c2)(π1p21 + π2p22)

+p21 log(c3)(π1p11 + π2p12) + p22 log(c4)(π1p21 + π2p22)
]

= log (2(c1 + c3))

−
[
π1p11 log(c1) + π2p12 log(c2) + π1p21 log(c3) + π2p22 log(c4)

]
= log (2(c1 + c3))− (π1 log(c1) + π2 log(c3))

Finally,∫
log
(∑

i

f ◦ Fi
f

)
dη = log (2(c1 + c3))− (π1 log(c1) + π2 log(c3)). (94)

Now we will use Lagrange multipliers. Define b : R2
+ → R, where R2

+ is
the set of positive coordinates, by

b(x, y) = log (2(x+ y))− (π1 log(x) + π2 log(y))
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We impose the restriction

x+ y = a

for fixed a > 0. We will get bellow the critical point of b under such
restriction. After that we consider a general a > 0.

Define
g(x, y) = x+ y − a

and
Γ(x, y, λ) = b+ λg

Then, ∇Γ = 0 implies
1

x+ y
− π1

x
+ λ = 0 (95)

1

x+ y
− π2

y
+ λ = 0 (96)

x+ y = a (97)

from which follows
x = π1a, y = π2a. (98)

Therefore,
c1 = c2 = π1a, c3 = c4 = π2a (99)

From (94) we get∫
log
(∑

i

f ◦ Fi
f

)
dη = log (2(π1a+ π2a))− (π1 log(π1a) + π2 log(π2a))

= log(2a)− π1 log(π1a)− π2 log(π2a)

= log(2) + log(a)− π1 log(π1)− π1 log(a)− π2 log(π2)− π2 log(a)

= log(2)− π1 log(π1)− π2 log(π2) (100)

This value of entropy is different from the value computed in the same
example of QIFS in [1], [2] which is −

∑
i,j πipji log pji (Example 7 in section

11 [1]).

♦

Given the expression

h0(ν) := inf
f∈B+

∫
log(

k∑
i=1

f ◦ Fi
f

)dν,

for a fixed probability ν, which is invariant by the shift acting on the space
Ω, a natural question is to identify the f which realizes the infimum above.

We will describe below the analysis of the classical case (in the sense
of Stochastic Processes, and not QSP). Our purpose is to explain why
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the definition presented above is a natural generalization of the setting for
Markov Processes. In the case the probability ν comes from a Markov
Process this will be now derived.

Let Ω = INm, where Im = {1, . . . ,m}, and let C = {Cι : ι ∈ ∪n∈NInm} the
collection of cylinder sets in Ω, where

Cι := {ω ∈ INk : w(j) = ij , j = 1, . . . , r, ι = (i1, . . . , ir) ∈ Irm}

and denote by σ(C) the σ-algebra generated by the cylinders in Ω.

Let (P, π) be a Markov chain, so that P = (pij) is a matrix of order n,
with pij ≥ 0,

∑
j pij = 1 (row stochastic), and π = (π1, . . . , πn) is the left

eigenvector with eigenvalue 1. So πP = π, that is,
∑

i πipij = πj .

Associated to the matrix P we have the following measure.

Definition 19. The Markov measure (associated to the chain (P, π)) of
a cylinder is defined as

ν(Cι) := πi1pi1i2pi2i3 · · · pir−1ir (101)

♦

We are interested in the following problem: find the infimum f in

h0(ν) := inf
f∈B+

∫
log(

k∑
i=1

f ◦ Fi
f

)dν (102)

for such ν defined above.

♦

We use the notation ij to denote the cylinder set in INm which consists of
the set of sequences (w1, w2, . . . ) such that w1 = i and w2 = j. Denote by
1ij the indicator function of ij. To simplify, suppose m = 2 so the alphabet
considered contains only two symbols, denoted by 1 and 2. Define the
following function f : IN2 → R+,

f(x) =

2∑
i,j=1

aij1ij(x) (103)

where aij ∈ R+. That is, f is a simple function, constant on ij. In this
form, log f =

∑
i,j log aij1ij .
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Let us suppose that Fi : INm → INm is the mapping Fi(w1, w2, . . . ) =
(i, w1, w2, . . . ). If ν is a Markov measure, we have∫
IN2

log fdν =

∫
IN2

2∑
i,j=1

log (aij)1ijdν =
2∑

i,j=1

log (aij)ν(ij) =
2∑

i,j=1

πipij log aij

(104)
Also, we have for w = (i, j, . . . ),

f ◦ Fl(w) =
∑
i,j

aij1ij(Fl(w)) = ali (105)

To see that, note that by the expression above we have a sum of terms such
that (i, j) = (l, i), therefore aij = ali.

Then ∫
log(

2∑
i=1

f ◦ Fi
f

)dν =

∫
log(

2∑
l=1

f ◦ Fl)dν −
∫

log fdν

=

∫
log(

2∑
l=1

f ◦ Fl)dν −
2∑

i,j=1

πipij log aij (106)

Note that for any w ∈ INm, w = (1, . . . ) or w = (2, . . . ). Then, by (105) we
get

2∑
l=1

f ◦ Fl(w) =

{
a11 + a21 se w = (1, . . . )
a12 + a22 se w = (2, . . . ) (107)

Now fix aij = pji, where pij are the entries of the row stochastic matrix
P initially fixed. Then we get a11 + a21 = p11 + p12 = 1 e a12 + a22 =
p21 + p22 = 1. Therefore for such choice of aij and for any w ∈ INm, the sum
(107) equals 1. So, by (106), we get∫

log(
2∑
i=1

f ◦ Fi
f

)dν = −
2∑

i,j=1

πipij log pij = H(P ) (108)

Therefore,

inf
f∈B+

∫
log(

2∑
i=1

f ◦ Fi
f

)dν ≤ H(P ) (109)

♦
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Now note that any positive function f can be written as

f(w) =
2∑

i,j=1

aijpji 1ji(w)

Define

u(w) :=
2∑

i,j=1

aij 1ji(w)

and

g(w) :=
2∑

i,j=1

pji 1ji(w)

We have∫
IN2

log fdν =

∫
IN2

2∑
i,j=1

log (aijpji)1jidν =
2∑

i,j=1

log (aijpji)ν(ji)

=
2∑

i,j=1

πjpji log(aijpji) =
2∑

i,j=1

πjpji log(aij) +
2∑

i,j=1

πjpji log(pji) (110)

If w = (i, j, . . . ), then f ◦ Fl(w) = alipil and so∑
l

f ◦ Fl =
∑
l

alipil

We write

Lg(u)(w) =
∑
l

f ◦ Fl(w) =
∑
l

∑
i,j

aijpji1ij(Fl(w)) (111)

We also have the following:

Lemma 5. ∫
Lg(log u)dν =

∫
log udν (112)

Proof We have∫
log udν =

∫ ∑
i,j

log(aij)1jidν =
∑
i,j

log(aij)ν(ji) =
∑
i,j

log(aij)πjpji

(113)
And also ∫

Lg(log u)dν =

∫ ∑
l

∑
i,j

log(aij)pji1ij(Fl(w))dν
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=
∑
i,j

log(aij)pji
∑
l

∫
1ij(Fl(w))dν

=
∑
i,j

log(aij)pji
∑
l

ν(lj) =
∑
i,j

log(aij)pji(π1p1j+π2p2j) =
∑
i,j

log(aij)πjpji

(114)
So, ∫

Lg(log u)dν =

∫
log udν (115)

�

Then, by using (110), (112) and (113),∫
log(

k∑
i=1

f ◦ Fi
f

)dν =

∫
log(

2∑
l=1

f ◦ Fl)dν −
∫

log fdν

=

∫
log(

2∑
l=1

f ◦ Fl)dν −
( 2∑
i,j=1

πjpji log(aij) +
2∑

i,j=1

πipij log(pij)
)

=

∫
log (Lg(u)) dν −

∫
log u dν +H(P ) (116)

=

∫
log (Lg(u)) dν −

∫
Lg(log u) dν +H(P ) (117)

We would like to show that∫
log (Lg(u)) dν −

∫
Lg(log u) dν ≥ 0 (118)

This follows immediately if we show that for w = (i, j, . . . ),

log (Lg(u)) (w) ≥ Lg(log u) (w) (119)

The last expression follows from convexity. Indeed, to prove the above
inequality, it is enough to show that for any w = (i, j, . . . ), we have

log
(∑

l

alipil

)
≥
∑
l

pil log ali (120)

And such inequality is true, because the pil are positive numbers with∑
l pil = 1, for any i, and the function log is concave.

Therefore we conclude from (117) and (118) that∫
log(

k∑
i=1

f ◦ Fi
f

)dν ≥ H(P ) (121)

São Paulo J.Math.Sci. 5, 1 (2011), 53–87



86 A. Baraviera; C. F. Lardizabal, A. O. Lopes, and M. Terra Cunha

Conclusion By (109) and (121) we conclude that if ν is a Markov mea-
sure associated to a stochastic matrix P , then

inf
f∈B+

∫
log(

2∑
i=1

f ◦ Fi
f

)dν = H(P ), (122)

and the function f such that

f(x) =
2∑

i,j=1

pij1ij(x) (123)

realizes the infimum.

♦

We conclude this section by stating the variational problem of pressure
for our setting. We consider the the set of Vi, i = 1, 2, . . . , k fixed, and
we consider a variable set of Wi, i = 1, 2, . . . , k. In the normalized case,
the different possible choices of pi, i = 1, 2, . . . , k, (which means different
choices of Wi, i = 1, 2, . . . , k) play here the role of the different Jacobians of
possible invariant probabilities (see [15] II.1, and [12]) in Thermodynamic
Formalism. In some sense the probabilities µ can be identified with the
Jacobians (this is true at least for Gibbs probabilities of Hölder potentials
[17]). The set of Gibbs probabilities for Hölder potentials is dense in the
set of invariant probabilities [11].

Let H : MN → MN be a hermitian operator. We have the following
problem. Define F0 :MF → R,

F0(µ) := h0(µ)− 1

T
tr(Hρµ) = inf

f∈B+

∫
log(

k∑
i=1

f ◦ Fi
f

)dµ− 1

T
tr(Hρµ),

where ρµ is the barycenter of µ, that is, the unique ρ ∈MN such that

l(ρ) =

∫
MN

ldµ,

for all l ∈ V ∗. Then, in order to find the associated Gibbs state we have to
find µ̂ ∈MF such that

F0(µ̂) = sup
µ∈MF

F0(µ).

We consider above each µ which is associated to a possible set of Wi.

♦
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