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Stability Problems for the Euler Equation on the
2-Dimensional Torus

Piero Negrini

Dipartimento Matematico ”G. Castelnuovo”, Sapienza, Università di Roma.

Abstract. We discuss the classical problem of the stability of the sta-
tionary solution ψ∗ = − cos y for the Euler equation on a 2-dimensional
flat torus of sides 2πL and 2π. We prove that ψ∗ is linearly stable if
L ∈ (0, 1) and that exponentially unstable modes occur in a right
neighborhood of L = n for any integer n.

This talk is based on the results of a joint work with my colleague Paolo
Buttà1. We consider a 2-dimensional torus T 2(L):

T 2(L) = {(z = (x, y) ∈ R2, mod (2πL, 2π)} (0.1)

where L ∈ (0,∞). On T 2(L) we consider the Euler Equation written in
terms of the stream function φ ∈ H2(T 2(L),R):

∂∆φ

∂t
+ 〈J∇φ,∇∆φ〉 = 0 (0.2)

(where 〈J∇φ,∇∆φ〉 = ∂φ
∂y

∂∆φ
∂x −

∂φ
∂x

∂∆φ
∂y ). As it is well known, equation

(0.2) admits two independent first integrals:

I1 =

∫
T 2(L)

dx dy |∇φ|2

I2 =

∫
T 2(L)

dx dy (∆φ)2 (0.3)

Any regular function defined on T 2(L), depending either on the y variable
or on the x variable is a stationary solution of (0.2). More generally, any
function φ such that ∆φ is functionally dependent on φ is a stationary so-
lution. Obviously the space spanned by the eigenfunctions of the Laplacian
with eigenvalue −1 is a space of stationary solutions.

1Dipartimento Matematico ”G. Castelnuovo”, Sapienza, Università di Roma.
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We are interested in the dependence on L of the stability properties of
the stationary solution φ∗ = − cos y (a rather old problem). Setting

φ = − cos y + Ψ (0.4)

we rewrite (0.2):

∂∆Ψ

∂t
+ sin y

∂

∂x
(Ψ + ∆Ψ) + 〈J∇Ψ,∇∆Ψ〉 = 0 (0.5)

The corresponding linear equation is:

∂∆Ψ

∂t
+ sin y

∂

∂x
(Ψ + ∆Ψ) = 0 (0.6)

According to Arnol’d, the stationary solution Ψ∗ = 0 is unstable [resp. sta-
ble] for L > 1 [resp. 0 < L ≤ 1], and the proof of instability can be obtained
using the same techniques already employed in the paper by Meshalkin and
Sinai [10]. Previous announcement of this result was given in the report
”A.N. Kolmogoroff’s Seminar on selected problems of analysis”2 by Arnol’d
and Meshalkin [3]. We recall that these authors considered the (forced)
Navier-Stokes equation,

∂∆ψ

∂t
+ 〈J∇ψ,∇∆ψ〉 = ν∆2ψ + γ cos y,

and the stationary solution ψ∗ = −γ
ν cos y. For the corresponding linearized

equation,
∂∆Ψ

∂t
+
γ

ν
sin y

∂

∂x
(Ψ + ∆Ψ) = ν∆2Ψ, (0.7)

the following theorem was proved using techniques of continued fractions:

Theorem 0.1. Consider the stationary solution ψ∗ = −γ
ν cos y. If L < 1

then ψ∗ is stable for all γ, while for L > 1 (and γ
ν fixed) one can always

find ν0 > 0 such that the zero solution is exponentially unstable for ν < ν0.

Note that the case L = 1 is not included in the theorem.

Few years after the Meshalkhin-Sinai paper, V.I.Yudovich [11] employed
the same techniques to study the bifurcation phenomenon occurring when
there is a loss of stability of the laminar flow of a viscous incompressible
fluid. In recent years Friedlander et al. [6], following the Arnol’d suggestion,

studied the instability of the stationary solution φ(m) = − 1
m cosmy, m ∈ N,

to equation (0.2). The instability property relies on the existence of roots
with positive real part of an infinite algebraic system of complex variable,
with coefficients depending on L. These roots determine the exponential
growth of the corresponding unstable modes of the linearized equation. In

2The seminar topics can be read in the book: ”Kolmogorov In Perspective”, History
of Mathematics, Vol 20, Am. Math. Soc.—London Math. Soc., (2000), pp 89-90.
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particular, for m = 1, they proved the existence of real roots for L >
1. Moreover, numerical calculations indicate that for any L > 1 there is
exactly one real root.

In this talk, after a preliminary discussion of the stability for L ≤ 1, we
present a new proof of the exponential instability of ψ∗ when L > 1 (see
Theorem 0.5). More precisely we analyze the existence of 2π-periodic so-
lution of second order linear differential equation (0.27) (the well-known
Rayleigh equation) whose coefficients depend on two parameters (ω, ε) ∈
C × R. To this purpose we consider the functional system (0.30) which is
solved by a perturbative approach, obtaining a unique solution ω = ω(ε)
defined in a right neighborhood of ε = 0. This function ensures the exis-
tence of periodic solutions for the corresponding one parameter differential
equation. Moreover, <ω(ε) gives the strenght of the exponential growth
of the unstable mode of the linearized equation (0.6). We notice here that
<ω(ε) = O(ε), =ω(ε) = o(ε). However we are not able to prove the identity
=ω(ε) ≡ 0. The numerical result in [6] strongly support this conclusion,
but till now the analytical proof is missing.3

We begin now to discuss the case L ≤ 1. We observe that both equations
(0.5), (0.6) admit the first integral

I :=

∫
T 2(L)

dx dy
(
(∆Ψ)2 − |∇Ψ|2

)
(0.8)

Let us emphasize that I is a positive, but not a positive-definite functional.
Indeed, I is zero for L < 1 on the space spanned by the functions sin y,
cos y, while it is zero for L = 1 also on the space spanned by the functions
sinx, cosx. Therefore for L ≤ 1 the first integral I is not sufficient in
order to establish the stability of the null stationary solution neither for
the nonlinear equation nor for the linear one.

From now on we concentrate on the latter and we remark that it admits
also the family of first integrals Ik2 :

Ik2 :=

∫
T 2
L

dx dy eik2y∆Ψ, k2 ∈ Z. (0.9)

Writing Ψ in Fourier expansion,

Ψ(x, y) =
∑
k∈ Z2

Ψk1,k2e
i
(

k1
L
x+k2y

)
, (0.10)

3In [10] it was proven that the analogous equation has only real roots.
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equation (0.6) becomes the following infinite system of O.D.E.,[(
k1

L

)2

+ k2
2

]
Ψ̇k1,k2 =

k1

2L

{[(
k1

L

)2

+ k2
2 + 2k2

]
Ψk1,k2+1

−

[(
k1

L

)2

+ k2
2 − 2k2

]
Ψk1,k2−1

}
.

(0.11)

To each fixed k1 ∈ Z there corresponds a subsystem Sk1 . We can represent
I and Ik2 in terms of the Fourier coefficients,

I =
∑

(k1,k2)∈Z2

[(
k1

L

)2

+ k2
2

][(
k1

L

)2

+ k2
2 − 1

]
|Ψk1,k2 |

2 , (0.12)

Ik2 = −k2
2 Ψ0,k2 , k2 ∈ Z. (0.13)

We notice that the first integral (0.12) is given by the sum
∑

k1∈ Z Ik1

Ik1 :=
∑
k2∈Z

[(
k1

L

)2

+ k2
2

][(
k1

L

)2

+ k2
2 − 1

] ∣∣Ψ(k1,k2)

∣∣2 , k1 ∈ Z, (0.14)

each one of them being a first integral of the subsystem Sk1 we obtain from
(0.11) by fixing k1.

For each one of the subsystems Sk1 we have the two (possibly formal) first
integrals H±k1 :

H+
k1

:=
∑
k2∈ Z

[(
k1

L

)2

+ k2
2

]
Ψk1,k2

H−k1 :=
∑
k2∈ Z

(−1)k2

[(
k1

L

)2

+ k2
2

]
Ψk1,k2

(0.15)

Then we have the following Theorem:

Theorem 0.2. If 0 < L < 1 the zero solution of (0.6) is stable.

Proof. Assume 0 < L < 1. In this case, see (0.12), the first integral
I implies that all the Fourier coefficients Ψk1,k2 are controlled except the
coefficients Ψ0,±1, which however are first integrals, see (0.13).

Remark 0.3. Of course, this result does not imply the stability of the zero
solution for the nonlinear equation (0.5), because Ik2 is not a first integral
with respect to this evolution.

São Paulo J.Math.Sci. 5, 1 (2011), 89–98
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For L = 1 even the problem of linear stability still is open. Indeed, again by
virtue of (0.12) and (0.13), all the Fourier coefficients Ψk1,k2 are controlled,
except Ψ1,0. We remark that system S1 decouples now into the equation

Ψ̇1,0 =
1

2
[a1 − a−1] (0.16)

and the two systems S+
1 and S−1 defined respectively by the equations4 :

ωk2 ȧk2 = ak2+1 − ak2−1, (0.17)

where ωk2 =
k22+1

k22
, ak2 = k2

2Ψ1,k2 , a0 = 0 and k2 ≥ 1 for S+
1 , k2 ≤ −1 for

S−1 . Moreover S±1 admits the first integral I±1 :

I±1 :=
∑
±k2∈N

ωk2 |ak2 |2. (0.18)

We could try to use H±1 5, see (0.15), to obtain:

|Ψ1,0| ≤
∑
k2 6=0

ωk2 |ak2 |+ |H
+
1 |+ |H

−
1 | (0.19)

However I±1 do not make sure the convergence of the series in the r.h.s. of
(0.19) as the space `1 is not a subset of the space `2.

Obviously the first integrals I±1 prevent the exponential instability of the
zero solution of system S1. However, the secular instability could occur. Re-
calling the strong relations between Euler equations and the Euler-Poisson
equations for the rigid body (see [4], [8]), in our opinion the case L = 1
could be the analogous of the symmetric case:

Ω̇1 = (C −A)Ω2Ω3

Ω̇2 = (A− C)Ω1Ω3

Ω̇3 = 0 (0.20)

Any stationary solutions (p, q, 0) is unstable (not exponentially unstable)
and the solutions of the corresponding linear equations have a secular
growth.

4Systems of infinite linear equations related in some sense to the Euler Equation were
studied in [9]. However (0.17) seems to belong to a different class of difficulty.

5In fact system S±1 admits also the (possibly formal) first integral H±o :

H±o :=
∑
±k2∈N0

ω2k2+1a2k2+1

São Paulo J.Math.Sci. 5, 1 (2011), 89–98
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We are not able to prove the existence of solutions to S±1 in the space `2
such that

lim sup
t→∞
|
∫ t

0
dτ [a1(τ)− a−1(τ)]| =∞

Of course, we can consider the following solution:

ak2 =

{
0, k2 ≤ −1
0, k2 = 2n, n ≥ 1
1, k2 = 2n+ 1, n ≥ 0

(0.21)

so that Ψ1,0 = t. Then Ψ = eix[t+
∑

n≥0
1

(2n+1)2
ei(2n+1)y] does not belong

to H2(T 2(L),R), and I becomes meaningless.

Remark 0.4. Let ak2 = 0, ∀k2 ≤ 0. We define the sequence of functions
{Ak2}k2≥1:

Ak2(t) =

∫ t

0
dτ ak2(τ)

and we consider the integral system

ωk2 [ak2(t)− ak2(0)] = Ak2+1 −Ak2−1, (0.22)

obtained from (0.17) for k2 ≥ 1. Recall that the sequence of functions
{|ak2(t)|} is uniformly bounded, see (0.18). Therefore necessarly A2(t) is
bounded and therefore also A2k2(t), is bounded for any natural k2, while
A2k2+1(t) is bounded for k2 ≥ 1 if and only if A1(t) is bounded.

From (0.22) we easily get:∑
k2∈N

ω2k2 [a2k2(t)− a2k2(0)] = −A1(t) (0.23)

Therefore we can conclude that the divergence of the series in the l.h.s. is
a necessary condition for the secular instability6.

We consider now the case L > 1. We have the following instability theorem:

Theorem 0.5. The zero solution of equation (0.6) is exponentially unstable
for L belonging to a right neighborhood of L = 1. Moreover, there exists a
number L0, L0 ≥ 1, such that the zero solution is unstable for all L > L0.

Theorem 0.5 is a straightforward consequence of the following main the-
orem.

6Recall however that |a2k2(t)− a2k2(0)| is bounded for any k2 ∈ N
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Theorem 0.6. The set L = k, k ∈ N, is a bifurcation set. More precisely,
there exist ε0 > 0, a function ω+ ∈ C1([(0, ε0);C) with <(ω+(ε)) ∈ [ε, 3ε]
for all ε ∈ (0, ε0), and a solution to (0.6) of the form:

Ψ+(x, y, t) = e
k

Lk(ε)
(ix+ω+(ε)t)

f+(y, ε), (0.24)

Moreover there exists a function ω− ∈ C1([(0, ε0);C)) with −<(ω−(ε)) ∈
[ε, 3ε] for all ε ∈ (0, ε0), and a solution of the form

Ψ−(x, y, t) = e
k

Lk(ε)
(ix+ω−(ε)t)

f−(y, ε). (0.25)

Finally functions f±(·, ε) ∈ C2(S1;C) are independent of k and Lk(ε) :=
k(1 + ε), k ∈ N.

Remark 0.7. We emphasize that the above result also implies that the
number of unstable modes for the zero solution is diverging as L → ∞.
Note in fact that, letting n = n(L) be the largest positive integer such
that L

[L]−n < 1 + ε0, we have n(L) → ∞ as L → ∞, and for each k =

[L] − n, . . . , [L] there exists εk ∈ (0, ε0) such that k(1 + εk) = L. There
are therefore n + 1 unstable modes. This growth of unstable modes is the
analogous to that one for the Navier-Stokes Equation. Indeed the dimension
of the unstable manifold of the Kolmogorov flow is equal to 2[L] (see [5]).

Let us sketch the main steps of the proof of Theorem (0.6), the detailed
proof can be found in [7]. Given ε ∈ (0, 1) and ω ∈ C, a function of the
form

Ψ(x, y, t) = e
1

1+ε
(ix+ωt)f(y) (0.26)

is a solution to ( 0.6) if and only if f(y) is a 2π-periodic solution of the
Rayleigh equation

d2f

dy2
− iω + ε(2 + ε) sin y

(1 + ε)2(iω − sin y)
f = 0. (0.27)

Our strategy is to prove by a perturbative method that this solution does
exist at least for small ε and ω. It is not restrictive to assume f(0) = 1. Let
f(y, ω, β, ε), β ∈ C, be the solution to (0.27) with f(0) = 1 and f ′(0) = β.
Clearly f(y, ω, β, ε) solves the integral equation

f(y) = 1 + βy +

∫ y

0
dτ (y − τ)G(τ, ω, ε)f(τ). (0.28)

where

G(τ, ω, ε) :=
iω + ε(2 + ε) sin τ

2π(1 + ε)2(iω − sin τ)
. (0.29)

São Paulo J.Math.Sci. 5, 1 (2011), 89–98
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By imposing periodic boundary condition we obtain the following system
of equations in the variables (ω, β, ε),

∫ 2π

0
dτ G(τ, ω, ε) f(τ, ω, β, ε) = 0,

∫ 2π

0
dτ τ G(τ, ω, ε) f(τ, ω, β, ε) = β,

(0.30)

Our purpose is to solve the system (0.30) with respect to (ω, β), getting
functions ω = ω(ε), β = β(ε) (defined in a right neighborhood of ε = 0).
Setting

R(y, ω, β, ε) := f(y, ω, β, ε)− 1− βy, (0.31)

we rewrite (0.30) as follows,{ E0(ω, ε) + E1(ω, ε)β +A0(ω, β, ε) = 0,

E1(ω, ε) + E2(ω, ε)β +A1(ω, β, ε) = β,
(0.32)

where

En(ω, ε) =

∫ 2π

0
dτ τnG(τ, ω, ε), n = 0, 1, 2,

An(ω, β, ε) =

∫ 2π

0
dτ τnG(τ, ω, ε)R(τ, ω, β, ε), n = 0, 1.

We notice that E0(iz, ε) is zero for z ∈ (0, 1). Due to this degeneracy
the standard implicit function theorem does not apply. To overcome this
difficulty we exploit a fixed point argument in a cone

K 1
2

:=

{
ω ∈ C : 0 < <ω < 1

2
, |=ω| ≤ |<ω|

}
.

Plugging the second equation of system (0.32) into the first we can rewrite
the latter in the form

ω = Tβ,ε(ω), (0.33)

where

Tβ,ε(ω) := ω − E0(ω, ε)− E1(ω, ε)2 − E1(ω, ε)E2(ω, ε)β

− E1(ω, ε)A1(ω, β, ε)−A0(ω, β, ε).
(0.34)

We have the following Lemma:

Lemma 0.8. There exists ε′0 > 0 such that, for any |β| ≤ 1 and ε ∈ (0, ε′0),
the compact set Sε := {ω ∈ K : ε ≤ <ω ≤ 3ε} is invariant under the map
Tβ,ε and Tβ,ε is a contraction on Sε. Therefore, the fixed point equation

São Paulo J.Math.Sci. 5, 1 (2011), 89–98
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(0.33) can be solved for any |β| ≤ 1 and ε ∈ (0, ε′0), getting ω = ω̄(β, ε)
with ε ≤ <ω̄(β, ε) ≤ 3ε.

Plugging ω = ω̄(β, ε) into the second equation of system (0.32), the latter
assume the form

β = Qε(β). (0.35)

Lemma 0.9. There exists ε0 ∈ (0, ε′0] such that, for any ε ∈ (0, ε0) the
unit disk {β ∈ C : |β| ≤ 1} is invariant under the map Qε and Qε is a
contraction on it. Therefore, the fixed point equation (0.35) can be solved
for ε ∈ (0, ε0), getting β = β(ε).

The two lemmata allow to achieve the proof of Theorem (0.6) defining
ω+(ε) := ω̄(β(ε), ε). Completely analogous is the proof of the existence of
ω−(ε).

Finally the claim of the theorem is proved.

Remark 0.10. One can easily verify that any 2π-periodic solution to the
Rayleigh equation (0.27) must satisfies the following conditions:

∫ 2π

0
dy{|df(y)

dy
|2 +

|ω|2 + =ω sin y[1− ε(ε+ 2)]− ε(ε+ 2) sin2 y

(1 + ε)2[<ω2 + (=ω + sin y)2]
|f(y)|2}

= 0

<ω
∫ 2π

0
dy

sin y

[<ω2 + (=ω + sin y)2]
|f(y)|2 = 0

where |f(y)|2 = f(y)f(y) and analogously for |df(y)
dy |

2 and |ω|2. Assuming

<ω 6= 0 we get
∫ 2π

0
dy{|df(y)

dy
|2 +

|ω|2 − ε(ε+ 2) sin2 y

(1 + ε)2[<ω2 + (=ω + sin y)2]
|f(y)|2} = 0∫ 2π

0
dy

sin y

[<ω2 + (=ω + sin y)2]
|f(y)|2 = 0

If ε ∈ (−1, 0] the first equality holds only for f ≡ 0. Then, we arrive again
at the same conclusion already obtained discussing the case L ≤ 1.
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