Existence of solutions for singular fully nonlinear equations

Marcelo Montenegro*

Universidade Estadual de Campinas, IMECC, Departamento de Matemática, Rua Srgio Buarque de Holanda, 651 CEP 13083-859, Campinas, SP, Brasil email: msm@ime.unicamp.br

Abstract. In this note we describe how to approximate some classes of singular equations by nonsingular equations. We obtain a solution to each nonsingular problem and estimates guaranteeing that the limiting function is a solution of the original problem.

1. Introduction

The following problem was studied in [5]

$$\begin{cases} -\Delta u = \chi_{\{u>0\}} \left(-u^{-\beta} + \lambda u^p \right) & \text{ in } \Omega \\ u = 0 & \text{ on } \partial \Omega \end{cases}$$
(1)

 $0 < \beta < 1$ and 0 .

Theorem 1.1. There exists a maximal solution for every $\lambda > 0$. There is constant $\lambda^* > 0$ such that for $\lambda > \lambda^*$ the maximal solution is positive. And for $\lambda < \lambda^*$, the maximal solution vanishes on a set of positive measure.

We solve problem (1) by perturbing the equation as $-\Delta u + \frac{u}{(u+\varepsilon)^{1+\beta}} = \lambda u^p$. The solutions $u_{\varepsilon} \searrow u$ pointwise and

$$\int_{\Omega} u(-\Delta\varphi) + \int_{\{u>0\}} \frac{1}{u^{\beta}}\varphi \le \lambda \int_{\Omega} u^{p}\varphi, \tag{2}$$

 $\forall \varphi \in C^2(\overline{\Omega}), \, \varphi \geq 0, \, \varphi = 0 \text{ on } \partial \Omega.$

* Corresponding author.

2000 Mathematics Subject Classification. 34B16, (35J20).

Key words: singular problems, multiple solutions, variational methods.

99

There are two approaches to show that u is indeed a solution of (1). Relation (2) tells us that u is a maximal subsolution. We then regularize it and show that $u \in C^{1,\frac{1-\beta}{1+\beta}}$ and indeed solves the problem (1). In doing this, we need to obtain a local estimate $|\nabla u| \leq C u^{\frac{1-\beta}{2}}$ in $\Omega' \subset \Omega$. One of the main ingredients is the following Harnack type lemma.

Lemma 1.2. For every ball $B_r(p) \subset \Omega$ there are constants $c_0, \tau > 0$ depending only on n and β such that if

$$\int_{\partial B_r(p)} u \ge c_0 r^{\frac{2}{1+\beta}}, \text{ then } u(x) \ge \tau \int_{\partial B_r(p)} u \quad a.e. \text{ in } B_{r/2}(p)$$

The second approach relies on an estimate for u_{ε} by the maximum principle, namely $|\nabla u_{\varepsilon}| \leq C u_{\varepsilon}^{\frac{1-\beta}{2}}$ in $\Omega' \subset \subset \Omega$. The idea to obtain such an estimate is to define $v = \frac{|\nabla u_{\varepsilon}|^2}{u_{\varepsilon}^{1-\beta}}\varphi_1^2$, where φ_1 is the first eigenfunction of the Laplacian with zero boundary condition. The function v has a maximum at $x_0 \in \Omega$, and then $\Delta v(x_0) \leq 0$. If the estimate is not true, it is possible to take a constant C > 0 independently of ε such that $\sup v > C$ and by computation $\Delta v(x_0) > 0$, a contradiction. Using the estimate and multiplying the equation by an adequate test function, we let $\varepsilon \to 0$ in the equation to get a weak solution.

The next problem was studied in [7]

$$\begin{cases} -\Delta u = \chi_{\{u>0\}} \left(\log u + \lambda u^p \right) & \text{ in } \Omega \\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

Both approaches described above work in this case and an analogous result to Theorem 1.1 holds true. The estimate obtained for the maximal subsolution (which is shown to be a solution) is $|\nabla u| \leq Cu$ in $\Omega' \subset \subset \Omega$ and $u \in C^{1,1}$, a better regularity than the one for (1). This is roughly explained by the fact that $\log u$ is less singular than $-1/u^{\beta}$. The estimate by maximum principle is $|\nabla u_{\varepsilon}| \leq Cu_{\varepsilon}$ in $\Omega' \subset \subset \Omega$.

2. Fully nonlinear elliptic equations

We proceed to discuss in more detail the following fully nonlinear problem which was addressed in a work in progress with E. Teixeira [8]. We consider

$$\begin{cases} F(D^2u) &= G\left(x, u, |\nabla u|^2\right) & \text{in} \quad \Omega\\ u &= f & \text{on} \quad \partial\Omega \end{cases}$$

with $f \in C^{1,\alpha}(\partial\Omega)$ and $G: \Omega \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ a C^1 function. Following [3], we define $F: \operatorname{Sym}(d \times d) \to \mathbb{R}$ and assume F(0) = 0. The uniform ellipticity

reads as follows: $\exists \lambda, \Lambda, 0 < \lambda \leq \Lambda$ such that

$$F(\mathcal{M} + \mathcal{N}) \le F(\mathcal{M}) + \Lambda \|\mathcal{N}^+\| - \lambda \|\mathcal{N}^-\|, \ \forall \mathcal{M}, \mathcal{N} \in \operatorname{Sym}(d \times d).$$

In order to state our Lipschitz estimate, let $\phi: (0, \infty) \to \mathbb{R}$ be such that $\liminf_{s \to \infty} \phi(s) \ge 0$. We define the asymptotic behavior of ϕ passing 0, $\kappa: (0,1) \to (0,\infty)$ by $\kappa(\varepsilon) := \inf\{s: \phi(s) > -\varepsilon\}.$

Theorem 2.1. Let $u \in C^3(\Omega)$ be a solution. Define

$$\sigma(|p|) := \inf_{(x,u)} \frac{D_u G(x,u,|p|^2) |p|^2 - \left| D_x G(x,u,|p|^2) \right| |p|}{G^2(x,u,|p|^2)}$$

assume $S := \liminf_{\substack{|p| \to \infty}} \sigma(|p|) \ge 0$. Then $\max_{\overline{\Omega}} |\nabla u| \le C$, where C depends only on $d, \lambda, \Lambda, \|f\|_{C^{1,\alpha}}$ and the asymptotic behavior of σ passing 0.

The proof runs by defining $v = |\nabla u|^2$. We compute $D_{i,j}v$ and use the equation. Since v has a maximum at $x_0 \in \Omega$, we use the asymptotic behavior to conclude the estimate. It is not a proof by contradiction.

Specializing the function G we study the problem

$$\begin{cases} F(D^2u) = \beta(u)\Gamma(|\nabla u|^2) & \text{in } \Omega\\ u = f & \text{on } \partial\Omega, \end{cases}$$
(3)

where $\beta \colon \mathbb{R} \to \mathbb{R}$ and $\Gamma \colon [0, \infty) \to \mathbb{R}$ are $C^{1,\alpha}$ functions. We have two consequences of Theorem 2.1.

Corollary 2.2. If $\inf_u \frac{\beta'(u)}{\beta(u)^2} > -\infty$ and $\frac{\Gamma(\tau)}{\tau} \to +\infty$ as $\tau \to +\infty$, then $\max_{\overline{\alpha}} |\nabla u| \leq C$.

Corollary 2.3. If β is nondecreasing, $|\beta| + |\beta'| > 0$ and $\liminf_{\tau \to \infty} \Gamma(\tau) > 0$, then $\max_{\overline{\Omega}} |\nabla u| \leq C$.

Definition: u is a viscosity subsolution in Ω if $F(D^2u) \ge g$ in the viscosity sense in Ω if, that is, for every $x_0 \in \Omega$, V_{x_0} neighborhood, $\varphi \in C^2(V_{x_0})$, $u \le \varphi$ in V_{x_0} , $u(x_0) = \varphi(x_0)$, then $F(D^2\varphi(x_0)) \ge g(x_0)$.

Definition: u is a viscosity supersolution in Ω if $F(D^2 u) \leq g$ in the viscosity sense in Ω if, that is, for every $x_0 \in \Omega$, V_{x_0} neighborhood, $\varphi \in C^2(V_{x_0})$, $u \geq \varphi$ in V_{x_0} , $u(x_0) = \varphi(x_0)$, then $F(D^2\varphi(x_0)) \leq g(x_0)$. It is possible to refrase this definition with φ being a quadratic function.

A viscosity solution is a continuous function u which is a subsolution and a supersolution.

Definition: a continuous function u satisfies $F(D^2u) = +\infty$ at a point X_0 if u cannot be touched from above by a smooth function at X_0 .

The idea behind the above definition relies in the fact that if u(x) = |x|, then $\Delta u = (n-1)/|x|$ in the distributional sense. We could say that $\Delta u(0) = +\infty$. In the light of the viscosity theory, given an arbitrary positive number K, $P_K(x) = \frac{K}{2n}|X|^2$ touches u at 0 from below. Indeed, P(0) = u(0) and in $0 < |x| < \frac{1}{K}$, we have $u(x) > P_K(x)$. Thus, " $\Delta u(0) \ge K$ " for every K.

Definition: a continuous function u is a viscosity solution in the topological sense if it satisfies $F(D^2u) = +\infty$ at a point X_0 .

The approach to solve (3) is by considering again a perturbed problem

$$\begin{cases} F\left(D^2 u_{\epsilon}\right) &= \beta_{\epsilon}(u_{\epsilon})\Gamma\left(|\nabla u_{\epsilon}|^2\right) & \text{in} \quad \Omega\\ u_{\epsilon} &= f & \text{on} \quad \partial\Omega. \end{cases}$$
(4)

Using Corollary 2.2 we derive existence of a Lipschitz viscosity solution in the topological sense for

$$\begin{cases} F(D^2u) = \frac{1}{|u|^q} \Gamma\left(|\nabla u|^2\right) & \text{in} \quad \Omega\\ u = f & \text{on} \quad \partial\Omega, \end{cases}$$
(5)

with $q \ge 1$, $\Gamma \ge 0$, Γ superlinear and F concave. In this case $\beta_{\epsilon}(u) = 1/u^q$ for $u > \varepsilon$ and $\beta_{\epsilon}(u) = \varepsilon$ for $u < -\varepsilon$. Between $-\varepsilon$ and ε , $\beta_{\epsilon}(u)$ is a fourth order polynomial. Since $\beta_{\epsilon}(u)$ is not monotone, Perron's method should be adapted by adding a term ku in both sides of the equation. This gives a solution u_{ε} to (4). The estimate of Theorem 2.1 allows us to let $u_{\varepsilon} \to u$, thus obtaining a viscosity solution of (5).

Another existence of viscosity solution result can be obtained using Corollary 2.3 for the problem

$$\begin{cases} F(D^2u) = \chi_{\{u>0\}}\Gamma\left(|\nabla u|^2\right) & \text{in} \quad \Omega\\ u = f & \text{on} \quad \partial\Omega. \end{cases}$$
(6)

In this case β_{ε} is defined as follows. Let ρ be a smooth function supported in [0, 1], $\rho > 0$ in (0, 1) and normalized as to $\int_{\mathbb{R}} \rho = 1$. We define

$$\beta_{\epsilon}(s) := \frac{1}{2} \int_0^{s/\epsilon} \rho(\tau) d\tau - \frac{1}{2} \int_0^{-s/\epsilon} \rho(\tau) d\tau + \frac{1}{2} + \epsilon,$$

which satisfy the assumptions of Corollary 2.3.

Equations similar to (5) and (6) have been treated in [4, 6]. The solutions of the equations may exhibit a free boundary, whose regularity can be studied with techniques from [1].

Another problem that could be treated with our techniques is

$$\begin{cases} F(D^2u) = \frac{1}{|u|^q} & \text{in } \Omega \\ u = f & \text{on } \partial\Omega \end{cases}$$

$$(7)$$

where 0 < q < 1 and F is concave. There is a viscosity solution in the pointwise topological sense. Moreover, $u \in C^{1,\frac{1-q}{1+q}}$, the regularity of the first problem (1).

In the proof we use a version of Theorem 2.1 and ideas from the proof of existence of solution to problem (5). Here β_{ϵ} is the same used to solve (5) and is not monotone.

3. Examples and comparison to our results

In problem (5) we have shown existence of solution to

$$\begin{cases} F(D^2u) = \frac{1}{|u|^q} |\nabla u|^2 & \text{in} \quad \Omega\\ u = f & \text{on} \quad \partial \Omega \end{cases}$$

if $q \ge 1$. There is a result in [2] saying that

$$\begin{cases} \Delta u = \frac{1}{|u|^q} |\nabla u|^2 - h & \text{in} \quad \Omega\\ u = 0 & \text{on} \quad \partial \Omega \end{cases}$$

has a $\geq 0, \neq 0$ solution if and only if $q \leq 2$, provided q > 0 and h is smooth and positive at every compact subset of Ω .

By problem (7) we know that

$$\begin{cases} F(D^2u) &= \frac{1}{|u|^q} & \text{in} \quad \Omega\\ u &= f & \text{on} \quad \partial\Omega \end{cases}$$

has a solution if 0 < q < 1, remember $f \ge 0$. The first problem (1)

$$\begin{cases} \Delta u &= \frac{1}{|u|^q} & \text{in} \quad \Omega \\ u &= 0 & \text{on} \quad \partial \Omega \end{cases}$$

has no positive solution if 0 < q < 1. Notice that

$$\begin{cases} -\Delta u = \chi_{\{u>0\}} \left(-u^{-q} + \lambda \right) & \text{ in } \Omega \\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

has no solution if $q \ge 1$.

But by problem (6)

$$\begin{cases} F(D^2u) = \chi_{\{u>0\}} & \text{in} \quad \Omega\\ u = f & \text{on} \quad \partial\Omega \end{cases}$$

has a solution.

Acknowledgement. The author would like to thank the organizers of the IST-IME meeting for their kind invitation. He was partially supported by CNPq.

References

- H. W. Alt and L. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981), 105–144.
- [2] D. Arcoya, J. Carmona, T. Leonori, P. Martnez-Aparicio, L. Orsina, F. Petitta, Existence and nonexistence of solutions for singular quadratic quasilinear equations, J. Differential Equations 246 (2009), 4006–4042.
- [3] X. Cabré and L. Caffarelli, Fully nonlinear elliptic equations. American Mathematical Society Colloquium Publications, 43. American Mathematical Society, Providence, RI, 1995.
- [4] M. Crandall, P. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193–222.
- [5] J. Dávila and M. Montenegro, Positive versus free boundary solutions to a singular elliptic equation, J. Anal. Math. 90 (2003), 303–335.
- [6] A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 (1991), 721–730.
- [7] M. Montenegro and O. Queiroz, Existence and regularity to an elliptic equation with logarithmic nonlinearity, J. Differential Equations 246 (2009), 482–511.
- [8] M. Montenegro and E. Teixeira, Gradient estimates for viscosity solutions of singular fully non-linear elliptic equations
- J. Shi and M. Yao, On a singular nonlinear semilinear elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 1389–1401.