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Abstract. We consider the global attractor Af for the semiflow gen-
erated by a scalar semilinear parabolic equation of the form ut =
uxx + f(u, ux), defined on the circle, x ∈ S1. Using a characteriza-
tion of the period maps for planar Hamiltonian systems of the form
u′′ + g(u) = 0 we discuss questions related to the topological equiva-
lence between global attractors.

1. Introduction

In the following we consider the global attractors of semiflows generated
by scalar semilinear parabolic equations of the form

ut = uxx + f(u, ux) , (1)

defined on the circle, x ∈ S1 = R/2πZ, with appropriate smooth and
dissipative nonlinearities f = f(u, ux). Our objective is to discuss questions
related to the usual notion of topological equivalence between attractors.

It is well known that all the stable and unstable manifolds of equilib-
ria and periodic orbits of the semiflow generated by (1) are automatically
transversal (see [3] and [14] or citations there in). Hence, if all the equilib-
ria and periodic orbits are hyperbolic, the semiflow has the Morse–Smale
property [12]. Therefore, existence of a smooth homotopy between two
nonlinearities f0 and f1 preserving hyperbolicity of all the equilibria and
periodic orbits of (1) entails the topological equivalence of the correspond-
ing attractors (see for example [12]). This is the main tool to obtain a
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classification of the Morse–Smale global attractors of (1). However, the
explicit construction of such homotopies is, in general, very difficult and
depends on the class of nonlinearities considered. In Section 2 we review
the characterization of the global attractor for the dynamical system gen-
erated by (1) and the notion of orbit equivalence of global attractors in this
setting. In Section 3 we apply some previous results on the realization of
period maps by planar ODE systems of the form u′′ + g(u) = 0 used to ad-
dress the existence of homotopies between different nonlinearities in (1), in
the class of nonlinearities f = f(u). Then, in Sections 4 and 5, we discuss
some partial results in the general class of nonlinearities f = f(u, ux).

2. Orbit equivalence of attractors

We consider nonlinearities f ∈ C2(R2) satisfying adequate dissipative
conditions (for example, uf(u, 0) < 0 for all |u| > M and |f(u, p)| <
C(u)(1 + |p|γ) for γ < 2). Then, (1) generates a dynamical system in
the Hilbert space X = Hs(S1) which, for s > 3/2, embeds into the set
of continuously differentiable functions [13], X ⊂ C1(S1). The semigroup
ϕt : X → X, t ≥ 0, defined by u0 7→ ϕt(u0) = u(t, ·), with u(0, ·) = u0,
has a nonempty global attractor A = Af [2, 11, 12], which is the maximal
compact invariant subset of X.

The characterization of the global attractor A has been considered in the
mathematical literature by many authors. See for example [15, 7, 8, 1, 5]. In
general, A is composed of equilibria, periodic orbits and their heteroclinic
orbit connections, that is, solutions for which the α- and the ω-limits are
two different equilibria or periodic solutions. The set of equilibria E = Ef

of (1) is given by the 2π-periodic solutions of the ODE

uxx + f(u, ux) = 0 . (2)

The periodic solutions of (1) are rotating waves. These are solutions of the
form u(t, x) = v(x − ct) rotating around S1 with speed c 6= 0, and the set
R = Rf of rotating waves of (1) is given by the 2π-periodic solutions of the
one-parameter family of ODEs parameterized in c 6= 0

vxx + f(v, vx) + cvx = 0 . (3)

Then, denoting by H = Hf the set of heteroclinic orbit connections between
two elements of E ∪ R, we have that

A = E ∪ R ∪H . (4)

Here we recall the usual notion of topological equivalence between attrac-
tors. Two attractors are orbit equivalent, A0

∼= A1, if there is a homeo-
morphism h : A0 → A1 taking orbits of one into orbits of the other and
preserving the time direction.
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When the global attractor A is Morse–Smale there exists a smooth ho-
motopy f τ , τ ∈ [0, 1], which preserves the hyperbolicity of all the equilibria
and periodic orbits and reduces (1) to a problem for which f1 is an even
function of the second variable. In this case equation (2) is reversible with
respect to the reflection x 7→ −x. In addition, equation (2) for f = f1 is
integrable (see [16]) with a first integral H = H(u, ux) which is also an even
function of the second variable. This homotopy was constructed in [7] and
was used to obtain the heteroclinic orbit connections in A, see also [9]. The
resulting flow for f1 has all the rotating waves “frozen” to speed c = 0 and
possesses an embedded flow that satisfies Neumann boundary conditions
in the half interval x ∈ [0, π]. For this reason the homotopy f τ , τ ∈ [0, 1],
is called the freezing and symmetrizing homotopy. The mentioned frozen
waves are nonhomogeneous stationary solutions of (1), i.e. nonconstant 2π-
periodic solutions of (2), which cannot be strictly hyperbolic. In fact, due to
S1-equivariance these stationary solutions occur in one parameter families
of S1 shifted copies, and are nonisolated. Therefore, in the case of non-
homogeneous stationary solutions, the above hyperbolicity is understood
as normal hyperbolicity (admitting one simple zero eigenvalue). Then, the
description of the orbit connections in Af0

∼= Af1 follows from the previ-
ously established characterization of the global attractor for the embedded
Neumann flow [10, 4, 6, 19].

3. The class of nonlinearities f = f(u)

For nonlinearities of the form f(u, ux) = g(u) the global attractor Ag has
only equilibria and heteroclinic orbits since all rotating waves are frozen.
The set of equilibria Eg is then given by the 2π-periodic solutions of the
ODE

vxx + g(v) = 0 . (5)
This set is composed of two subsets: the spatially homogeneous stationary
solutions, i.e. the subset Zg = {u(x, t) = e : g(e) = 0} corresponding to the
zeros of g; and the spatially nonhomogeneous stationary solutions, i.e. the
subset Fg of frozen waves,

Eg = Zg ∪ Fg . (6)

Furthermore, hyperbolicity of an equilibrium e ∈ Zg occurs if and only if
g′(e) 6= 0.

In association with (5) we have the period map T = T (a) : D ⊂ R → R+

which is given by the minimal period of the solution v = v(x, a) that satisfies
Neumann initial conditions:

v(0, a) = v(T (a), a) = a , vx(0, a) = vx(T (a), a) = 0 . (7)
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The nonhomogeneous stationary solutions u ∈ Fg of (1)g correspond to
the solutions v = v(·, a) of (5) for which T (a) = 2π/`, ` ∈ N. Moreover,
they are hyperbolic if and only if T ′(a) 6= 0. The integers ` here are called
the periodic lap numbers of the stationary solutions v. See [8] and [9] for
details.

Reference [17] gives a complete characterization of the period maps T =
Tg in terms of the Morse type of the potential function G(u) =

∫ u
0 g(s)ds

and the sequences of positive integers corresponding to the periodic lap
numbers of the 2π-periodic solutions of (5). See also [8].

In the generic situation, the potential G is a Morse function, that is,
all its critical points are nondegenerate (i.e. g(e) = 0 implies g′(e) 6= 0)
and all its critical values are distinct. Moreover, all 2π-periodic orbits of
(5) are hyperbolic. In this case, let Pn denote the set of all period maps
T = Tg corresponding to nonlinearities g with exactly n zeros. Then, the
phase portrait of (5) contains (n− 1)/2 centers, corresponding to the local
minima of G, and a bounded open set of periodic orbits, which we call the
cyclicity set C, see [7].

The cyclicity set C decomposes into (n − 1)/2 punctured disks (one for
each center) and l annular regions, with 1 ≤ l ≤ (n − 3)/2. One easily
verifies that the number l depends only of the Morse type of G determined
by the ordering of the values assumed by G on the (n + 1)/2 saddles cor-
responding to the local maxima. Let K = (m − 1)/2 + l denote the total
number of connected regions in the cyclicity set, i.e. the punctured disks
and annular regions Cr, 1 ≤ r ≤ K. Then

C =
⋃

1≤r≤K

Cr . (8)

These regions are partially ordered by the nesting of the periodic orbits in
the phase plane. In fact, the combinatorial structure given by the nesting
of the periodic orbits establishes a total ordering on the set of connected
regions. The idea is to notice that the nesting of the periodic orbits is
a regular bracket structure, like the structure of the parentheses used in
arithmetic expressions. Then, we use the total ordering of the left brackets
in the regular bracket structure. We refer to [17] and [8] for details.

The domain D of Tg ∈ Pn consists of a finite number of open bounded
intervals related to the punctured disks and annular regions that form the
connected components Cr of the cyclicity set. To each region is associated
a (possibly empty) sequence

Sr = (`r
1, . . . , `

r
sr

) (9)

of sr positive integers corresponding to the periodic lap numbers of the 2π-
periodic solutions ordered by their minimum (initial) values a ∈ D. Then,
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we have a collection of (n− 1)/2 + l sequences of positive integers,

S = (Sr)1≤r≤K , (10)

which is called the lap signature of the period map Tg, see [17], [8].
By explicitly computing a nonlinearity g for which T = Tg, we obtain:

Theorem 1: (See [17], Proposition 3.) A collection of sequences of
positive integers S = (Sr)1≤r≤K is the lap signature of a period map T ∈ Pn

corresponding to the regular bracket structure of a Morse type, if and only
if:

(i) each sequence Sr = (`1, . . . , `sr} corresponding to a punctured disk
satisfies

`1 = 1 , |`j+1 − `j | ≤ 1 , j = 1, . . . , sr − 1 , (11)

and, if `i−1 6= `i = · · · = `j 6= `j+1 for 1 < i ≤ j < sr, then

(`i − `i−1)(`j+1 − `j) = (−1)i−j ; (12)

(ii) each sequence Sr = (`1, . . . , `sr) corresponding to an annular region
satisfies Eqs. (11), (12) and

`sr = 1 with sr even. (13)

We say that two nonlinearities g0 and g1 belong to the same lap signature
class if the corresponding potential functions G0 and G1 have the same
Morse type and the corresponding period maps, T 0 and T 1, have the same
lap signature. In this case, using the results of [17] (see also [8]), we can
construct a homotopy T τ , τ ∈ [0, 1], between the period maps along which
the lap signature of T τ and the hyperbolicity of the equilibria are preserved.
Then, from the explicit computation of a nonlinearity gτ = gτ (u) for each
period map T τ , fixing the dissipative behavior outside a large interval |u| >
M , we obtain a homotopy between the two nonlinearities that preserves
hyperbolicity of all the equilibria. This shows that the lap signature class
of g = g(u) determines the global attractor Ag up to orbit equivalence and
proves the following result:

Theorem 2: If g0 = g0(u) and g1 = g1(u) belong to the same lap
signature class then

Ag0
∼= Ag1 . (14)
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4. The class of nonlinearities f = f(u, ux)

Due to the existence of the freezing and symmetrizing homotopy men-
tioned in Section 2 the discussion of orbit equivalence only needs to be
conducted in the class of reversible nonlinearities, that is the nonlinearities
f = f(u, ux) which are even functions of the second variable

f(v, p) = f(v,−p) . (15)
In the class of reversible nonlinearities the period map T = Tf is defined us-
ing the first integral H = H(u, ux) also mentioned in Section 2. Moreover,
the previous equivalence characterization result can easily be extended to
this class when the period map T is realizable in the class of nonlinearities
f = f(u). In fact, let f0 = f0(u, ux) and f1 = f1(u) denote two non-
linearities producing the same period map T : D → R+, and let H0 and
H1 denote the respective first integrals. In the following, let (v, pj(v))j=0,1

describe the orbit of (2)fj
through (a, 0) corresponding to the periodic so-

lution v = v(·, a) with minimum value a ∈ D. Also recall that the period
map in both cases, j = 0, 1, has the form

Tfj
(a) = 2

∫ b(a)

a

dv

pj(v)
= T (a) . (16)

The maps Qj : (x, a) 7→ (v, pj(v)) are local diffeomorphisms onto the cyclic-
ity sets of each phase portrait. Then, following Lemma 5.1 of [7] we have
that

1
pτ

= τ
1
p1

+ (1− τ)
1
p0

(17)

provides a homotopy between the phase portraits of both Eqs. (2)fj
along

which the period map T is preserved. Outside the (v, 0)-axis the argument
essentially follows from the computation

JQτ = τ

(
pτ

p1

)2

JQ1 + (1− τ)
(

pτ

p0

)2

JQ0 , (18)

where JQ = det(Qx, Qa) denotes the Jacobi determinant. From (17) we
conclude that Qτ : (x, a) 7→ (v, pτ (v)) is a local diffeomorphism between
the cyclicity sets C = C0 and Cτ for each τ = [0, 1]. Therefore, we again
conclude that the global attractors, Af0

∼= Af1 , are orbit equivalent.

5. The class of nonlinearities f = f(u, ux) of simple type

The general discussion of orbit equivalence between attractors in the class
of nonlinearities f = f(u, ux) requires additional arguments. In fact, given
a function T the existence of a nonlinearity g = g(u) for which Tg = T is
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not assured due to the existence of constraints on the realization of period
maps by nonlinearities g = g(u). These constraints assume the form of a
limitation on the negative values of the derivative of an appropriate rescaled
version of T . See [17] and [18] for details.

A small contribution to this discussion is obtained by considering very
simple phase plane diffeomorphisms which preserve the period map Tf .

Consider a reversible nonlinearity g = g(v, p) and let

(v, p(v)) = (v(·, a), p(v(·, a))) (19)

describe the periodic orbits of (2)g on the phase plane, where v = v(·, a)
denotes the solution with v(0, a) = a, vx(0, a) > 0. Let Cg denote the
cyclicity set on the phase plane of (2)g and let C0 ⊂ Cg denote a region
corresponding to a punctured disk. Moreover, let Φ : C0 → R2 denote the
scaling map

Φ(v, p) = (Ω(v, p)v,Ω(v, p)p) (20)
where Ω : C0 → R is assumed to be constant on the periodic orbits of (2)g

in C0, i.e.
Ω(v(·, a), p(v(·, a))) = Ω(a, 0) . (21)

On the appropriate interval (a−, a+) ⊂ R let ω : (a−, a+) → R denote
the function given by ω(a) = Ω(a, 0). Furthermore let ω be continuously
differentiable and assume only positive values, ω(a) > 0. Then, the scaling
map Φ preserves the periodic orbits up to the scale change ω(a) = Ω(a, 0)
which depends smoothly on the orbits. Notice that for constant ω = 1 the
scaling map Φ is the identity in C0.

In general Φ is not injective, but since the Jacobi determinant JΦ(v, p)
satisfies

JΦ(v, p) = Ω(v, p) (Ω(v, p) +∇Ω(v, p) · (v, p)) , (22)
we conclude that Φ can be extended to a global plane diffeomorphism if Ω
satisfies the condition

Ω(v, p) +∇Ω(v, p) · (v, p) > 0 . (23)

We then construct a homotopy Φτ , τ ∈ [0, 1], between the identity Φ0 =
id in C0 and the scaling map Φ1 = Φ of the form

Φτ (v, p) = (Ωτ (v, p)v,Ωτ (v, p)p) (24)

by taking ωτ (a) = Ωτ (a, 0) of the form

ωτ = (1− τ) + τω , τ ∈ [0, 1] . (25)

Then Ωτ is a linear convex combination of Ω and Ω0 ≡ 1. Hence Ωτ also
satisfies condition (23) for all τ ∈ [0, 1].
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On each cyclicity set Φτ (C0) resulting from the (nonlinear) scaling Φτ

we obtain a vector field corresponding to the scaling of (2)g. The resulting
nonlinearity has the form

fτ (v, p) = Ωτ (v, p)g(v/Ωτ (v, p), p/Ωτ (v, p)) , τ ∈ [0, 1] (26)

and, after an appropriate extension to all (v, p) ∈ R2, constitutes a homo-
topy in the class of reversible nonlinearities f = f(u, ux).

The remarkable property of the scaling (20) is the invariance of the
period map up to the scale change. In fact, the periods of the orbits
(v(·, a), p(v(·, a))) and (ωv(·, a), ωp(v(·, a))) are equal. Computing the pe-
riod map Tfτ for τ ∈ [0, 1], using that Ωτ is constant along the periodic
orbits

Ωτ (v(·, a), p(v(·, a))) = ωτ (a) , (27)

we obtain

Tfτ (ωτ (a)a) = 2
∫ ωτ (a)b(a)

ωτ (a)a

dṽ

ωτ (a)p(ṽ/ωτ (a))
= 2

∫ b(a)

a

dv

p(v)
= Tg(a) .

(28)
Therefore, the period map Tfτ is preserved up to the (nonlinear) scale ωτ (·).

We then attempt to choose ω = ω(a) such that the period map Tf1

satisfies the constraints on the realization of period maps by nonlinearities
g = g(u) mentioned in the beginning of this Section. Notice that condition
(23) can always be ensured in C0. In fact, by adding a constant to ω(a),
the term Ω can always be made larger than the term with ∇Ω.

Therefore, in the restricted region of a punctured disk, there exists a
homotopy in the class of reversible f = f(u, ux) from g = g(u, ux) to a
nonlinearity f0 = f0(u, ux) such that Tf0 is realizable in the class of nonlin-
earities f = f(u). Moreover, this operation can be performed sequentially
on all the punctured disk regions of g = g(u, ux) without interference be-
tween regions.

Consequently, we obtain a restricted class of reversible nonlinearities
f = f(u, ux) for which the previous homotopy can be extended to all the
phase space (v, p). We say that a reversible f = f(u, ux) is of simple type
if each 2π-periodic orbit of (2) encircles exactly one center in the phase
plane (v, p). Hence, for the lap signature class of Tf all the sequences Sr

corresponding to annular regions of the cyclicity set Cf are empty.
Therefore, in the restricted class of reversible nonlinearities f = f(u, ux)

of simple type the constraints on the realization of period maps by nonlin-
earities g = g(u) can be circumvented, and we obtain
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Theorem 3: If f = f(u, ux) and g = g(u, ux) belong to the same lap
signature class of simple type, then

Af
∼= Ag . (29)

In general, however, the possible constraints on the realization of period
maps by nonlinearities g = g(u) remains a serious drawback on the discus-
sion of orbit equivalence of global attractors. In fact we miss an adequate
extension of the scaling map Φ to the annular regions Cr of the cyclicity set.
This is due to the interference with the previous construction of the scal-
ing map on the (enclosed) punctured disk regions. Therefore, the general
construction remains an open problem.
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[12] J. K. Hale, L. T. Magalhães and W. M. Oliva. Dynamics in infinite dimen-
sions. Second edition. Applied Mathematical Sciences, 47. Springer–Verlag,
New York, 2002.

[13] D. Henry. Geometric Theory of Semilinear Parabolic Equations. Lect. Notes in
Math., Vol. 840. Springer, New York, 1981.

São Paulo J.Math.Sci. 6, 2 (2012), 365–374



374 C. Rocha

[14] R. Joly and G. Raugel. Generic Morse-Smale property for the parabolic equa-
tion on the circle. Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 1397–1440,
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