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Introduction

A remarkable recent story in mathematics was the proof of the Shapiro
Conjecture (in real algebraic geometry) by Mukhin, Tarasov, and Varchenko
[20] using methods from integrable systems. Its simplest form involves the
Wronski map, which sends a k-dimensional complex linear subspace of uni-
variate polynomials of degree n−1 to its Wronskian, a polynomial of degree
k(n−k). In this context, the Mukhin-Tarasov-Varchenko Theorem states
that if a polynomial w(t) of degree k(n−k) has all of its roots real, then
every k-plane of polynomials with Wronskian w(t) is real (i.e., has a basis
of real polynomials).

The Wronskian is a map from a Grassmannian to a projective space,
both of dimension k(n−k). Eremenko and Gabrielov [6] considered the real
Wronski map that sends the real Grassmannian to real projective space,
computing its topological degree (actually the degree of a lift to oriented
double covers). This topological degree is strictly positive when n is odd,
so that for n odd, there are always real k-planes of polynomials with given
real Wronskian, proving a weak version of the Shapiro Conjecture.

The full Shapiro Conjecture went far beyond the reality of the Wronski
map. More generally it concerned intersections of Schubert varieties given
by flags osculating a rational normal curve (osculating instances of Schubert
problems), positing that if the osculating points were all real, then all of
the points of intersection were also real. When the Schubert varieties are
all hypersurfaces, the conjecture asserted that the fibers of the Wronski
map over polynomials with only real roots contained only real subspaces.
Initially considered too strong to be true, the Shapiro Conjecture came
to be accepted due to significant computer experimentation [27, 32] and
partial results [8, 26].

Fibers of the Wronski map over a polynomial w(t) with distinct roots are
intersections of hypersurface Schubert varieties given by flags osculating the
rational normal curve at the roots of w(t). When w(t) is real, its roots form
a real variety (stable under complex conjugation) and the corresponding
intersection of Schubert varieties is also real. Eremenko and Gabrielov’s
topological degree is a lower bound for the number of real points in that
real intersection. In related work, Azar and Gabrielov [1] proved a lower
bound for the number of real rational functions of degree d with 2d−3 real
critical points and two real points where the function values coincide. (This
is a lower bound for a family of Schubert problems on a flag manifold given
by osculating flags and was motivated by data from the experiment [24].)
These results suggested the possibility of lower bounds for the number of
real points in an intersection of Schubert varieties given by flags osculating
the rational normal curve, when the intersection is a real variety.
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A preliminary investigation [13] confirmed this possibility and uncovered
other structures in the numbers of real solutions, including upper bounds,
lower bounds, gaps, and a congruence modulo four, in different families
of Schubert problems. Those data led to three papers [23, 16, 17] which
proved some of the observed structure.

We describe the design, execution, and some results of a large-scale com-
puter experiment [15] to study such real osculating instances of Schubert
problems. This study investigated over 344 million instances of 756 Schu-
bert problems, and it used over 549 gigahertz-years of computing. The
topological lower bounds of Eremenko and Gabrielov [6] apply to variants
of the Wronski map and were extended by Soprunova and Sottile [25] to
give topological lower bounds to osculating Schubert problems where at
most two Schubert varieties were not hypersurfaces. We studied 273 such
osculating Schubert problems and observed that these topological lower
bounds were sharp for all except six of them.

Four of these six continue to defy explanation. For the remaining two, the
lack of sharpness is due to a congruence modulo four observed in both [13]
and [15] for certain symmetric Schubert problems. This congruence has
since been established by Hein and Sottile in collaboration with Zelenko.
They first [16] treated osculating Schubert problems and established a weak
form of the congruence. Later, they showed that many symmetric Schubert
problems in a Grassmannian given by symplectic flags have a congruence
modulo four on their number of real solutions [17].

For example, Table 1 summarizes the computation for two Schubert
problems in Gr(4, 8), each with twelve solutions. Together these used 202

Table 1. Frequency of observed number of real solutions

Problem
Number of Real Solutions

Total
0 2 4 6 8 10 12

3 · · 81912 88738 7086 222264 400000

· 2 · 3 214375 231018 61600 293007 800000

gigahertz-days of computing. The columns are the number of observed
instances with a given number of real solutions. We only list even num-
bers, for the number of real solutions is always congruent modulo two to
the number of complex solutions. Empty cells indicate that no instances
were observed with that number of real solutions. Notice that the partitions
encoding the Schubert problems are symmetric, and that the observed num-
bers of real solutions satisfy an additional congruence modulo four. This
congruence occurs for a symmetric Schubert problem in Gr(k, 2k) when the
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sum of the lengths of the diagonals of its partitions is at least k + 4. This
sum is eight for both problems of Table 1.

Five problems studied exhibited lower bounds and other structures in
their observed numbers of real solutions. These problems form members of
a family of Schubert problems, one in each Grassmannian, which we prove
have this unusual structure on numbers of real solutions. We shall show that
real solutions to an osculating instance correspond to real factorizations of
an associated polynomial, explaining the observed structures.

This paper is organized as follows. In Section 1 we provide background
on the Schubert calculus, the history of the Shapiro Conjecture, and the
work of Eremenko and Gabrielov on topological lower bounds. We then
describe the setup, execution, and some of the observations resulting from
the experimental project in Section 2. In Section 3, we explain the lower
bounds and gaps coming from a family of Schubert problems whose de-
termination we reduce to factoring certain polynomials. In Section 4, we
conclude with a discussion of some frequency tables exhibiting interesting
structure.

1. Background

We first establish our notation and definitions regarding the osculating
Schubert calculus, give some additional history of the Shapiro Conjecture,
and finally discuss the topological lower bounds of Eremenko-Gabrielov and
Soprunova-Sottile.

1.1. Osculating Schubert calculus. Let k < n be positive integers. The
Grassmannian Gr(k, n) (or Gr(k,Cn)) is the set of all k-dimensional lin-
ear subspaces (k-planes) of Cn, which is a complex manifold of dimension
k(n−k). Complex conjugation on Cn induces a conjugation on Gr(k, n).
The points of Gr(k, n) fixed by conjugation are its real points, and they
form the Grassmannian Gr(k,Rn) of k-planes in Rn.

The Grassmannian has distinguished Schubert varieties, which are given
by the discrete data of a partition and the continuous data of a flag. A
partition is a weakly decreasing sequence λ : n−k ≥ λ1 ≥ · · · ≥ λk ≥ 0 of
integers and a flag is a filtration of Cn:

F• : F1 ( F2 ( · · · ( Fn = Cn ,

where dimFi = i. The flag F• is real if Fi = Fi for all i, so that it is the
complexification of a flag in Rn. Given a partition λ and a flag F•, the
associated Schubert variety is

XλF• := {H ∈ Gr(k, n) | dimH∩Fn−k+i−λi ≥ i for i = 1, . . . , k} . (1.1)
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This is an irreducible subvariety of the Grassmannian of codimension |λ| :=
λ1 + · · ·+ λk. From the definition, we see that XλF• = XλF•.

A list λ = (λ1, . . . , λm) of partitions which satisfies the numerical condi-
tion

|λ1|+ |λ2|+ · · ·+ |λm| = k(n−k) (1.2)

is a Schubert problem. Given a Schubert problem λ and general flags
F 1
• , . . . , F

m
• , Kleiman’s Transversality Theorem [19] implies that the inter-

section
Xλ1F

1
• ∩Xλ2F

2
• ∩ · · · ∩XλmF

m
• (1.3)

is generically transverse. The numerical condition (1.2) implies that it is
zero-dimensional (or empty) and therefore consists of finitely many points.
The number of points does not depend upon the choice of general flags and
may be computed using algorithms from the Schubert calculus [10]. The
intersection (1.3) is an instance of the Schubert problem λ and its points
are the solutions to this instance.

We will not be concerned with general instances of Schubert problems
but rather with instances given by flags that osculate a common rational
normal curve. Let γ : C → Cn be the following parameterized rational
normal curve

γ(t) :=
(
1 , t , t

2

2 ,
t3

3! , . . . ,
tn−1

(n−1)!
)
. (1.4)

(This choice of γ is no restriction as all rational normal curves are pro-
jectively equivalent.) For each t ∈ C, the osculating flag F•(t) has as its
i-dimensional subspace the i-plane Fi(t) osculating the curve γ at γ(t):

Fi(t) := span{γ(t) , γ′(t) , . . . , γ(i−1)(t)}

= row space

(
tb−a

(b−a)!

)
a=1,...,i
b=a,...,n

. (1.5)

(The remaining entries in this matrix are zero.)

An osculating instance of a Schubert problem λ is one given by osculating
flags,

Xλ1F•(t1) ∩ Xλ2F•(t2) ∩ · · · ∩ XλmF•(tm) . (1.6)

Here, t1, . . . , tm are distinct points of P1. Osculating flags are not general
for intersections of Schubert varieties as demonstrated in [24, § 2.3.6], so
Kleiman’s Theorem does not imply that the intersection (1.6) is transverse.
However, Eisenbud and Harris [5] noted that if H ∈ XλF•(t0) then its
Wronskian wH(t) vanishes to order |λ| at t = t0. As the Wronskian (a
form on P1) has degree k(n−k), they deduced that (1.6) is at most zero-
dimensional. Later, Mukhin, Tarasov, and Varchenko [21] showed that the
intersection is transverse when t1, . . . , tm are real (and therefore also when
they are general).
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Eisenbud and Harris also noted that if t0 is a root of order ` of the
Wronskian wH(t) of H, then there is a unique partition λ with |λ| = ` such
that H ∈ XλF•(t0). This implies the following partial converse to Schubert
problems.

Proposition 1. For each H ∈ Gr(k, n), there is a unique Schubert prob-
lem λ and unique points t1, . . . , tm ∈ P1 for which H lies in the intersec-
tion (1.6).

To simplify notation, we henceforth write Xλ(t) for the Schubert variety
XλF•(t).

As γ(i)(t) = γ(i)(t), we have F•(t) = F•(t), and therefore Xλ(t) = Xλ(t).
A consequence of these observations and Proposition 1 is the following
corollary.

Corollary 2. Let λ = (λ1, . . . , λm) be a Schubert problem and t1, . . . , tm ∈
P1 be distinct. The instance

Xλ1(t1) ∩ Xλ2(t2) ∩ · · · ∩ Xλm(tm)

of the Schubert problem λ is a real variety if and only if for each i =
1, . . . ,m there exists 1 ≤ j ≤ m such that λi = λj and ti = tj.

Corollary 2 asserts that the obviously sufficient condition for an oscu-
lating instance of a Schubert problem to be a real variety, namely that
each complex conjugate pair of osculation points have the same Schubert
condition, is in fact necessary.

1.2. The Shapiro Conjecture and its generalizations. One motiva-
tion for studying real osculating instances of Schubert problems is the con-
jecture of Shapiro and Shapiro, which was given two different proofs by
Mukhin, Tarasov, and Varchenko.

Theorem 3 ([20, 21]). Given any osculating instance of a Schubert problem

Xλ1(t1) ∩ Xλ2(t2) ∩ · · · ∩ Xλm(tm) ,

in which t1, . . . , tm ∈ RP1, the intersection is transverse with all of its
points real.

The Shapiro Conjecture was made by the brothers Boris and Michael
Shapiro in 1993, and popularized through significant computer experimen-
tation and partial results [27, 32]. An asymptotic version (where the points
ti are sufficiently clustered and all except two of the λi consist of one part)
was proven in [26]. The first breakthrough was given by Eremenko and
Gabrielov [8] who used complex analysis to prove it when min{k, n−k} = 2.
In this case it is equivalent to the statement that a rational function whose
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critical points lie on a circle in P1 maps that circle to a circle. Later,
Mukhin, Tarasov, and Varchenko proved the full conjecture [20, 21] using
methods from mathematical physics.

While the Shapiro Conjecture may be formulated in any flag manifold,
it is false in general (except for the orthogonal Grassmannian [22]). Sig-
nificant experimental work has uncovered the limits of its validity, as well
as generalizations and extensions that are likely true [11, 14, 24], and has
led to a proof of one generalization (the Monotone Conjecture) in a special
case [9]. For a complete account, see [28] or [29, Chs. 9–14].

1.3. Topological lower bounds. While studying the Shapiro Conjecture,
Eremenko and Gabrielov looked at real osculating instances of the form

X (t1) ∩ X (t2) ∩ · · · ∩ X (tm) ∩ Xλ(∞) , (1.7)

where m+ |λ| = k(n−k) and {t1, . . . , tm} is a real set in that {t1, . . . , tm} =
{t1, . . . , tm} ⊂ P1, equivalently, w(t) :=

∏
i(t− ti) is a real polynomial. The

points in (1.7) are the fiber of the Wronski map over the real polynomial
w(t) restricted to the Schubert variety Xλ(∞). Eremenko and Gabrielov [6]
gave a formula for the topological degree of this Wronski map restricted
to the real points of Xλ(∞) (and lifted to an oriented double cover). This
topological degree is a topological lower bound on the number of real points
in the intersection (1.7). This follows from the formula for the topological
degree of a map f : X → Y between oriented manifolds,

deg f =
∑

x∈f−1(y)

sign(dfx) ,

where y ∈ Y is a regular value of f and sign(dfx) is 1 if the orientation of
TyY given by the differential dfx(TxX) agrees with its orientation from Y ,
and −1 if the orientations do not agree.

This was generalized by Soprunova and Sottile [25, Th. 6.4] to intersec-
tions of the form

Xµ(0) ∩ X (t1) ∩ X (t2) ∩ · · · ∩ X (tm) ∩ Xλ(∞) , (1.8)

where m + |λ|+|µ| = k(n−k) and {t1, . . . , tm} ⊂ C∗ is a real set. This
intersection is again a fiber of the Wronski map restricted to Xµ(0)∩Xλ(∞)
(and lifted to an oriented double cover). They expressed the topological
degree in terms of sign-imbalance.

A partition λ is represented by its Young diagram, which is a left-justified
array of boxes with λi boxes in row i. When µ ⊂ λ, we have the skew
partition λ/µ, which is the set-theoretic difference λr µ of their diagrams.
For example, if

λ = and µ = then λ/µ = .
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Given λ, let λc be the partition n−k−λk ≥ · · · ≥ n−k−λ1, the difference
between the k × (n−k) rectangle and λ. For example, if k = 3, n = 7, and
λ = (3, 0, 0), then λc = (4, 4, 1). A Young tableau of shape λ/µ is a filling
of the boxes in λ/µ with the consecutive integers 1, 2, . . . , |λ|−|µ| which
increases across each row and down each column. The standard filling is
the tableau whose numbers are in reading order. Here are four tableaux of
shape (4, 4, 1)/(1). The first has the standard filling.

1 2 3
4 5 6 7
8

3 5 7
1 4 6 8
2

2 3 5
1 4 6 7
8

1 3 6
2 4 5 8
7

Let Y (λ/µ) be the set of Young tableaux of shape λ/µ. Each tableau T
has a parity, sign(T ) ∈ {±1}, which is the sign of the permutation mapping
the standard filling to T . The sign-imbalance of λ/µ is

σ(λ/µ) :=
∣∣∣ ∑
T∈Y (λ/µ)

sign(T )
∣∣∣ .

Algorithms in the Schubert calculus [10] imply that the number of com-
plex points in the intersection (1.8) is the number |Y (λc/µ)| of tableaux of
shape λc/µ. Soprunova and Sottile show that the topological degree of the
appropriate Wronski map is the sign-imbalance of λc/µ. We deduce the
following proposition.

Proposition 4 ([6, 25]). If {t1, . . . , tm} ⊂ C∗ is a real set, then the number
of real points in the intersection (1.8) is at least the sign-imbalance σ(λc/µ)
of λc/µ.

When λ = µ = ∅, Eremenko and Gabrielov gave a closed formula for this
topological lower bound, which showed that it is strictly positive when n
is odd and zero when n is even [6]. Later they showed that if both n and
k are even, there is an intersection (1.7) with no real points [7], showing in
these cases that the topological lower bound is sharp. Investigating when
the topological lower bounds of Proposition 4 are sharp and when they are
not was a focus of the experiment.

2. Experimental project

We describe a large computational experiment to study structure in the
number of real solutions to real instances of osculating Schubert problems.
The data for this experiment kept track of which pairs of the osculat-
ing flags were complex conjugate, as preliminary computations and the
Mukhin-Tarasov-Varchenko Theorem showed that this affected the num-
bers of real solutions. The computations were carried out symbolically in
exact arithmetic, with real osculating instances of Schubert problems being
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formulated as systems of polynomial equations. We sketch the execution
of the experiment and then close with a discussion of some of the data
gathered, which is available to browse online [15].

2.1. Osculation type. We have expressed Schubert problems λ as lists of
partitions. Also useful and more compact is multiplicative notation. For
example, the Schubert problem λ = ( , , , , ) in Gr(3, 6) with six

solutions is written multiplicatively as
2 · 3 or as

2 · 3 = 6, when we
wish to give its number of solutions.

The topological lower bound for the Schubert problem · 5 = 6 in
Gr(3, 6) is the sign imbalance σ(

c
) = σ( ) = 2. Thus, if the instance

X (0) ∩ X (t1) ∩ · · · ∩ X (t5) (2.1)

of the Schubert problem · 5 = 6 has {t1, . . . , t5} = {t1, . . . , t5}, then (2.1)
contains at least two real points. If t1, . . . , t5 ∈ RP1 then all six points
in (2.1) are real by the Mukhin-Tarasov-Varchenko Theorem. This illus-
trates that the lower bound on the number of real solutions to an oscu-
lating instance of a Schubert problem is sensitive to the number of real
osculation points. Given a Schubert problem (λ1)a1 · · · (λm)am and a corre-
sponding real osculating instance X, the osculation type r of X is the list
r = (rλ1 , . . . , rλm) where rλi is the number of Schubert varieties of the form
Xλi(t) containing X with t real. Since X is real, we have rλi ≡ ai mod 2
for each i.

Table 2 is from the experiment. It records how often a given number
of real solutions was observed for a given osculation type in 400000 ran-
dom real instances of the Schubert problem · 7 = 6. In every

Table 2. Frequency table for · 7 = 6 in Gr(2, 8)

r
Number of Real Solutions

Total
0 2 4 6

7 100000 100000
5 77134 22866 100000
3 47138 47044 5818 100000
1 8964 67581 22105 1350 100000

computed instance when r = 7, all six solutions were real, agreeing with
the Mukhin-Tarasov-Varchenko Theorem. The nonzero entry 8964 in the
bottom row with r = 1 indicates the sharpness of the topological lower
bound σ( c) = 0 for · 7. The table suggests the lower
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bound of r −1 for the number of real solutions to an instance of this Schu-
bert problem, which we prove in Section 3. Studying this Schubert problem
used 1.8 gigahertz-days of computing.

2.2. Schubert problems in local coordinates. The fundamental fact
that underlies this experiment is that we may represent Schubert problems
on a computer through systems of equations, from which we may extract the
number of real solutions. We explain how to formulate Schubert problems
as systems of equations.

A point in the Grassmannian Gr(k, n) is the row space of a matrix M ∈
Matk×n. Thus the set of k×n matrices with complex entries parameterizes
Gr(k, n) via the map

Matk×n −→ Gr(k, n) ,

M 7−→ row space(M) .

This restricts to an injective map from Matk×(n−k) to a dense open set of
Gr(k, n),

Matk×(n−k) −→ Gr(k, n) ,

M 7−→ row space(Idk×k : M) ,

giving local coordinates for the Grassmannian.

Schubert varieties also have local coordinates. The flag F•(∞) has i-
dimensional subspace

Fi = span{en+1−i, . . . , en−1, en} ,
where {e1, . . . , en} are the standard basis vectors of Cn. The Schubert
variety Xλ(∞) has local coordinates given given by matrices M whose
entries satisfy

Mi,j =

{
1 if j = i+ λk+1−i ,
0 if j = a+ λk+1−a for a 6= i ,
0 if j < i+ λk+1−i ,

and whose other entries are arbitrary complex numbers. For example,
X (∞) ⊂ Gr(3, 6) is parameterized by matrices of the form(

1 M1,2 0 M1,4 0 M1,6

0 1 M2,4 0 M2,6

0 0 1 M3,6

)
.

Here, denotes an entry which is zero.

The flag F•(0) has Fi = span{e1, . . . , ei} and local coordinates for Xλ(0)
are given by reversing the columns of those for Xλ(∞). More interesting
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is that Xλ(∞) ∩ Xµ(0) has local coordinates given by matrices M whose
entries satisfy

Mi,j =

{
1 if j = i+ λk+1−i ,
0 if j < i+ λk+1−i ,
0 if n+1− i− µi < j ,

and whose other entries are arbitrary complex numbers. For example,
X (∞) ∩X (0) ⊂ Gr(3, 6) has local coordinates given by matrices of the

form (
1 M1,2 0 0
0 1 M2,4 0
0 0 1 M3,5 M3,6

)
.

Let us represent a flag F• by a matrix with rows f1, . . . , fn so that

Fi = row space

 f1
...
fi

 ,

(and also write Fi for this matrix). Then the condition (1.1) that H ∈ XνF•
is expressed in any of these local coordinates M for Gr(k, n), Xλ(∞), or
Xλ(∞) ∩Xµ(0) by

rank

(
M

Fn−k+i−νi

)
≤ n− νi for i = 1, . . . , k . (2.2)

Each rank condition is given by the vanishing of all minors of the matrix
of size n−νi + 1, and therefore by a system of polynomials in the entries of
M .

Given an osculating instance of a Schubert problem λ,

Xλ1(t1) ∩ Xλ2(t2) ∩ · · · ∩ Xλm(tm) ,

the rank equations (2.2) formulate it as a system of polynomials in local
coordinates for the Grassmannian. If, say tm =∞, then we may formulate
this instance in the smaller set of local coordinates for Xλm(∞), and if we
also have tm−1 = 0, a further reduction is possible using the coordinates
for Xλm−1(0) ∩Xλm(∞).

We entertain these possibilities because solving Schubert problems using
symbolic computation is sensitive to the number of variables. Whenever
possible, computations in the experiment assume that ∞ and 0 are oscula-
tion points. If two points of osculation are real, this is achieved by a simple
change of variables.

A further sleight of hand is necessary for this to be computationally
feasible. Symbolic computation works best over the field Q, and not as well
over Q[

√
−1]. We choose our nonreal osculation points to lie in Q[

√
−1],
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but exploit that they come in pairs to formulate equations over Q. Indeed,
if t 6∈ R, then the polynomials I for Xλ(t) described above will have complex
coefficients. Taking real and imaginary parts of the polynomials in I will
give real polynomials that define Xλ(t) ∩Xλ(t).

2.3. Methods. This experiment formulates real osculating instances of
Schubert problems, determines their number of real solutions, records the
result by osculation type, and repeats this hundreds of millions of times
on a supercomputer. The overall framework and basic code was adapted
from that developed for other experimental projects our group has run to
study generalizations of the Shapiro Conjecture [11, 14]. This experimental
design and core code are due to Hillar and are explained in detail in [18].

The experiment was organized around a MySQL database hosted at
Texas A&M University. The database keeps track of all aspects of the ex-
periment, from the problems to be computed (and how they are computed)
to the current state of the computation to the data from the computation.
We wrote web-based tools to communicate with the database and display
the data from the experiment, allowing us to monitor the computations.
The computation was controlled by a perl script that, when run, gets a
problem to work on from the database, sets up and runs the computation,
and upon conclusion, updates the database with its results. The perl script
may be run on any machine with access to the database, and we used job-
scheduling tools to control its running on the two clusters we have access
to at Texas A&M. These are the brazos cluster in which our research group
controls 20 eight-core nodes, and the Calclabs, which consists of over 200
Linux workstations that moonlight as a Beowulf cluster—their day job be-
ing calculus instruction. In all, the experiment solved over 344 million real
osculating instances of 756 Schubert problems and used 549 gigahertz-years
of computing.

A separate program was used to load problems into the database, which
were first screened for possible interest and feasibility. During loading, it
was also determined which scheme of local coordinates to use for comput-
ing that particular problem, similar to the protocol followed in [11, 14].
The actual computation also followed those experiments, and more detail,
including references, is given in loc. cit. Briefly, an instance was formulated
as a system of polynomials in local coordinates; then Gröbner basis meth-
ods implemented in Singular [3] computed a univariate eliminant whose
number of real roots is equal to the number of real solutions. These were
counted using the symbolic method of Sturm (implemented in Singular’s
rootsur [30] library).

The experiment was designed to be robust. All calculations are repeat-
able as the data are deterministically generated from random seeds which
are stored in the database. The inevitability of problems, from processor
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failures to power outages to erroneous human intervention with the data-
base, motivated us to build in recoverability from all such events.

2.4. Some results. The results from computing each Schubert problem
are recorded in frequency tables such as Table 2 and may be browsed online
at [15]. The tables display the number of instances of a given osculation
type with a given number of real solutions. This clarifies the dependence
of the number of real solutions upon osculation type. For many of the
Schubert problems we studied, there is clearly some structure in the possible
number of real solutions in terms of osculation type, but this behavior is
not uniform across all Schubert problems.

For example, in a few problems there appeared to be an upper bound on
the number of real solutions that depends on osculation type, such as the

problem
2 · 3 = 6 in Gr(3, 6) of Table 3. This used 1.4 gigahertz-days

Table 3. Frequency table for
2 · 3 = 6 in Gr(3, 6)

r r
Number of Real Solutions

Total
0 2 4 6

2 3 100000 100000
2 1 27855 11739 22935 37471 100000
0 3 17424 82576 100000
0 1 100000 100000

of computing. For the vast majority of the Schubert problems there were
instances of every osculation type with all solutions real, and it was not
clear what distinguished this second class of Schubert problems from the
first. In Section 4 we present tables from several other Schubert problems
and discuss other structures we observe.

Of the 756 Schubert problems studied, 273 had the form (1.8) and so
had a topological lower bound given by Proposition 4. These included
the Wronski maps for Gr(2, 4), Gr(2, 6), and Gr(2, 8) for which Eremenko
and Gabrielov had shown that the lower bound of zero was sharp [7]. For
264 of the remaining 270 cases, instances were computed showing that
this topological lower bound was sharp. There were however six Schubert
problems for which the topological lower bounds were not observed. These
were(

, , 7
)
,
(

, , 7
)
,
(

, , 6
)
,
(

, , 6
)
,
(

, 8
)
,

all in Gr(4, 8), and 9 in Gr(3, 6). These have observed lower bounds
of 3, 3, 2, 2, 2, 2 and sign-imbalances of 1, 1, 0, 0, 0, 0, respectively. There is
not yet an explanation for the first four, but the last two are symmetric
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Schubert problems, which were observed to have a congruence modulo four
on their numbers of real solutions. This congruence gives a lower bound of
two for both problems · 8 = 90 in Gr(4, 8) and 9 = 42 in Gr(3, 6).

Table 4 shows the result of computing a million real osculating instances
of the Schubert problem 9 = 42 in Gr(3, 6), which used 1.07 gigahertz-
years of computing. As with Table 1, only numbers of real solutions con-

Table 4. Frequency table for 9 = 42 in Gr(3, 6)

r
Number of Real Solutions

0 2 4 6 8 10 12 14 16 18 20 · · ·
9 · · ·
7 1843 13286 69319 18045 13998 · · ·
5 30223 51802 57040 17100 12063 · · ·
3 34314 93732 47142 10213 5532 · · ·
1 151847 35220 6416 2931 · · ·

Number of Real Solutions
Total

· · · 22 24 26 28 30 32 34 36 38 40 42

· · · 200000 200000
· · · 22883 4592 11603 3891 473 40067 200000
· · · 15220 2767 4634 2056 211 6884 200000
· · · 5492 839 1194 504 65 973 200000
· · · 2345 362 450 181 22 226 200000

gruent to 42 modulo four were observed.

The observed congruence modulo four which were inspired by these
computations (and those of the earlier investigation [13]) were established
in [16, 17].

A partition λ is symmetric if it equals its matrix-transpose. For example,
all except the last of the following are symmetric,

, , , , , , , , .

A Schubert problem λ in Gr(k, 2k) is symmetric if every partition in λ is
symmetric. For a symmetric partition λ, let `(λ) be the number of boxes in
its main diagonal, which is the maximum number i with λi ≥ i. We state
the main result of [16, 17].

Proposition 5. Suppose that λ = (λ1, . . . , λm) is a symmetric Schubert
problem in Gr(k, 2k) with

∑
i `(λ

i) ≥ k+4. Then the number of real so-
lutions to a real osculating instance of λ is congruent to the number of
complex solutions modulo four.
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One of the symmetric problems, · 7 = 20 in Gr(4, 8), not only ex-
hibited this congruence but also appeared to have lower bounds depending
upon the osculation type r as well as further gaps in its numbers of real
solutions (we never observed 12 or 16 real solutions). Table 5 displays the
result of computing 400000 real osculating instances of this Schubert prob-

Table 5. Gaps and lower bounds for · 7 = 20 in Gr(4, 8)

r
Number of Real Solutions

Total
0 2 4 6 8 10 12 14 16 18 20

7 100000 100000
5 85080 14920 100000
3 66825 30232 2943 100000
1 37074 47271 14517 1138 100000

lem, which used 2.06 gigahertz-days of computing. This is a member of
a family of Schubert problems (the problem of Table 2 is another) that
we can solve completely, and whose numbers of real solutions have a lower
bound depending on osculation type, as well as gaps. We explain this in
the next section.

3. Lower bounds via factorization

In our experimentation, we saw that Schubert problems related to the
two problems · 7 = 6 in Gr(2, 8) and · 7 = 20 in Gr(4, 8)
(from Tables 2 and 5, respectively) appeared to have gaps and lower bounds
depending on r in their numbers of real solutions. These are members of
a family of Schubert problems, one for each Grassmannian Gr(k, n) with
2 ≤ k, n−k, which we are able to solve completely, thereby determining all
possibilities for the number of real solutions and explaining these gaps and
lower bounds.

For k, n, let k,n ( for short) denote the partition ((n−k−1)k−1, 0)
(n−k−1 repeated k−1 times), which is the complement of a full hook,
(n−k, 1k−1). For example,

2,6 = , 3,8 = , and 4,8 = .

The osculating Schubert problems in this family all have the form λ =
( , n−1) in Gr(k, n), and they all have topological lower bounds σ( k,n)
coming from Proposition 4. The multinomial coefficient

(
n
a,b

)
is zero unless

n = a+b, and in that case it equals n!
a!b! .
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Lemma 6. The Schubert problem λ = ( , n−1) in Gr(k, n) has
(
n−2
k−1
)

solutions and σ( ) =
( bn−2

2
c

b k−1
2
c,bn−k−1

2
c

)
, which is zero unless n is even and k

is odd.

Proof. The number of solutions of the Schubert problem λ = ( , n−1) in
Gr(k, n) is the number of Young tableaux of shape c, which is a full hook
(n−k, 1k−1) consisting of one row of length n−k and one column of length
k. Here are full hooks for (k, n) equal to (2, 6), (3, 8), (4, 8), and (4, 10).

A tableau with such a hook shape has a 1 in its upper left box and the
numbers 2, . . . , n−1 filling out its first row and first column. This filling is
determined by the k−1 numbers in the rest of its first column. Thus there
are

(
n−2
k−1
)

tableaux of hook shape (n−k, 1k−1).
Reading a tableau T with hook shape gives a word of the form 1AB,

where 1A is the first row and 1B is the first column. This is the permutation
corresponding to T whose sign contributes to the sign-imbalance. The
subwords AB are shuffles of the numbers {2, . . . , n−1}. Counting these
permutations by their lengths is the evaluation of the Gaussian polynomial(
n−2
k−1
)
q

at q = −1. Thus the sign imbalance is
(
n−2
k−1
)
−1, which is well-known

(see e.g. [25, Prop. 7.10]) to be
( bn−2

2
c

b k−1
2
c,bn−k−1

2
c

)
. �

Theorem 7. For any k, n, the solutions to the osculating instance of the
Schubert problem ( , n−1) in Gr(k, n),

X (t1) ∩ X (t2) ∩ · · · ∩ X (tn−1) ∩ X (∞), (3.1)

may be identified with all ways of factoring f ′(t) = g(t)h(t) where

f(t) =

n−1∏
i=1

(t− ti) (3.2)

with deg g = k−1 and deg h = n−k−1 are monic.

By this theorem, the number of real solutions to a real osculating instance
of the Schubert problem ( , n−1) with osculation type r will be the
number of real factorizations f ′(t) = g(t)h(t) where f(t) has exactly r
real roots, deg g = n−k−1, and deg h = k−1. This counting problem was
studied in [25, Sect. 7], and we recount it here. Let r be the number of
real roots of f ′(t). By Rolle’s Theorem, r −1 ≤ r ≤ n−2. Then the
number ν(k, n, r) of such factorizations is the coefficient of xn−k−1yk−1 in
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(x+ y)r(x2 + y2)c, where c = n−2−r
2 is the number of irreducible quadratic

factors of f ′(t).

Corollary 8. The number of real solutions to a real osculating instance of
the Schubert problem ( , n−1) (3.1) with osculation type r is ν(k, n, r),
with r the number of real roots of f ′(t), where f is the polynomial (3.2).

Remark 9. When r < n−2, we have that ν(k, n, r) ≤ ν(k, n, r+2), so
ν(k, n, r −1) is the lower bound for the number of real solutions to a real

osculating instance of ( , n−1) of osculation type r . Since at most bn2 c
different values of r may occur for the numbers of real roots of f ′(t), the
number ν(k, n, r) satisfies( bn−22 c

bk−12 c, b
n−k−1

2 c

)
≤ ν(k, n, r) ≤

(
n−2

k−1

)
.

There will in general be lacunae in the numbers of real solutions, as we saw
in Table 5. For example, the values of ν(5, 13, r) are

10 , 18 , 38 , 78 , 162 , and 330 . (3.3)

Remark 10. The Schubert problem ( , 2k−1) in Gr(k, 2k) is symmetric.
When k > 2 it satisfies the hypotheses of Proposition 5 and so its numbers
of real solutions (the numbers ν(k, 2k, r)) are congruent to

(
2k−2
k−1

)
modulo

four. We deduce this congruence modulo four from Theorem 7 by proving
that the number of nonreal solutions to a real osculating instance of such a
Schubert problem is a multiple of four. Equivalently, given a real polyno-
mial φ(t) of degree 2m = 2k−2 with distinct roots, the number of nonreal
ordered pairs (g(t), h(t)) of polynomials of degree m with φ(t) = g(t)h(t)
is a multiple of four.

An ordered pair (g(t), h(t)) of polynomials of degree m with φ(t) =
g(t)h(t) is an ordered factorization of φ(t). Given a factorization φ(t) =
g(t)h(t), we have φ(t) = h(t)g(t), and so (g(t), h(t)) and (h(t), g(t)) are
distinct ordered factorizations of φ(t). If g(t) (and hence h(t)) is not real,

and we do not have g(t) = h(t), then

(g(t), h(t)) , (h(t), g(t)) , (g(t), h(t)) , (h(t), g(t))

are four distinct nonreal ordered factorizations.

To show that the set of nonreal ordered factorizations of φ(t) is divisible

by four, we need only to show that the number for which g(t) = h(t) is
a multiple of four. These can only occur when ϕ(t) has no real roots, for
g(t) must have one root from each complex conjugate pair of roots of ϕ(t).
There are 2m such pairs and so 2m such factorizations, which is a multiple
of four when m > 1 and thus when k > 2. This establishes the congruence
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modulo four of Proposition 5 for osculating instances of Schubert problems
( , 2k−1) in Gr(k, 2k) when k > 2.

It is interesting to note that by (3.3), the number of real solutions to this
problem in Gr(5, 13) also satisfies a congruence modulo four.

Proof of Theorem 7. The Schubert variety X (∞) consists of those H sat-
isfying

dimH ∩ Fi+1(∞) ≥ i for i = 1, . . . , k−1 .

By Proposition 1, the solutions to (3.1) will be points in X (∞) that do
not lie in any other smaller Schubert variety Xλ(∞). This is the Schubert
cell of X (∞) [10], and it consists of the k-planes H which are row spaces
of matrices of the form

1 x1 · · · xn−k−1 xn−k 0 · · · 0
0 0 · · · 0 1 xn−k+1 · · · 0
...

...
...

. . .
. . .

...
0 0 · · · 0 · · · 0 1 xn−1

 ,

where x1, . . . , xn−1 are indeterminates. If xn−k = 0, then H ∈ X (0), but
if one of xn−k+1, . . . , xn−1 vanishes, then H ∈ X (0), which cannot occur

for a solution to (3.1), again by Proposition 1.

We use a rescaling of these coordinates. Define constants gn−k−1 :=
1 =: hk−1 and ci := (−1)n−k−i+1(n−k−i)! and let (f, g, h) = (f0, g0, . . . ,
gn−k−1, h0, . . . , hk−2) be variables with h0, . . . , hk−2 all nonzero. If we let
H(f, g, h) be the row space of the following matrix (also written H(f, g, h)):

c1gn−k−1 c2gn−k−2 · · · cn−kg0
f0
h0

0 · · · 0 0

0 0 · · · 0 −1 h0

h1
· · · 0 0

0 0 · · · 0 0 −2
. . .

...
...

...
...

...
...

. . . 0

0 0 · · · 0 0 · · · −(k−2) hk−3

hk−2
0

0 0 · · · 0 0 · · · 0 −(k−1) hk−2

hk−1


, (3.4)

then H(f, g, h) parameterizes the Schubert cell of X (∞). We postpone
the following calculation.

Lemma 11. The condition for H(f, g, h) to lie in X (t) is

det

(
H(f, g, h)
Fn−k(t)

)
= (−1)k(n−k)

( n−k−1∑
i=0

k−1∑
j=0

ti+j+1

i+j+1
gi hj + f0

)
. (3.5)
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Call the polynomial in the parentheses f(t). If H lies in the intersec-

tion (3.1), then (−1)k(n−k)f is the polynomial (3.2). If we set

g(t) := g0 + tg1 + · · ·+ tn−k−1gn−k−1 and

h(t) := h0 + th1 + · · ·+ tk−1hk−1 ,

then we have f(0) = f0 and f ′(t) = g(t)h(t). Theorem 7 is now immediate.
�

Proof of Lemma 11. Expand the determinant (3.5) along its first k rows
(the rows of H(f, g, h)) to obtain

det

(
H(f, g, h)
Fn−k(t)

)
=

∑
α∈([n]k )

(−1)|α|H(f, g, h)α(Fn−k(t))αc , (3.6)

where
([n]
k

)
is the collection of subsets of {1, . . . , n} of cardinality k, |α| :=

α1 + · · ·+ αk − 1− · · · − k, Hα is the determinant of the k × k submatrix
of H given by the columns in α, and (Fn−k(t))αc is the determinant of
the (n−k) × (n−k) submatrix of Fn−k(t) formed by the columns in αc :=
{1, . . . , n}r α. These are minors of H(f, g, h) and Fn−k(t).

A minor H(f, g, h)α of H(f, g, h) is nonzero only if α = (i, n−k+1, . . . ,

n̂−k+j, . . . , n) for i ∈ {1, . . . , n−k} and j ∈ {1, . . . , k} or α = (n−k+1, . . . ,

n−1, n), the last k columns. Write [i, ĵ] for the first type and [n−k]c

for the second. Then ([n−k]c)c = (1, . . . , n−k) and [̂i, j] := [i, ĵ]c =

(1, . . . , î, . . . , n−k, n−k+j).

With gn−k−1 = 1 = hk−1, a calculation shows that

H[n−k]c = f0 and

H[i,̂j] = (−1)n−k−i+j(n−k−i)! (j−1)! gn−k−i hj−1 .

For any α ∈
( [n]
n−k
)

the minor (Fn−k(t))α is

det


tα1−1

(α1−1)! · · · tαn−k−1

(αn−k−1)!
...

. . .
...

tα1−(n−k)

(α1−(n−k))! · · ·
tαn−k−(n−k)

(αn−k−(n−k))!

 .
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We use (1.5) to compute this determinant. It is

t|α|

(α1 − 1)! · · · (αn−k − 1)!
det


1 · · · 1

α1 − 1 · · · αn−k − 1
...

. . .
...

(α1 − 1)n−k−1 · · · (αn−k − 1)n−k−1



=
t|α|

(α1 − 1)! · · · (αn−k − 1)!
det


1 · · · 1
α1 · · · αn−k
...

. . .
...

αn−k−11 · · · αn−k−1n−k

 ,

where (m)i := m(m − 1) · · · (m−i+1) and an entry in the first matrix is
zero if αi − j < 0. If α! := (α1 − 1)! · · · (αn−k − 1)!, then

(Fn−k(t))α =
t|α|

α!

∏
i<j

(αj − αi) =
t|α|

α!
Vdm(α) ,

where Vdm(α) is the Vandermonde determinant of α. We compute

|[i, ĵ]| = i+ n−k+1 + · · ·+ n− (n−k+j)− 1− · · · − k
= k(n−k)− (n−k−i+j)

|[̂i, j]| = 1 + · · ·+ n−k + n−k+j − 1− · · · − k = n−k−i+j
([̂i, j])! = 1! · 2! · · · (i− 2)!i!(i+ 1)! · · · (n−k−1)!(n−k+j−1)!

Vdm([̂i, j]) = 1! · 2! · · · (i− 2)!
i!

1

(i+ 1)!

2
· · · (n−k−1)!

n−k−i

· (n−k+j−1)!

(j − 1)!
· 1

n−k−i+j

= ([̂i, j])! · 1

(n−k−i)!(j−1)!(n−k−i+j)
,

and

|[n−k]c| = k(n−k) , [n−k]! = Vdm([n−k]) = 1! · 2! · · · (n−k−1)! .

After some cancellation, the determinant (3.6) becomes

n−k∑
i=1

k∑
j=1

(−1)|[i,̂j]|H(f, g, h)[i,̂j](Fn−k(t))[̂i,j]

+ (−1)|[n−k]
c|H(f, g, h)[n−k]c(Fn−k(t))[n−k] ,
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which is
n−k∑
i=1

k∑
j=1

(−1)k(n−k)
tn−k−i+j

n−k−i+j
gn−k−ihj−1 + (−1)k(n−k)f0 .

If we replace n−k−i by i and j−1 by j in this sum, we get

det

(
H(f, g, h)
Fn−k(t)

)
= (−1)k(n−k)

( n−k−1∑
i=0

k−1∑
j=0

ti+j+1

i+j+1
gi hj + f0

)
,

which completes the proof. �

4. More tables from the experiment

We present a selection of the tables of real osculating instances of Schu-
bert problems studied in [13] and [15]. These exhibit intriguing structures
in their numbers of real solutions, only some of which we understand.

4.1. An enigma. Table 6 shows what is perhaps the most complicated
structure we observed. This used 24.6 gigahertz-years of computing. The

Table 6. Frequency table for ·
3
· 2 = 54 in Gr(4, 8)

r r
Number of Real Solutions

0 2 4 6 8 10 12 14 · · ·
3 2 · · ·
3 0 5 2714 13044 111636 59800 88674 20255 52088 · · ·
1 2 81216 235048 72682 109908 9600 52281 2877 12685 · · ·
1 0 599421 83350 53394 20997 · · ·

Number of Real Solutions

· · · 16 18 20 22 24 26 28 30 32 34 · · ·
· · · · · ·
· · · 44306 164085 9467 23019 5222 27149 5044 16959 1107 6336 · · ·
· · · 4953 31084 10 50198 166418 · · ·
· · · 20896 16359 34543 · · ·

Number of Real Solutions
Total

· · · 36 38 40 42 44 46 48 50 52 54

· · · 828960 828960
· · · 1280 15495 1731 13362 240 6292 35970 1275 102406 828960
· · · 828960
· · · 828960
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first row has only real points of osculation, so the Mukhin-Tarasov-Varchen-
ko Theorem implies that all 54 solutions are real, as observed. All possible
numbers of real solutions except 48 were observed for the osculation type of
the second row. The third and fourth rows appear to have an upper bound
of 26, and the fourth row exhibits an additional congruence to 54 modulo
four. None of this, besides the first row, is understood. Compare the upper
bound for the last two rows to that in Table 3 (note that 2 = 2 · b6/4c and
26 = 2 · b54/4c). A similar structure was also observed for the Schubert

problem · · 2 · = 16 in Gr(4, 8).

4.2. Internal structure. Work of Vakil [31] and others has led to the
study of Schubert problems which posses internal structure as encoded by
their Galois groups [12]. The current state of this investigation is discussed
in [4, § 5]. Intriguingly, in every problem we know whose Galois group
is not the full symmetric group, the internal structure which restricts the
Galois group appears to restrict the possible numbers of real solutions to
real osculating instances.

A good example is the Schubert problem 2 · 2 · 6 = 10 in Gr(4, 9)
of Table 7, which used 4.14 gigahertz-years of computing. The problem is
solved by first solving an instance of the problem of four lines ( 4 = 2) in a

Gr(2, 4) that is given by the four conditions 2 · 2. Then, for each of the

Table 7. Frequency table for 2 ·
2

· 6 = 10 in Gr(4, 9)

r r r
# Real Solutions

Total
0 2 4 6 8 10

2 2 6 8000 8000
2 0 6 5419 2581 8000
0 2 6 2586 5414 8000
0 0 6 8000 8000
2 2 4 2971 2202 2827 8000
2 0 4 5508 876 722 894 8000
0 2 4 2469 2051 1527 1953 8000
0 0 4 2941 2228 2831 8000
2 2 2 3595 3374 1031 8000
2 0 2 5535 1090 1051 324 8000
0 2 2 2539 2472 2254 735 8000
0 0 2 3572 3411 1017 8000
2 2 0 7287 713 8000
2 0 0 5378 2386 236 8000
0 2 0 2619 4917 464 8000
0 0 0 7333 667 8000
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two solutions to that problem, an instance of the Schubert problem 6 = 5
in Gr(2, 5) is solved, to get 10 solutions in all. The Galois group of this
problem permutes each of these blocks of five solutions for the two Schubert
problems 6 = 5 of the second step, and thus it acts imprimitively. Further
analysis shows that the Galois group is the wreath product S5 o S2, which
has order (5!)2 · 2! = 28800.

Table 8 shows the frequency tables for the two auxiliary problems 4 = 2
in Gr(2, 4) and 6 = 5 in Gr(2, 5), which used 12.6 gigahertz-hours of
computing. It is fascinating to compare these to Table 7. First observe

Table 8. Frequency tables for 4 = 2 and 6 = 5.

r 0 2 Total

4 100000 100000
2 32412 67588 100000
0 100000 100000

r 1 3 5 Total

6 100000 100000
4 36970 36970 35314 100000
2 35314 43081 11222 100000
0 89105 10895 100000

that for 2 · 2 · 6 we have no real solutions only when r + r = 2,

similar to 4 having no real solutions only when r = 2. The remaining
columns of Table 7 have the same pattern of dependence on r as do the
columns of 6 = 5, except that the number of real solutions is doubled.

4.3. Problems of the form (λ, λ, λ, λ). When the Schubert problem has
the form λ = λ4, there are three osculation types, rλ = 4, rλ = 2, and
rλ = 0. Every Schubert problem of this type we studied has interesting
structure in its numbers of real solutions. Table 9 shows the results for the

Table 9. Frequency table for
4

= 8 in Gr(3, 7).

r # Real Solutions
Total

0 2 4 6 8

4 10000 10000
2 3590 292 6118 10000
0 10000 10000

Schubert problem
4

= 8 in Gr(3, 7). The structure of this table is similar

to Table 10 for the Schubert problem
4

= 9 in Gr(4, 8). Both of these
were computed in [13] which inspired the more comprehensive experiment
we have been discussing.
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Table 10. Frequency table for
4

= 9 in Gr(4, 8).

r # Real Solutions
Total

1 3 5 7 9

4 7500 7500
2 4995 13 4692 7500
0 7500 7500

Understanding these tables led Purbhoo [23] to study the number fixed
points in a fiber of the Wronski map under the action of a cyclic or dihedral
group. His Theorem 3.15 gives a formula for the number of real solutions to
instances of Schubert problems (λ, λ, λ, λ) with osculation type rλ = 0. The
number of complex solutions to this problem is a particular set of Young
tableaux, and Purbhoo’s formula is the number of these Young tableaux
that are fixed under an involution based on tableaux switching [2]. Example

3.16 of [23] gives the computation that this number is 4 for
4

= 8 in
Gr(3, 7), as we saw in Table 9. Similarly, it is an exercise that this number

is 5 for
4

= 9 in Gr(4, 8).

Purbhoo’s result may be applied to Schubert problems in the family of
Schubert problems (a, 0)4 = a+1 in Gr(2, 2a) when r(a,0) = 0. As we see

for the Schubert problem 4 = 2 of Table 8 and 4 = 4 in Gr(2, 8)
of Table 11, when there are no real points of osculation, these problems

Table 11. Frequency tables for 4 = 4 in Gr(2, 8).

r
# Real Solutions

Total
0 2 4

4 200000 200000
2 32765 103284 63951 200000
0 200000 200000

appear to have a+1 real solutions. That is in fact always the case, as we
now explain.

The solutions to (a, 0)4 = a+1 are enumerated by Young tableaux of
shape (2a, 2a) filled with a copies of each of the numbers 1, 2, 3, and 4.
Since the numbers 1 must fill the first a positions in the first row and the
numbers 4 must fill the last a positions in the second row, the only choice
is how many numbers 2 are in the first row. There are a+1 choices, so
there are a+1 such tableaux. Here are the four tableaux for the problem
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4 = 4.

1 1 1 2 2 2
3 3 3 4 4 4

1 1 1 2 2 3
2 3 3 4 4 4

1 1 1 2 3 3
2 2 3 4 4 4

1 1 1 3 3 3
2 2 2 4 4 4.

Purbhoo’s switching involution switches the subtableaux consisting of the
1s with that of the 2s, and that of the 3s with that of the 4s. However, the
properties of switching (see [2] or [23]) imply that every such tableaux is
fixed under this involution, which implies that all solutions will be real for
(a, 0)4 = a+1 with osculation type r(a,0) = 0.

Despite this understanding for rλ = 4 and rλ = 0, we do not understand
the possible numbers of real solutions when rλ = 2 for Schubert problems
(λ, λ, λ, λ).
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