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1. Introduction

In physics there is the natural need to reduce the complexity of real-world
physical systems for the formulation of mathematical models and therefore
to work with idealizations. A well-known example of this is the notion of
a point particle, which represents an object whose properties like mass or
electric charge are concentrated in a single point.
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144 E. A. Nigsch and C. Sämann

Such a point charge is classically represented by Dirac's delta function δ,
originally introduced as a useful notation for dealing with a certain kind of
in�nities [20, p. 58]:

�To get a precise notation for dealing with these in�nities, we
introduce a quantity δ(x) depending on a parameter x sat-
isfying the conditions

∫∞
−∞ δ(x) dx = 1, δ(x) = 0 for x 6= 0.

[...] δ(x) is not a function according to the usual mathe-
matical de�nition of a function, which requires a function
to have a de�nite value for each point in its domain, but
is something more general, which we may call an `improper
function' to show up its di�erence from a function de�ned by
the usual de�nition. Thus δ(x) is not a quantity which can
be generally used in mathematical analysis like an ordinary
function, but its use must be con�ned to certain simple types
of expression for which it is obvious that no inconsistency
can arise.�

Its mathematical justi�cation had to wait for the introduction of the
theory of distributions by S. L. Sobolev [60] and L. Schwartz [57], who
de�ned distributions as continuous linear functionals on certain spaces of
test functions.

At that time the theory of distributions not only furnished the means for
a rigorous formulation of several previously vague uses of generalized func-
tions in physics, but very quickly brought strong results in particular in the
�eld of di�erential equations. As the most prominent example, the theorem
of Malgrange-Ehrenpreis [47, 22, 52] states that every linear partial di�er-
ential operator with constant coe�cients has a distributional fundamental
solution. Another result of foundational importance is Schwartz' kernel the-
orem [59], which allows one to represent operators between general spaces
of distributions by distributional kernels. These results re�ect and in e�ect
are made possible by the strong footing of distribution theory in the theory
of locally convex spaces. At the same time, it is noteworthy that the basic
de�nitions of distribution theory are very simple, which certainly makes it
more accessible also for non-specialists and partly explains its success in
many �elds.

It is clear from the quote above that there are certain restrictions on what
one can do with distributions compared with ordinary functions. Being an
inherently linear theory, distribution theory does not allow for an intrinsic
de�nition of an associative product of distributions preserving the pointwise
product of continuous functions, as can be seen from the relations

0 = (δ(x) · x) · vp

(
1

x

)
= δ(x) · (x · vp

(
1

x

)
) = δ(x),
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since δ(x) · x = x|x=0 = 0 and x · vp(1/x) = 1, where vp(1/x) denotes
the Cauchy principal value of 1/x. A theory where δ = 0 would be point-
less, since we explicitly want to model shocks and point charges. Similarly,
one can see that commutativity and the Leibniz rules cannot hold simul-
taneously. This impossibility is stated in precise terms by the Schwartz
impossibility result [58]:

Theorem 1. Let A be an algebra containing the algebra C(R) of all continu-
ous functions on R as a subalgebra such that the constant function 1 ∈ C(R)
is the unit in A. Assume there exists a linear map D : A → A extending the
derivation of continuously di�erentiable functions and satisfying the Leibnitz
rule. Then D2(|x|) = 0.

Because D2(|x|) = 2δ this implies that A cannot contain δ (for a further
discussion of the problem of multiplying distributions see [51, Chapter I]).
Hence, one way to de�ne a product of distributions is to restrict to sub-
algebras (e.g., Sobolev spaces Hs with s large enough) or certain pairs of
distributions (e.g., Lp×Lq with 1/p+1/q = 1) for which the product again
makes sense as a distribution; a di�erent way is to weaken the requirement
that C(R) is a subalgebra.

Both approaches have their merits. In Section 2 we �rst look at the uses
and limitations of the �rst approach in the context of distributional geome-
try, where one only considers distributions such that all desired calculations
can be carried out. After that, we will examine algebras of nonlinear gen-
eralized functions in the sense of Colombeau, which contain the space of
smooth functions as a subalgebra. After recalling the basic idea and origi-
nal de�nitions in Section 3 we describe how they split up into two di�erent
variants in Section 4 and present some recent applications to general rel-
ativity in Section 5. In Section 6 we then describe the previous attempts
on obtaining di�eomorphism invariant Colombeau algebras, including the
tensor case. Finally, in Section 7 we present a new approach to Colombeau
algebras, unifying and simplifying previous work and leading the way to
further developments.

2. Linear distributional geometry

2.1. Basic de�nitions. We brie�y recall the basic de�nitions of the theory
of distributions on an open subset Ω ⊆ Rn. For introductory texts we refer
to [25, 57, 21, 36, 64].

The space of test functions D(Ω) consists of all functions ϕ : Ω→ C which
are smooth (in�nitely di�erentiable) and have compact support. This space
is endowed with a certain locally convex inductive limit topology which
turns it into an LF-space. The space of distributions D′(Ω) then is de�ned
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as its topological dual endowed with the strong topology. The action of a
distribution u on a test function ϕ is commonly denoted by 〈u, ϕ〉.

Locally integrable functions f can be embedded into D′(Ω) via integra-
tion; the image of f in D′(Ω) then is called a regular distribution and is
given by the functional

ϕ 7→
∫
f(x)ϕ(x) dx (ϕ ∈ D(Ω)). (1)

This formula also provides the basis on which many classical operations
are extended to distributions: replacing f by its i-th partial derivative ∂if
and integrating by parts, or replacing f by its product g · f with a smooth
function g, one obtains from (1) formulas for di�erentiating a distribution
u or multiplying it by a smooth function:

〈∂iu, ϕ〉 := −〈u, ∂iϕ〉,
〈g · u, ϕ〉 := 〈u, g · ϕ〉.

If one wants to extend the notion of distributions to a manifold M
(which will always be assumed to be �nite-dimensional, paracompact and
orientable), the de�nition of regular distributions as in (1) requires the
product of f and ϕ to be an n-form, as these are the objects which can be
integrated on a manifold. For this reason, one takes compactly supported
n-forms ω ∈ Ωn

c (M) instead of test functions and de�nes D′(M) as the dual
of Ωn

c (M). As above, the Lie derivative of functions extends to D′(M) by
setting 〈LXu, ω〉 := −〈u,LXω〉 for u ∈ D′(M), ω ∈ Ωn

c (M) and X a smooth
vector �eld on M .

For considering e.g. distributional sources in linear �eld theories or singu-
lar metrics in general relativity one needs a notion of distributional sections
of vector bundles or, more speci�cally, distributional tensor �elds. The lat-
ter are most easily de�ned as tensor �elds with distributional coe�cients,
hence we say that distributional tensors of rank (r, s) are given by the tensor
product

D′rs (M) := D′(M)⊗C∞(M) T rs (M),

where T rs (M) is the space of smooth (r, s)-tensor �elds on M and C∞(M)
the space of smooth functions on M (see [30] for a thorough introduction
to vector bundle valued distributions on manifolds).

Trying to extend classical operations to distributional tensor �elds one
encounters already the �rst di�culty: applying the method of continuous
extension to multilinear operations on smooth tensor �elds allows at most
one factor to be distributional, the others have to be smooth. For instance,
one can only take the tensor product of a distributional tensor �eld with a
smooth tensor �eld, but not with another distributional tensor �eld. Fur-
thermore, this places restrictions on the de�nition of distributional metrics
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and connections ([30, Section 3.1.5]). The underlying reason can be seen
from the respective coordinate expressions, which would involve multiplica-
tion of distributions.

2.2. The Geroch-Traschen class. Geroch and Traschen [27] tried to �nd
a wide class of metrics whose curvature tensors make sense as distributions
� the so-called Geroch-Traschen class of metrics (or gt-regular metrics in
[63]). For this purpose they de�ned certain restrictions on the metric and
the covariant derivative in order to make all desired quantities well-de�ned.

The coordinate expression of the curvature tensorR of a semi-Riemannian
manifold (M, g) reads

Rijkl =
∂Γikj
∂xl

−
∂Γilj
∂xk

+
n∑

m=1

ΓilmΓmkj −
n∑

m=1

ΓikmΓmlj ,

where the Christo�el symbols Γkij are given by

Γkij =
1

2

n∑
m=1

gkm
(∂gjm
∂xi

+
∂gim
∂xj

− ∂gij
∂xm

)
.

Here, gij denotes the components of the metric and gij those of its inverse.
The crucial observation of Geroch and Traschen was that the following
conditions are su�cient for Rijkl to de�ne a distribution:

(i) The inverse of g exists everywhere and gij , g
ij are locally bounded.

(ii) The weak �rst derivative of gij exists and is locally square integrable.

This conditions are however not necessary, as can be seen in [26]. On the
other hand the broader class of metrics given in [26] (yielding distributional
curvature) is not stable under appropriate approximations via smooth met-
rics. More on smoothing of gt-regular metrics, non-degeneracy and com-
patibility with the Colombeau approach can be found in [63]. It should be
noted that there is also a coordinate-free way to derive the Geroch-Traschen
class of metrics ([46]).

2.3. Limitations. The most important result in the context of applicabil-
ity of distribution theory to general relativity is [27, Theorem 1]: if one
has a gt-regular distribution u 6= 0 concentrated on a submanifold S (i.e.,
supp(u) ⊆ S) then the codimension of S has to be equal to one. Thus in
four dimensions this excludes strings and points and only allows concen-
tration of matter on shells, which suggests that the use of distributions in
general relativity is quite limited. We will discuss this in some more detail.
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The application of distribution theory in general relativity has a long
history, for example with problems involving metrics of low regularity, in-
cluding shocks and thin shells (cf. [11, 37, 38, 40, 2, 1, 3] and [62] for a
survey). As emphasized in [62] this approach is severely limited in its range
of applications since on one hand the theory of distributions is a linear the-
ory and on the other hand general relativity is inherently nonlinear (due
to Einstein's �eld equations). We will exemplify this problem in the case
of impulsive pp-waves (plane fronted waves with parallel rays), where the
nonlinearity comes from the geodesic equations.

2.4. Impulsive pp-waves. Impulsive waves were introduced by Penrose
([53, 54]) using a �cut-and-paste� approach, which involves cutting Minkowski
space-time along a null hypersurface and reattaching the two regions with a
suitable warp. These waves can also be considered as idealizations (impul-
sive limit) of sandwich waves of in�nitely short duration. We refer to [28,
Chapter 20] for a general introduction to this topic. Impulsive pp-waves
can be described by the so-called Brinkmann form of the pp-wave metric
([7])

ds2 = f(x, y)δ(u)du2 − dudv + dx2 + dy2, (2)

where f ∈ C∞(R2), δ denotes the delta distribution, u, v are null coordi-
nates such that ∂v is covariantly constant and x, y are Cartesian coordinates
spanning the wave surfaces. From this form of the metric one can easily
see that the space-time is �at except on the null hyperplane u = 0, where
a δ-like impulse is located. To be more precise, the impulse has �strength�
f(x, y) at the point (x, y, 0, v). Clearly this space-time cannot be described
within classical general relativity due to the δ-like impulse. Moreover, it is
not even gt-regular, i.e., it does not belong to the Geroch-Traschen class
of metrics. Nevertheless these space-times are �tame� enough to calculate
the Ricci tensor within distribution theory and hence the Einstein vacuum
equations may be formulated giving ∆f = 0 on the hypersurface u = 0.

So what aspects of this space-time cannot be handled in distribution
theory? In light of the problem of multiplying distributions we see that when
trying to solve the geodesic equations for impulsive pp-wave space-times
described by the metric (2), we are in general multiplying distributions, not
classical functions. To describe this problem in more detail, we consider the
geodesic equations for the metric (2). Since ü = 0, we use u as a new a�ne
parameter and thereby exclude only trivial geodesics parallel to the shock
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hypersurface. In summary we get

v̈(u) = f(u)δ̇(u) + 2

(
∂f

∂x
(u)x(u) +

∂f

∂y
(u)y(u)

)
δ(u), (3)

ẍ(u) =
1

2

∂f

∂x
(u)δ(u), (4)

ÿ(u) =
1

2

∂f

∂y
(u)δ(u). (5)

We try to solve these equations in D′: for u 6= 0 the right hand sides
vanish, so we expect that the geodesics are broken (and possibly refracted)
straight lines. By integrating and simplifying we get an expression for x,
namely x(u) = x0 + 1

2(∂f/∂x)(x0)H(u)u, where H denotes the Heaviside
function and x0 = x(0) is an arbitrary initial condition. Consequently,
in equation (3) we have the product H · δ which is ill-de�ned in classical
distribution theory. Now we see that the problem is that the distributional
�solutions� do not obey the original equations unless one is willing to impose
certain ad hoc multiplication rules. The correct idea to solve this problem
is to approximate the delta distribution by a net of smooth functions (δε)ε
(ε ∈ (0, 1]) and solve the equations in C∞ for each ε. This idea can be made
mathematically rigorous in the Colombeau setting. See [61, 44, 43] for a
treatment of impulsive pp-waves in the context of Colombeau algebras.

3. Algebras of nonlinear generalized functions

Theorem 1 implies that one cannot hope to embed distributions into a
di�erential algebra such that the product of continuous functions is pre-
served. However, it was discovered by J. F. Colombeau [14, 13] that one
can construct associative commutative di�erential algebras containing D′ as
a linear subspace and C∞ as a subalgebra. In the following we will brie�y
sketch his original ideas.

Colombeau's algebras emerged in the context of his work on calculus in
in�nite dimensional locally convex spaces. Clearly, products of distributions
on an open subset Ω ⊆ Rn can be naturally seen as monomials on D(Ω)
(in the sense of [19]) or, more generally, smooth functions on D(Ω). The
notion of smoothness employed by Colombeau originally was that of Silva-
di�erentiability ([12]) but can be replaced with the (here equivalent) notion
of smoothness in the sense of calculus on convenient vector spaces ([41]),
which we shall also use in the sequel because it appears to be somewhat
simpler for our purposes.

One might de�ne the product of u, v ∈ D′(Ω) as the mapping D(Ω)→ C
given by

(u · v)(ϕ) := 〈u, ϕ〉 · 〈v, ϕ〉 (ϕ ∈ D(Ω)).
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Obviously C∞(D(Ω)), the space of smooth functions from D(Ω) into C, is
an algebra containing D′(Ω). It possesses partial derivatives ∂i (i = 1 . . . n)
extending those of distributions by setting, for R ∈ C∞(D(Ω)),

(∂iR)(ϕ) := −dR(ϕ) · ∂iϕ (ϕ ∈ D(Ω)) (6)

where dR denotes the di�erential of R ([41, 3.18]). The product of smooth
functions f, g is not preserved in this algebra because the expression∫

f(x)ϕ(x) dx ·
∫
g(x)ϕ(x) dx−

∫
f(x)g(x)ϕ(x) dx (7)

is nonzero in general. It vanishes, however, if ϕ is replaced by δz, the delta
distribution at any point z ∈ Ω. Colombeau's brilliant idea here was to
characterize elements of the form (7) in C∞(D(Ω)) by their asymptotic
behavior on certain sequences of test functions and hence de�ne an ideal
containing them. The corresponding quotient algebra would then preserve
the product of smooth functions. We will explain this idea in some more
detail because of its fundamental importance for the rest of this article; for
the original account, see [13].

First, C∞(Ω) as a re�exive space is topologically isomorphic to its bidual
Lb(E ′(Ω),C), where E ′(Ω) denotes the strong dual of C∞(Ω) and, given lo-
cally convex spaces E and F , Lb(E,F ) denotes the space of all continuous
linear mappings from E to F endowed with the topology of bounded con-
vergence. We see that the subalgebra of C∞(D(Ω)) generated by C∞(Ω) is
contained in C∞(E ′(Ω)):

D′(Ω) // C∞(D(Ω))

C∞(Ω)

OO

∼= L(E ′(Ω),C) ⊆ C∞(E ′(Ω))

OO

Slightly generalizing (7), we can say that we are looking for an ideal of
C∞(D(Ω)) containing the set

{R ∈ C∞(E ′(Ω)) | R(δx) = 0 ∀x ∈ Ω}. (8)

The following proposition characterizes elements of this set in terms of their
restriction to D(Ω) ([13, Proposition 3.3.3]). It utilizes the sets

Aq(Rn) := {ϕ ∈ D(Rn) :

∫
ϕ(x) dx = 1,∫

xαϕ(x) dx = 0 ∀ 1 ≤ |α| ≤ q} (q ∈ N0) (9)

using the usual multiindex notation xα = xα1
1 · · ·xαn

n for x = (x1, . . . , xn) ∈
Rn and α = (α1, . . . , αn) ∈ Nn0 .
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Proposition 2. Let R ∈ C∞(E ′(Ω)) be given. Then R(δx) = 0 for all
x ∈ Ω if and only if ∀q ∈ N ∀ϕ ∈ Aq(Rn) ∀K ⊆ Ω compact there are c > 0
and η > 0 such that

|R(ϕε,x)| ≤ cεq+1 ∀ 0 < ε < η and x ∈ K,
where ϕε,x ∈ D(Ω) is de�ned by ϕε,x(y) := ε−nϕ((y − x)/ε) for small ε.

This suggests to de�ne an ideal of C∞(D(Ω)) containing (8) as the set
of all elements satisfying this condition. However, one has to restrict to a
smaller subalgebra (still containing all distributions) for this to be an ideal.
The de�nition of the original algebra of nonlinear generalized functions in-
troduced by Colombeau hence takes the following form.

De�nition 3. If R ∈ C∞(D(Ω)) we say that R is moderate if for every
compact subset K of Ω and every multiindex α ∈ Nn0 there is an N ∈ N
such that ∀ϕ ∈ AN (Rn) ∃c > 0 and η > 0 such that |∂αR(ϕε,x)| ≤ cε−N .
The set of all moderate elements is denoted by EoM (Ω).

R ∈ EoM (Ω) is called negligible if for every compact set K of Ω and every
multiindex α ∈ Nn0 there is an N ∈ N such that ∀ϕ ∈ Aq(Rn) with q ≥ N
∃c > 0 and η > 0 such that |∂αR(ϕε,x)| ≤ cεq−N . The subset of all negligible
elements is denoted by N o(Ω).

We set Eo(Ω) := C∞(D(Ω)) and Go(Ω) := EoM (Ω)/N o(Ω).

For clarity, let us state that ∂αR(ϕε,x) denotes the derivative of order α
of the map x′ 7→ R(ϕε,x′).

The desired properties are easily veri�ed: distributions are canonically
embedded into Go(Ω), C∞(Ω) is contained as a subalgebra and the partial
derivatives given by (6) extend those of distributions. Furthermore, many
concepts of classical analysis (point values, integrals, Fourier transform etc.)
have direct equivalents in the context of generalized functions (cf. [13, 14,
51, 30]).

It should be stressed at this point that Colombeau's algebra of generalized
functions is not an alternative to but an extension of distribution theory.
In fact, through the concept of association it is possible in many cases to
relate certain generalized functions in Go(Ω) to distributions ([13, De�nition
3.5.2]):

De�nition 4. Let R ∈ Eo(Ω) be a representative of an element of Go(Ω).
If for every ψ ∈ D(Ω) there is q ∈ N such that for all ϕ ∈ Aq(Rn) the limit

lim
ε→0

∫
R(ϕε,x) · ψ(x) dx

exists independently of ϕ, and as a function of ψ this limit de�nes a distri-
bution on Ω, we say that R admits an associated distribution u de�ned by
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the formula

〈u, ψ〉 := lim
ε→0

∫
R(ϕε,x) · ψ(x) dx (ψ ∈ D(Ω)).

As an example, the classical product of continuous functions is not pre-
served in Go(Ω), but it is so on the level of association. The point of associa-
tion is that whenever a calculation makes sense distributionally one obtains
the same result if one formulates the same problem in the Colombeau alge-
bra, does the same calculations there, and �nds the associated distribution.

These de�nitions are classical and have since been subject to many mod-
i�cations and adaptions, of which we will describe the most important ones
in Section 4. For the many applications of Colombeau algebras in the �elds
of partial di�erential equations, numerics or geometry we refer to the mono-
graphs [13, 6, 51, 30].

4. Full and special Colombeau algebras

After the presentation of Go in [13], two main variants of Colombeau
algebras emerged. The �rst one, so-called full algebras, possess a canonical
embedding of distributions and were the basis for the development of a
di�eomorphism invariant theory which eventually should lead to a global
formulation on manifolds and also an algebra of generalized tensor �elds.
The second one, so-called simpli�ed or special algebras, have a very simple
formulation and thus allow for a direct transfer of many classical notions,
but have no canonical embedding of distributions anymore and su�er from
a lack of di�eomorphism invariance.

At the basis of these variants lie di�erent interpretations of generalized
functions in Go(Ω) on a rather symbolic level. In fact, by De�nition 3
generalized functions R ∈ Eo(Ω) are determined by all their values

R(ϕε,x) (ϕ ∈ A1(Rn), ε ∈ (0, 1], x ∈ Ω). (10)

By varying how the dependence on ϕ, ε and x is incorporated in the basic
space the following prototypical variants can be derived.

4.1. Full algebras. The idea of the elementary full algebra presented in
[14] is to view generalized functions as mappings in both ϕ and x. This
allows one to shift the burden of di�erentiation to the x-variable alone, for
�xed ϕ, and formulate the theory without recourse to calculus on in�nite
dimensional locally convex spaces. The corresponding de�nitions are as
follows (see [14, Chapter 1] and [30, Section 1.4]).
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De�nition 5. We set

U(Ω) := {(ϕ, x) ∈ A0(Rn)× Ω | suppϕ+ x ⊆ Ω},
Ee(Ω) := {R : U(Ω)→ C | R(ϕ, .) is smooth ∀ϕ ∈ A0(Rn)}.

We say that an element R ∈ Ee(Ω) is moderate if for every compact subset
K of Ω and every multiindex α ∈ Nn0 there is N ∈ N such that if ϕ ∈
AN (Rn) then there exist η > 0, c > 0 such that |∂αR(Sεϕ, x)| ≤ cε−N ,
where (Sεϕ)(y) := ε−nϕ(y/ε). We denote by EeM (Ω) the set of all moderate
elements of Ee(Ω).

We say that an element R of Ee(Ω) is negligible if for every compact subset
K of Ω, every multiindex α ∈ Nn0 and every m ∈ N there is q ∈ N such that
if ϕ ∈ Aq(Rn) then there exist η > 0, c > 0 such that |∂αR(ϕε, x)| ≤ cεq.
We denote by N e(Ω) the set of all negligible elements.

We set Ge(Ω) := EeM (Ω)/N e(Ω).

The canonical embedding ι : D′(Ω) → Ge(Ω) is determined by assigning
to u ∈ D′(Ω) the class of

(ϕ, x) 7→ 〈u, ϕ(.− x)〉 ((ϕ, x) ∈ U(Ω)).

Smooth functions are embedded via the map σ : C∞(Ω) → Ge(Ω) which
assigns to f ∈ C∞(Ω) the class of

(ϕ, x) 7→ f(x) ((ϕ, x) ∈ U(Ω)).

Finally, partial derivatives extending those of distributions are given by

(∂iR)(ϕ, x) := ∂i(R(ϕ, .))(x).

Comparing this formula for ∂iR with (6) and the basic space Ee(Ω) with
Eo(Ω), one sees that one does not need calculus on in�nite-dimensional
spaces anymore for the formulation of this algebra, hence the name ele-
mentary algebra. Colombeau algebras possessing a canonical embedding of
distributions, like Go or Ge, are traditionally called full algebras.

4.2. Special algebras. A di�erent simpli�cation comes from �xing ϕ in
(10) and viewing generalized functions as functions depending on ε and
x. This gives rise to the so-called simpli�ed (or special) algebra, where
generalized functions are represented by nets in ε of smooth functions in
x. This approach links particularly well with the sequential approach to
distributions of Mikusi«ski [48]. The de�nitions are as follows ([30, 51, 15]),
where we employ the notation K ⊂⊂ Ω for saying that K is a compact
subset of Ω:
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De�nition 6. We set

I := (0, 1],

Es(Ω) := (C∞(Ω))I ,

EsM (Ω) := {(uε)ε ∈ Es(Ω) | ∀K ⊂⊂ Ω ∀α ∈ Nn0
∃N ∈ N : sup

x∈K
|∂αuε(x)| = O(ε−N )},

N s(Ω) := {(uε)ε ∈ Es(Ω) | ∀K ⊂⊂ Ω ∀α ∈ Nn0
∀m ∈ N : sup

x∈K
|∂αuε(x)| = O(εm)},

Gs(Ω) := EsM (Ω)/N s(Ω).

Smooth functions are trivially included as constant nets via

σ : C∞(Ω)→ C∞(Ω)I ,

f 7→ (f)ε.

In order to have ι and σ agree on C∞(Ω), ϕ has to satisfy all moment
conditions de�ning the spaces Aq(Rn) at once, which forces it to be an
element of the Schwartz space S(Rn). As a consequence, one can directly
embed only compactly supported distributions at �rst and construct an
embedding of D′(Ω) using the sheaf property afterwards (see [30, Section
1.2.2] for details). However, one can also write this embedding in the form

ιu := (x 7→ 〈u, ~ψε(x)〉)ε (u ∈ D′(Ω))

for some net (~ψε)ε ∈ C∞(Ω,D(Ω))I (cf. [50]).

The special algebra is particularly convenient for direct extensions of op-
erations on smooth functions because one can de�ne them componentwise,
i.e., for �xed ε. Spaces of generalized functions on manifolds and general-
ized sections of vector bundles are de�ned similarly to De�nition (6); for

example, the space Ĝrs (M) of generalized (r, s)-tensor �elds on M consists
of nets (tε)ε ∈ (T rs (M))I which are subject to the usual Colombeau-type
quotient construction. A generalized metric then is an element of G0

2(M)
such that each tε is a pseudo-Riemannian metric of constant index (locally
and for small ε) and which is non-degenerate in a certain sense. The de-
velopment of the foundations of semi-Riemannian geometry in this setting
came very naturally ([45]). Analogously, one can de�ne a space G[R,M ] of
generalized mappings on R with values in the manifold M ([42]).

However, special algebras su�er from a major drawback: they fail to be
di�eomorphism invariant and hence are only of limited use in a geometrical
setting. Furthermore, the embedding ι does not commute with arbitrary
Lie derivatives.
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We will see in Section 7 how these two essentially di�erent approaches,
full and special algebras, can be reconciled in a bigger picture.

5. Applications to general relativity

The two papers [62, 65] give a comprehensive overview of applications
of distributions and generalized functions to general relativity. Addition-
ally to the works mentioned in Section 2, these articles discuss applications
to Schwarzschild and Kerr space-times, ultrarelativistic black holes, coni-
cal singularities, cosmic strings, weak singularities and generalized hyper-
bolicity. Therefore we only discuss more recent works, starting with the
description of an important class of wave-type space-times.

5.1. Geodesic completeness of non-smooth space-times. This class
of space-times, the so-called N -fronted waves with parallel rays (NPWs) for
short, are de�ned as a product M = N × R2, with metric

l = π∗(h) + 2dudv + F (., u)du2 , (11)

where h denotes the metric of an arbitrary, connected Riemannian manifold
(N,h), π : M → N is the projection and u, v are global null-coordinates
on the 2-dimensional Minkowski space R2

1. Moreover, F ∈ C∞(N × R)
is classically assumed to be smooth and is called the pro�le function of
this space-time. At �rst these models were studied by Brinkmann in the
context of conformal mappings of Einstein spaces ([8]). In the last ten
years NPWs were investigated with respect to their geometric properties
and causal structure in [9, 23, 10, 24], where these space-times are called
�general plane waves�. Due to the geometric interpretation given in [55] of
N as the wave surface of these waves, it seemed more natural to call them
N -fronted waves, rather than plane-fronted waves. Note that plane-fronted
waves with parallel rays (pp-waves) (cf. [28, Chapter 17]) are a special case
of NPWs (N = R2 with the Euclidean metric).

Impulsive NPWs (iNPWs for short) are a generalization of impulsive pp-
waves. Here the pro�le function F is given as a product f · δ, where f ∈
C∞(N) and δ denotes the Dirac distribution on the hypersurface u = 0.
As already shown in [44], impulsive pp-waves can be thought of as being
geodesically complete in the sense that all geodesics (in the generalized
sense) can be de�ned for all time. This result also holds for the general
class of iNPWs without any growth restrictions on the pro�le function f ,
which is in contrast to the smooth case where on needs �subquadratic�
behavior of the pro�le function in the N -component (see [24, Theorem 4.1]).
Approximating the δ distribution by a strict delta net (ρε)ε, we obtain a
family of smooth metrics

lε = π∗(h) + 2dudv + fρε(u)du2.
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Then the precise statement is the following (see [55, Theorem 3.2]):

Theorem 7. Let (N,h) be a connected and complete Riemannian manifold.
Then for all x0 ∈ N , ẋ0 ∈ Tx0N and all v0, v̇0 ∈ R there exists ε0 such that
the solution (xε, vε) of the geodesic equation with initial data xε(−1) = x0,
ẋε(−1) = ẋ0, vε(−1) = v0, v̇ε(−1) = v̇0 is de�ned for all u ∈ R, provided
ε ≤ ε0.

Note that ε0 depends on the initial conditions and in general one can-
not �nd an ε0 that works for any initial condition. One could say that
�in the limit as ε ↘ 0� the space-time is complete. But without the use
of Colombeau generalized functions one cannot make this intuitive notion
precise. Hence we arrive at the following de�nition ([56]):

De�nition 8 (Geodesic completeness for generalized metrics). Let g ∈
G0

2(M) be a generalized metric of Lorentzian signature. Then the generalized
space-time (M, g) is said to be geodesically complete if every geodesic can
be de�ned on R, i.e., every solution of the geodesic equation

c′′ = 0

is in G[R,M ].

In this sense iNPWs are geodesically complete (cf. [56]) and one can see
the need to use Colombeau generalized functions to give a mathematically
rigorous meaning to that notion. This is an example were one can observe
that (just) using distributions one is unable to formulate in a mathemati-
cal precise manner a physically interesting concept. The above discussion
provides a strong incentive to use Colombeau algebras when dealing with
non-smooth space-times.

5.2. Solution theory of the wave equation and generalized global
hyperbolicity. Another recent development is a solution theory for the
Cauchy problem on non-smooth manifolds with weakly singular Lorentzian
metrics ([34]). In this work a generalization of the (smooth) metric splitting
for globally hyperbolic Lorentzian manifolds ([4, 5]) is employed to prove
existence and uniqueness for the Cauchy problem with compactly supported
initial data in the special Colombeau algebra Gs. This notion is called glob-
ally hyperbolic metric splitting and its de�nition is given in ([34, De�nition
6.1]). The space-time (M, g) splits in this case as M ∼= R × S, where S
is a Cauchy hypersurface (for every representative of g). Then the Cauchy
problem reads 

�u = 0 on M,

u = u0 on S,

∇ξu = u1 on S.

(12)
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Here u0, u1 ∈ Gs(S) have compact support and ξ denotes the unit normal
vector �eld of S. [34, Theorem 6.3] states that (12) has a unique solution
u ∈ Gs(M) if one assumes (additionally to g being weakly singular) better
asymptotics of the time-derivative of the metric as well as the spatial de-
rivative of g00, i.e., condition (B) of [34]. The inhomogeneous problem and
the inclusion of lower-order terms can be handled also by these methods
(cf. [33]).

This generalization of the smooth metric splitting is well-suited for deal-
ing with the Cauchy problem but it is not directly related to more geometric
(existence of a Cauchy hypersurface) or more �physical� characterizations
of global hyperbolicity like satisfying the causality condition and having
compact causal diamonds. Thus there was the need to see how well-suited
this notion of generalized global hyperbolicity is when dealing with concrete
non-smooth space-times. In order to settle this question, NPWs with non-
smooth pro�le function were investigated in [35]. There the metric splitting
was calculated quite explicitly for a subclass of NPWs with smooth pro�le
function and then these explicit constructions were used to approximate the
non-smooth metric splitting. One result obtained is that one should allow
for a generalized di�eomorphism (in the sense of [43, Section 4]) in the split-
ting ofM ∼= R×S ([35, Proposition 3.3 and Corollary 3.5]). Another result
is that if one approximates the non-smooth pro�le function appropriately
then one obtains also an approximation of the metric splitting ([35, Section
4]).

So the overall conclusion of [35] is that there are reasonable examples of
non-smooth space-times possessing the (adapted) globally hyperbolic metric
splitting but still it would be desirable to have more geometric generaliza-
tions of global hyperbolicity in the non-smooth setting.

In applications (especially to general relativity) it is often more conve-
nient to use the special algebra, but of course it would be more reasonable
to use di�eomorphism invariant Colombeau algebras, which are explained
in the next section. It is our hope that the functional analytic approach
outlined in Section 7 removes a lot of technicalities when dealing with these
and hence enables one to take advantage of its merits more directly.

6. Di�eomorphism invariance

Since the �rst introduction of Colombeau algebras there was the desire to
have a functorial version of the theory. More explicitly, any di�eomorphism
Ω→ Ω′ should induce an action G(Ω)→ G(Ω′) in a way respecting compo-
sition and the identity, and Ω should be allowed to be a manifold instead of
an open subset of Rn. Such a di�eomorphism invariant construction would
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ensure independence of any choice of coordinate system and is essential for
applications in a geometrical context.

6.1. The di�eomorphism invariant local Colombeau algebra Gd.
Accomplishing this goal was a long and tedious undertaking which spanned
quite some years, involved several authors, and brought with it a lot of
technical di�culties ([16, 39, 29]; see [30, Section 2.1] for more detailed
comments).

The root of the problem lies in the fact that attempts focused on building
a di�eomorphism invariant algebra on top of Ge, but this algebra uses the
linear structure of Rn in an essential way for a simple and elementary presen-
tation. As a consequence, it is particularly ill suited for a global formulation,
which is why the necessary adaptions to obtain di�eomorphism invariance
were so complicated. One had to 1) replace test objects ϕ ∈ A0(Rn) by ones
depending also on ε and x, 2) reintroduce calculus on in�nite-dimensional
locally convex spaces, 3) deal with poor domains of de�nition of test ob-
jects after being transformed by a di�eomorphism, 4) switch from vanishing
moments to asymptotically vanishing moments and 5) establish invariance
of moderateness and negligibility under derivatives, which became quite
complicated in this setting.

Despite these di�culties, the di�eomorphism invariant local theory, sub-
stantially based on previous work of Colombeau and Meril [16] and espe-
cially Jelínek [39], was for the �rst time obtained in [29], where the following
de�nitions were given.

De�nition 9. We set Ed(Ω) := C∞(U(Ω)).

Let C∞b (I × Ω,A0(Rn)) be the space of all smooth maps φ : I × Ω →
A0(Rn) such that the corresponding map φ̂ : I → C∞(Ω,A0(Rn)) has bounded
image.

R ∈ Ed(Ω) is called moderate if ∀K ⊂⊂ Ω ∀α ∈ Nn0 ∃N ∈ N ∀φ ∈
C∞b (I × Ω,A0(Rn)): supx∈K |∂α(R(Sεφ(ε, x), x))| = O(ε−N ), where
∂α(R(Sεφ(ε, x), x)) denotes the derivative of order α of the map x′ 7→
R(Sεφ(ε, x′), x′) at x. The set of all moderate elements will be denoted
by EdM (Ω).

R ∈ EdM (Ω) is called negligible if ∀K ⊂⊂ Ω ∀m ∈ N ∃q ∈ N ∀φ ∈ C∞b (I×
Ω,Aq(Rn)): supx∈K |R(Sεφ(ε, x), x)| = O(εm). The set of all negligible

elements will be denoted by N d(Ω).
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We have embeddings ι : D′(Ω) → Ed(Ω) and σ : C∞(Ω) → Ed(Ω) de�ned
by

(ιu)(ϕ, x) := 〈u, ϕ(.− x)〉,
(σf)(ϕ, x) := f(x).

Derivatives are given by

(DiR)(ϕ, x) := ∂i(R(ϕ, .))(x).

The pullback of an element of Ed(Ω′) along a di�eomorphism µ : Ω→ Ω′ is
de�ned as µ∗R ∈ Ed(Ω) given by

(µ∗R)(ϕ, x) := R(µ∗(ϕ, x)),

where we set

µ∗(ϕ, x) := (ϕ(µ−1(.+ µx)− x) · |det Dµ−1(.+ µx)|, µx).

Finally, Gd(Ω) := EdM (Ω)/N d(Ω).

A glance at the proofs of the basic constitutive properties of Gd (cf. [29])
shows that it is far from being simple and elegant. As will be seen below,
it was in the global theory on manifolds where glimpses of a simpler formu-
lation �rst became visible. On the base of this, the �rst author presented
a short and concise treatment of Gd and Ĝ in [49]. But even with as much
simpli�cation of the proofs as possible, the problem remained that too many
technicalities in its basic structure hindered the application and the further
development of di�eomorphism invariant Colombeau algebras.

The main di�culties seem to lie in establishing di�eomorphism invariance
of the test objects. We will see in Section 7 how all of this can be replaced
by a much more cleaner and simpler structure, but we will �rst sketch the
further developments in the manifold setting based on Gd.

6.2. The global Colombeau algebra Ĝ. It is evident that the construc-
tion of Gd as given above does not directly generalize to the manifold setting
because its formulation depends in an essential way on the linear structure
of Rn, in particular concerning the test objects. One had to incorporate the
formalism used by Jelínek in [39] and �nd a coordinate-free characterization
of the test objects in order to move to manifolds. In the following de�nition
of the test objects for Ĝ ([31, De�nition 3.3]), X(M) denotes the space of
smooth vector �elds on a manifold M and Br(p) the metric ball around
p ∈M with radius r with respect to an arbitrary (but �xed) metric.

De�nition 10. Set Â0(M) := {ω ∈ Ωn
c (M) |

∫
ω = 1}.

We denote by Ã0(M) the set of all Φ ∈ C∞(I ×M, Â0(M)) satisfying

(i) ∀K ⊂⊂M ∃ε0, C > 0 ∀p ∈ K ∀ε ≤ ε0: supp Φ(ε, p) ⊆ BεC(p),
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(ii) ∀K ⊂⊂M ∀l,m ∈ N0 ∀ζ1, . . . , ζl, θ1, . . . , θm ∈ X(M):

sup
p∈K,q∈X

‖Lθ1 . . . Lθm(L′ζ1 + Lζ1) . . . (L′ζl + Lζl)Φ(ε, p)(q)‖ = O(ε−(n+m)).

where L′ζΦ(ε, p)(q) := Lζ(p 7→ Φ(ε, p)(q)).

For k ∈ N we denote by Ãk(M) the set of all Φ ∈ Ã0(M) such that
∀f ∈ C∞(M) and ∀K ⊂⊂M :

sup
p∈K
|f(p)−

∫
M
f(q)Φ(ε, p)(q)| = O(εk+1). (13)

Elements of Ã0(M) were called �smoothing kernels� in [31], but we pro-
pose a di�erent terminology where we will call these objects �nets of smooth-
ing kernels� instead, the meaning of which will become clear in Section 7.

The spaces Ãk(M) correspond, via scaling and translation ([31, Lemma
4.2]), to the spaces C∞b (I × Ω,Aq(Rn)) of local test objects in C∞b from
De�nition 9, but note that they still are not easily seen to be di�eomorphism
invariant � the proof of this property rests entirely on the local theory.

With this, one can de�ne the space of scalar generalized functions on a
manifold as follows:

De�nition 11. We set Ê(M) := C∞(Â0(M) ×M). R ∈ Ê(M) is called

moderate if ∀K ⊂⊂ M ∀l ∈ N0 ∃N ∈ N ∀ζ1, . . . , ζl ∈ X(M) ∀Φ ∈ Ã0(M):
supp∈K |Lζ1 . . . Lζl(R(Φ(ε, p), p))| = O(ε−N ), where Lζ1 . . . Lζl(R(Φ(ε, p), p))
denotes the iterated Lie derivative of p′ 7→ R(Φ(ε, p′), p′) at p. The subset

of moderate elements of Ê(M) is denoted by ÊM (M).

R ∈ Ê(M) is called negligible if ∀K ⊂⊂M ∀l,m ∈ N0 ∃k ∈ N ∀ζ1, . . . , ζl ∈
X(M) ∀Φ ∈ Ãk(M): supp∈K |Lζ1 . . . Lζl(R(Φ(ε, p), p))| = O(εm). The sub-

set of negligible elements of Ê(M) is denoted by N̂ (M).

We have embeddings ι : D′(Ω) → Ê(M) and σ : C∞(Ω) → Ê(M) de�ned
by

(ιu)(ω, p) := 〈u, ω〉,
(σf)(ω, x) := f(x).

The Lie derivative of R ∈ Ê(M) with respect to a vector �eld X ∈ X(M) is
de�ned as

(L̂XR)(ω, p) := −d1R(ω, p)(LXω) + LX(R(ω, .))|p,
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where d1 is the di�erential with respect to the �rst variable, and the action
of a di�eomorphism µ : M → N is given by

(µ∗R)(ω, p) := µ∗(R(µ∗ω, µ−1p)).

We set Ĝ(M) := ÊM (M)/N̂ (M).

As in Gd, pullback and Lie derivatives commute with the embeddings ι
and σ here. It should be noted that if one takes these de�nitions as the start-
ing point also for Gd the local theory gets somewhat more transparent. An
essential advantage of this approach then is that one has no problems at all
with the domain of de�nition of generalized functions and of test objects,
so part of the di�culties in Gd is simply avoided without any real draw-
backs. Furthermore, the equivalence between local and global formalism
becomes much more easier this way, as is evidenced in [49]. However, the
di�culties with showing stability of moderateness and negligibility under
di�eomorphisms and derivatives remains.

After the introduction of the global algebra Ĝ it was naturally very de-
sirable to have an extension to a theory of generalized sections of vector
bundles, in particular a theory of nonlinear generalized tensor �elds for
applications in (semi-)Riemannian geometry, but this faced some serious
di�culties which we will describe next.

6.3. Generalized tensor �elds Ĝrs . Coming from Ĝ, the basic problem
encountered in the tensor case is that one cannot use a coordinatewise
embedding and simply take the de�nition Ĝrs (M) := Ĝ(M)⊗C∞(M) T rs (M),

where Ĝ(M) is the scalar algebra de�ned above. This cannot succeed due
to a consequence of the Schwartz impossibility result [32, Proposition 4.1].

The underlying reason is that Colombeau algebras always involve some
kind of regularization; this is visible either in the basic space and the em-
bedding (special algebras) or in the testing procedure (full algebras), and
in any case in the form embedded distributions take when they are being
tested for moderateness or negligibility (see Section 7 below). But in order
to regularize non-smooth or distributional sections of a vector bundle one
needs to transport vectors between di�erent �bers of the bundle; this is
intuitively clear if one tries to generalize to sections the usual method of
regularizing by convolution with a smooth molli�er. On these grounds, the
vector bundle of transport operators was introduced in [32, Appendix A] as
follows:

TO(M,M) :=
⋃

(p,q)∈M×M

{(p, q)} × L(TpM,TqN).

This means that the �ber over (p, q) ∈ M ×M consists of all linear maps
from TpM to TqN , where TpM is the �ber over p of the tangent bundle
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of M . Using a transport operator A ∈ TO(M,M) and a smoothing kernel
Φ ∈ C∞(M,Ωn

c (M)) one can then approximate non-smooth vector �elds X

by smooth ones X̃ as in

X̃(p) :=

∫
M
A(q, p)X(q)Φ(p)(q),

where, roughly speaking, X̃ will be close to X if A is close to the identity
near the diagonal and Φ(p) is close to δp for all p ∈ M . This formula also
applies to distributional X.

Based on these ideas, in [32] an algebra
⊕

r,s Ĝrs of generalized tensor
�elds was constructed whose elements are represented by smooth functions
R(ω, p,A) depending on a compactly supported n-form ω, a point p ∈ M ,
and a transport operator A ∈ TO(M,M).

This generalized tensor algebra, however, su�ers from serious drawbacks.
First of all, it inherits all the technical di�culties from Gd and Ĝ and adds
even more on top of it. Second, it is no sheaf: the corresponding proof which
worked in all previous algebras breaks down due to the failure of the test
objects to be `localizing' in a certain sense. And third, there was no way
to de�ne a covariant derivative ∇X on Ĝrs which is C∞-linear in the vector
�eld X, which is an indispensable necessity for geometrical applications.
The reason for this is that on scalars, the covariant derivative should agree
with the Lie derivative, but the natural choice of the latter cannot be C∞-
linear in X again because of the Schwartz impossibility result. In sum,
despite its achievements Ĝrs still was unsatisfactory and raised the following
questions:

(i) What is the deeper reason for Ĝrs not to be a sheaf and not to allow
for the introduction of a covariant derivative?

(ii) Which adaptions are necessary for obtaining these features?
(iii) Is there any way to obtain a more natural, less technical formulation

of the whole theory?

As we will see in the next section, there is indeed an approach which
completely answers these questions in a very satisfactory way.

7. The functional analytic approach

The shortcomings of Ĝrs , i.e., the missing sheaf property and the impos-
sibility of devising a covariant derivative for it, brought the need for a more
structured approach to Colombeau algebras, even more so because the pre-
vious ad-hoc approaches leading to Gd, Ĝ and Ĝrs gave no insight on how to
proceed further.
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In the following we will describe a functional analytic approach to
Colombeau algebras ([50]) which not only contains those algebras described
above as special cases, but also gives a clear answer on how an algebra
of generalized tensor �elds with the desired properties can be successfully
constructed. Furthermore, this setting seems to be very promising also for
other aspects of Colombeau theory.

7.1. Basic spaces. The intuitive understanding of Colombeau algebras un-
til now has been that some kind of smoothing has to be involved either in
the embedding or in testing. Formally, this can be seen by examining the
form embedded distributions take when they are being tested. The fol-
lowing table lists the corresponding expressions in the various Colombeau
algebras we have considered so far.

Variant Test of ιu, u ∈ D′
Go 〈u, ϕε,x〉
Ge 〈u, (Sεϕ)(.− x)〉
Gs 〈u, ~ψε(x)〉
Gd 〈u, Sεφ(ε, x)(.− x)〉
Ĝ 〈u,Φ(ε, p)〉

Close inspection reveals that the argument of u in every case is a test
function depending on ε and x which converges to δx in a certain manner
for ε → 0. The precise link between this observation and the intuitive
idea of smoothing is given by a variant of Schwartz' kernel theorem ([59,
Théorème 3]), which reads

Lb(D′(Ω), C∞(Ω)) ∼= C∞(Ω,D(Ω)).

This means that if we want to regularize distributions in a reasonable (i.e.,
linear and continuous) way, this is done exactly by letting them act on
elements of C∞(Ω,D(Ω)), so-called smoothing kernels. This space carries
the topology of uniform convergence on compact sets in all derivatives.
Explicitly, the correspondence between Φ ∈ Lb(D′(Ω), C∞(Ω)) and ~ϕ ∈
C∞(Ω,D(Ω)) is given by

(Φu)(x) := 〈u, ~ϕ(x)〉 (u ∈ D′(Ω), x ∈ Ω)

~ϕ(x) := Φt(δx) (x ∈ Ω)

where Φt ∈ Lb(C
∞(Ω)′,D(Ω)) is the transpose of Φ. In light of this

isomorphism, generalized functions in the sense of Colombeau in fact are,
in the most encompassing sense, mappings from the space of smoothing
kernels into the space of smooth functions. This viewpoint suggests the
introduction of the basic space

E(Ω) := C∞(SK(Ω), C∞(Ω))
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where SK(Ω) := C∞(Ω,D(Ω)) is the space of smoothing kernels. This basic
space trivially contains both distributions and smooth functions via the
embeddings

ι : D′(Ω)→ E(Ω), ι(u)(~ϕ)(x) := 〈u, ~ϕ(x)〉,
σ : C∞(Ω)→ E(Ω), σ(f)(~ϕ) := f.

(14)

We remark that this idea was also followed in [17, 18] on a more abstract
level; what will be important for us is to connect this approach back to
existing Colombeau theory.

It turns out very quickly that one needs to restrict this space in order to
have any hope of obtaining sheaf properties. The simple observation that
(ιu)(~ϕ)(x) = 〈u, ~ϕ(x)〉 depends only on ~ϕ(x) led to the introduction of the
following so-called locality conditions:

De�nition 12. A function R ∈ E(Ω) = C∞(SK(Ω), C∞(Ω)) is called

(i) local if for all open subsets U ⊆ Ω and smoothing kernels ~ϕ, ~ψ ∈
SK(Ω) the equality ~ϕ|U = ~ψ|U implies R(~ϕ)|U = R(~ψ)|U ;

(ii) point-local if for all x ∈ Ω and smoothing kernels ~ϕ, ~ψ ∈ SK(Ω) the

equality ~ϕ(x) = ~ψ(x) implies R(~ϕ)(x) = R(~ψ)(x);

(iii) point-independent if for all x, y ∈ Ω and smoothing kernels ~ϕ, ~ψ ∈
SK(Ω) the equality ~ϕ(x) = ~ψ(y) implies R(~ϕ)(x) = R(~ψ)(y).

We denote by Eloc(Ω), Eploc(Ω) and Epi(Ω) the subsets of E(Ω) consist-
ing of local, point-local and point-independent elements, respectively, and by
Lloc(Ω), Lploc(Ω) and Lpi(Ω) the corresponding subsets of
L(Ω) := Lb(SK(Ω), C∞(Ω)).

Now one can very easily see the following isomorphisms, which recover
the basic spaces of Go and Gd as well as distributions and distributions
depending smoothly on a parameter as subspaces of E(Ω):

Theorem 13. (i) Epi(Ω) ∼= C∞(D(Ω)),
(ii) Eploc(Ω) ∼= C∞(D(Ω), C∞(Ω)),
(iii) Lpi(Ω) ∼= D′(Ω),
(iv) Lploc(Ω) ∼= C∞(Ω,D′(Ω)).

The importance of Theorem 13 lies in the fact that E(Ω) is not simply one
more of many possible basic spaces, but in a sense the most general one, and
still contains common basic spaces as subalgebras. We will see below that
using Eloc (or any subalgebra of it) as a basic space, the resulting Colombeau
algebra will be a sheaf if the right test objects are used for testing. This
was not the case for Ĝrs , which is why it fails to be a sheaf.
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7.2. Testing. Having identi�ed E(Ω) as the basic space underlying all
Colombeau algebras, the next question was how the quotient construction
could be transferred to it in a natural way. Suppose we are given a net
of smoothing kernels (~ϕε)ε ∈ SK(Ω)I , corresponding to a net of smoothing
operators (Φε)ε ∈ Lb(D′(Ω), C∞(Ω))I . What conditions do we need for the
usual Colombeau-type quotient construction?

The intuitive understanding of test objects always has been that asymp-
totically, they behave like delta functionals. This is seen clearly in the local
prototypical smoothing kernels ϕε,x(y) := ε−nϕ((y−x)/ε) with ϕ ∈ Aq(Rn).
Using the language of smoothing operators, this asymptotic behavior can
be formulated precisely as follows:

Φε → id in Lb(D′(Ω),D′(Ω)). (15)

The moment condition (9), or (13) on a manifold, corresponds to conver-
gence to the identity idC∞(Ω) on C

∞(Ω) in the following sense:

∀p ∈ cs(Lb(C
∞(Ω), C∞(Ω))) ∀m ∈ N : p(Φε|C∞ − id) = O(εm). (16)

Here, cs(E) denotes the set of continuous seminorms of a locally convex
space E. Note that here we abolished the grading on the space of test
objects known from full algebras, which is a relict of the fact that a nonzero
test function ϕ ∈ D(Ω) cannot have all its moments vanishing at once.
Instead, we use the kind of convergence used in special algebras with our
full basic space.

These conditions do not yet guarantee that embedded distributions are
moderate; for this, we furthermore have to impose that

∀p ∈ cs(Lb(D′(Ω), C∞(Ω))) ∃N ∈ N : p(Φε) = O(ε−N ). (17)

(15), (16) and (17) are the essential conditions test objects have to satisfy
for the quotient construction to work, in general. We shall add another
(optional) condition which ensures the sheaf property if we test on a basic
space whose elements are at least local (cf. [50]):

De�nition 14. A net (~ϕε)ε ∈ SK(Ω)I is called localizing if ∀x ∈ Ω ∃ an
open neighborhood V of x ∀r > 0 ∃ε0 ∈ N ∀ε ≤ ε0 ∀x ∈ V : supp ~ϕε(x) ⊆
Br(x).

Using these ingredients, one can build a di�eomorphism invariant Colom-
beau algebra without much e�ort, as we will see in the next section.

Concerning the introduction of a covariant deriative of generalized tensor
�elds, we have mentioned that the problem essentially lies in obtaining
a C∞-linear Lie derivative. Because the natural Lie derivative (which is
obtained by di�erentiating with respect to time the pullback along the �ow
of a given vector �eld) commutes with the embedding ι it cannot be C∞-
linear due to the Schwartz impossibility result, hence one needs to introduce
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another Lie derivative L̃X which is C∞-linear and somehow related to the
natural one. The solution is to set (L̃XR)(~ϕ) := LX(R(~ϕ)). In a sense,
this means that one di�erentiates after regularization. This is exactly the
approach which is used in special Colombeau algebras, which is why the
de�nition of a covariant derivative was without problems there ([45]). While

in the case of Ĝ and Ĝrs the map L̃X cannot be de�ned (it maps out of the
space of point-local elements), this is made possible in our approach by the
bigger basic space. Finally, it can be seen that the natural Lie derivative

and L̃X agree for embedded distributions on the level of association, which
justi�es this de�nition.

7.3. A new di�eomorphism invariant algebra of generalized func-
tions. We gave a treatment of both the basic space and the testing proce-
dure in functional analytic terms. In this section we will use this to propose
a replacement for Gd of [29] which is considerably simpler and directly trans-
lates to manifolds and, with some modi�cations, also to the vector valued
case.

We will base our presentation on E(Ω) in order to show the general
scheme, but one can do the same without problems on Eloc(Ω) in order
to obtain a sheaf, or even on Eploc(Ω) or Epi(Ω) as long as one only performs
operations preserving (point-)locality or point-independence, respectively.

Hence, the basic de�nitions take the following form.

De�nition 15. We de�ne the basic space E(Ω) and embeddings ι : D′(Ω)→
E(Ω), σ : C∞(Ω)→ E(Ω) by

SK(Ω) := C∞(Ω,D(Ω)),

E(Ω) := C∞(SK(Ω), C∞(Ω)),

(ιu)(~ϕ)(x) := 〈u, ~ϕ(x)〉 (u ∈ D′(Ω), ~ϕ ∈ SK(Ω), x ∈ Ω),

(σf)(~ϕ) := f (f ∈ C∞(Ω), ~ϕ ∈ SK(Ω)).

Given a di�eomorphism µ : Ω→ Ω′, its action µ∗ : E(Ω)→ E(Ω′) is de�ned
as

(µ∗R)(~ϕ) := µ∗(R(µ∗~ϕ)) = R(µ∗~ϕ) ◦ µ−1,

where (µ∗~ϕ)(x) := (~ϕ(µx) ◦ µ) · |det Dµ| is the natural pullback of smooth-
ing kernels. The directional derivative with respect to a vector �eld X ∈
C∞(Ω,Rn) is de�ned as

(LXR)(~ϕ) := −(dR)(~ϕ)(LSKX ~ϕ) + LX(R(~ϕ)),

where LSKX ~ϕ = LX ◦ ~ϕ+ LX ~ϕ is the Lie derivative of smoothing kernels.

It follows directly from the de�nitions that ι and σ commute with di�eo-
morphisms. For testing, we need the following spaces of test objects:
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De�nition 16. Let S be the set of all nets (~ϕε)ε ∈ C∞(Ω,D(Ω))I such that
the corresponding sequence (Φε)ε ∈ Lb(D′(Ω), C∞(Ω))I satis�es, for ε→ 0,

(i) Φε → id in Lb(D′(Ω),D′(Ω)),
(ii) ∀p ∈ cs(Lb(C

∞(Ω), C∞(Ω))) ∀m ∈ N : p(Φε|C∞(Ω) − idC∞(Ω)) =
O(εm),

(iii) ∀p ∈ cs(Lb(D′(Ω), C∞(Ω))) ∃N ∈ N : p(Φε) = O(ε−N ).

Let S0 be the set of all (~ϕε)ε such that (Φε)ε satis�es

(i) Φε → 0 in Lb(D′(Ω),D′(Ω)),
(ii) ∀p ∈ cs(Lb(C

∞(Ω), C∞(Ω))) ∀m : p(Φε|C∞) = O(εm),
(iii) ∀p ∈ cs(Lb(D′(Ω), C∞(Ω))) ∃N ∈ N : p(Φε) = O(ε−N ).

We may demand in both cases that (Φε)ε is localizing as in De�nition 14.

Note that for (~ϕε)ε ∈ S, (LSKX ~ϕε)ε will be an element of S0.

De�nition 17. An element R ∈ E(Ω) is called moderate if ∀p ∈ cs(C∞(Ω))

∀k ∈ N0 ∃N ∈ N ∀(~ϕε)ε ∈ S, (~ψ1
ε)ε . . . (

~ψkε )ε ∈ S0:

p
(

(dkR)(~ϕε)(~ψ
1
ε , . . . ,

~ψkε )
)

= O(ε−N ).

The set of all moderate elements of E(Ω) is denoted by EM (Ω).

An element R ∈ E(Ω) is called negligible if ∀p ∈ cs(C∞(Ω)) ∀k ∈ N0

∀m ∈ N ∀(~ϕε)ε ∈ S, (~ψ1
ε)ε . . . (

~ψkε )ε ∈ S0:

p
(

(dkR)(~ϕε)(~ψ
1
ε , . . . ,

~ψkε )
)

= O(εm).

The set of all negligible elements of E(Ω) is denoted by N (Ω).

We set G(Ω) := EM (Ω)/N (Ω).

We summarize the main properties of these de�nitions in the following
theorem:

Theorem 18. (i) ι and σ map into EM (Ω);
(ii) ι|C∞(Ω) − σ maps into N (Ω);
(iii) ι is injective into G(Ω);
(iv) ι and σ commute with di�eomorphisms and Lie derivatives;
(v) sums, products, di�eomorphisms and Lie derivatives preserve mod-

erateness and negligibility and hence are well-de�ned on G(Ω);
(vi) the sets S and S0 of test objects are non-empty.

These properties follow directly from the de�nitions without any e�ort.
We �nish with some remarks:
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(i) If we replace the basic space with Eloc, Eploc or Epi and test only
with localizing elements of S and S0 then G is a sheaf.

(ii) For the vector-valued case, one essentially only has to replace smooth-
ing operators Lb(D′(Ω), C∞(Ω)) by the corresponding vector smooth-
ing operators. This will be the subject of an upcoming paper of the
�rst author.

(iii) Instead of taking all test objects S (and S0) as above, one can
restrict to certain classes of test objects. The properties of the
algebra will directly depend on the choice of the class of test objects.
Using only one �xed test object, for example, would give the classical
special algebra.

8. Conclusion

We have seen that important physical situations lead to problems in-
volving multiplication of distributions. While linear distribution theory
in general fails in this setting, the theory of algebras of generalized func-
tions in the sense of Colombeau leads to new, physically meaningful results.
However, in order to obtain truly geometric results one needs to work in
di�eomorphism invariant algebras, which were for a long time considered
to be too technical and not well suited for applications. The approach we
presented here is hoped to alleviate this shortcoming and to provide a bet-
ter basis for further applications of Colombeau theory in general relativity
and geometry, and also to provide a functional analytic foundation for and
a better understanding of the �eld of Colombeau algebras.
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