The Poincaré Generalized Lemma

Jorge Aragona

IME-USP, Universidade de São Paulo, São Paulo, Brazil

Abstract

In this note we prove the result: let Ω be a non void open subset of \mathbb{R}^{N} and f a k-generalized differential form on Ω. Moreover, assume that Ω is star-shaped and that f is a closed form on Ω. Then, there is a $(k-1)$-generalized differential form u on Ω whose differential is f. This result is a part of what I call internal development of the Colombeau theory

Notation In what follows we will adhere to the following conventions: $\mathbf{I}:=] 0,1\left[\subset \mathbb{R} ; \overline{\mathbf{I}}:=[0,1] \subset \mathbb{R}, N \in \mathbb{N}^{*}\right.$ is fixed and Ω is a non void open subset of \mathbb{R}^{N}.

For every $k \in \mathbb{N}$ such that $1 \leq k \leq N$ we denote by

$$
\mathbf{A}_{N}^{k}:=\operatorname{Alt}\left({ }^{k}\left(\mathbb{R}^{N}\right) ; \mathbb{R}\right)
$$

the \mathbb{R}-vector space of all k-linear alternate forms on \mathbb{R}^{n} (i.e. its domain is $\left.\mathbb{R}^{N} \times \stackrel{\kappa}{\cdots} \times \mathbb{R}^{\mathbb{N}}\right)$. We extend this definition to the case $k=0$ by setting

$$
\mathbf{A}_{N}^{0}=\operatorname{Alt}\left({ }^{0}\left(\mathbb{R}^{N}\right) ; \mathbb{R}\right):=\mathbb{R}
$$

For a fixed $k \in \mathbb{N}$ such that $1 \leq k \leq N$, if $I=\left(i_{1}, \ldots, i_{k}\right)$, with $1 \leq$ $i_{1}, i_{2}, \ldots, i_{k} \leq N$, we define $I^{*}:=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ and the order of I as being the number $|I|:=k$. We define

$$
d x^{I}:=d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}
$$

and for each α such that $1 \leq \alpha \leq k$ we set

$$
d x^{I, \widehat{i_{\alpha}}}:=d x_{i_{1}} \wedge \ldots \widehat{d x_{i_{k}}} \wedge \ldots \wedge d x_{i_{k}}=: \bigwedge_{\nu \neq \alpha} d x_{i_{\nu}} .
$$

Here the symbol ${ }^{\wedge}$ over $d x_{i_{\alpha}}$ indicates that it is omitted.
The symbol \sum_{I}^{\prime} means that sommation is restricted to multi-indices
$I=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ verifying $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq N$.
It is well known that the sequence

$$
\begin{equation*}
\mathcal{B}_{N}^{k}:=\left(d x_{i} \wedge \ldots \wedge d x_{i_{k}}\right)_{1 \leq i_{1}<\cdots<i_{k} \leq N} \tag{1}
\end{equation*}
$$

is an \mathbb{R}-basis of \mathbf{A}_{N}^{k} and using some canonical isomorphisms \mathcal{B}_{N}^{k} can be considered a \mathbb{R}-basis of $\mathcal{G}_{r}(\Omega):=\mathcal{G}\left(\Omega, \mathbf{A}_{N}^{k}\right)$ which is defined in the sequel [[2],Ex.7.2.1,(b) Real differential forms]. Also, we will need the following spaces (see [2], section 7.2) where $k \geq 1$:

$$
\mathcal{E}_{M}\left[\Omega ; \mathbf{A}_{N}^{k}\right], \mathcal{N}\left[\Omega ; \mathbf{A}_{N}^{k}\right] \text { and } \mathcal{G}_{k}(\Omega):=\frac{\mathcal{E}_{M}\left[\Omega, \mathbf{A}_{N}^{k}\right]}{\mathcal{N}\left[\Omega ; \mathbf{A}_{N}^{k}\right]}
$$

If $k=0$, we have $\mathbf{A}_{N}^{0}=\mathbb{R}$ and hence

$$
\mathcal{G}_{0}(\Omega)=\frac{\mathcal{E}_{M}[\Omega, \mathbb{R}]}{\mathcal{N}[\Omega, \mathbb{R}]}=\mathcal{G}(\Omega)
$$

If $f=\sum_{|I|=k}{ }^{\prime} f_{I} d x^{I} \in \mathcal{G}_{k}(\Omega)$ we have $f_{I} \in \mathcal{G}(\Omega)(=\mathcal{G}(\Omega, \mathbb{R}))$ for each I. If \widehat{f}_{I} is any representative of f_{I} then $\widehat{f}_{I} \in \mathcal{E}_{M}[\Omega]\left(=\mathcal{E}_{M}[\Omega ; \mathbb{R}]\right)$ for every I. It follows that

$$
\widehat{f}:=\sum_{|I|=k}^{\prime} \widehat{f}_{I} d x^{I} \in \mathcal{E}_{M}\left[\Omega ; \mathbf{A}_{N}^{k}\right](k \geq 1)
$$

is a representative of f.
Note that the unitary and commutative ring $\mathcal{E}_{M}[\overline{\mathbf{I}} \times \Omega ; \mathbb{R}]$ is well defined since $\overline{\mathbf{I}} \times \Omega$ is a quasi-regular set (see [1]). Therefore, we can consider the $\mathcal{E}_{M}[\overline{\mathbf{I}} \times \Omega ; \mathbb{R}]$-free module over \mathcal{B}_{N}^{k} (see (1)) that we will denote by

$$
\begin{equation*}
\mathcal{E}_{M}\left[\overline{\mathbf{I}} \times \Omega ; \mathbf{A}_{N}^{k}\right] . \tag{2}
\end{equation*}
$$

An arbitrary element of $\mathcal{E}_{M}\left[\mathbf{I} \times \boldsymbol{\Omega} ; \mathbf{A}_{N}^{k}\right]$ is of the kind

$$
\begin{equation*}
F=\sum_{|I|=k}^{\prime} F_{I}(\varphi, t, x) d x^{I} \tag{3}
\end{equation*}
$$

where $F_{I} \in \mathcal{E}_{M}[\overline{\mathbf{I}} \times \Omega ; \mathbb{R}] \quad \forall I, \forall \varphi \in A_{0}$. Given F as in (3) we define

$$
\begin{equation*}
\int_{0}^{1} F:=\sum_{|I|=k}^{\prime}\left\{\int_{0}^{1} F_{I}(\varphi, t, x) d t\right\} d x^{I} \tag{4}
\end{equation*}
$$

and it is easily seen that

$$
\begin{equation*}
\int_{0}^{1} d_{x} F=d\left(\int_{0}^{1} F\right) \tag{5}
\end{equation*}
$$

Before proving (5) let recall that $\mathcal{C}_{k}^{\infty}(\Omega)=\mathcal{C}_{k}^{\infty}(\Omega ; \mathbb{R})$ is the set of all k differential forms of class \mathcal{C}^{∞} over Ω. An arbitrary element of $\mathcal{C}_{k}^{\infty}(\Omega)$ is of the form

$$
g=g(x)=\sum_{|I|=k}^{\prime} g_{I}(x) d x^{I}=\sum_{|I|=k}^{\prime} g_{I} d x^{I}
$$

with $g_{I} \in \mathcal{C}^{\infty}(\Omega) \quad \forall I$. If U is an open subset of \mathbb{R}^{p} (where $p \in \mathbb{N}^{*}$ is arbitrarily fixed $), \mu \in \mathcal{C}^{\infty}(U ; \Omega)$ and

$$
\widehat{f}=\sum_{|I|=p}^{\prime} \widehat{f}_{I}(\varphi, t, x) d x^{I} \in \mathcal{E}_{M}\left[\mathbf{I} \times \Omega, A_{N}^{k}\right]
$$

the pull-back by μ of \widehat{f}, which we will denote by $\mu^{*} \widehat{f}$, is defined by

$$
\mu^{*} f:=\sum_{|I|=k}^{\prime}\left(f_{I}^{\prime} \circ \mu\right) d \mu^{I} \in \mathcal{C}_{k}^{\infty}(U ; \mathbb{R})
$$

Lemma 1. (4) $\Longrightarrow(5)$. More precisely, given F as in (3) (that is $F=$ $\left.\sum_{|I|=k}{ }^{\prime} F_{I}(\varphi, t, x) d x^{I}\right)$ we have (5), that is

$$
\begin{equation*}
\int_{0}^{1} d_{x} F=d\left(\int_{0}^{1} F\right) \tag{1.1}
\end{equation*}
$$

(hence $(1.1)=(5))$ where we define

$$
\begin{equation*}
\int_{0}^{1} F:=\sum_{|I|=k}^{\prime}\left\{\int_{0}^{1} F_{I}(\varphi, t, x) d t\right\} d x^{I} \tag{1.2}
\end{equation*}
$$

(hence (1.2) = (4)).

Proof. Fix any $F \in \mathcal{E}_{M}\left[\overline{\mathbf{I}} \times \Omega ; \mathbf{A}_{N}^{k}\right]$ as in (3), we will need the canonical form of $d_{x} F$ which is (for the sake of simplicity we omit the variables $\varphi, t, x)$:

$$
\begin{equation*}
d_{x} F=\sum_{|I|=k}^{\prime} \sum_{\nu=1}^{N} \frac{\partial F_{I}}{\partial x_{\nu}} d x_{\nu} \wedge d x^{I}=\sum_{|K|=k+1}^{\prime}\left\{\sum_{\nu, I} \varepsilon_{\nu I}^{K} \frac{\partial F_{I}}{\partial x_{\nu}}\right\} d x^{K} \tag{1.3}
\end{equation*}
$$

where $\varepsilon_{\nu I}^{K}=0$ if $\nu \in \mathbf{I}^{*}:=\left\{i_{1}, \ldots, i_{k}\right\}$, where $I=\left(i_{1}, \ldots, i_{k}\right)$ with $1 \leq i_{1}<$ $\ldots<i_{k} \leq N$ or, conversely $\varepsilon_{\nu I}^{K}$ is the signature of the permutation which transforms $\nu I:=\left(\nu, i_{1}, \ldots i_{k}\right)$ into the permutation $K=\left(l_{1}, l_{2}, \ldots, l_{k}, l_{k+1}\right)$ of νI verifying

$$
1 \leq l_{1}<l_{2}<\ldots<l_{k}<l_{k+1} \leq N
$$

Clearly, the second identity of (1.3) follows from writing $d_{x} F$ in the canonical form

$$
d_{x} F=\sum_{|K|=k+1}^{\prime}\left\{\sum_{\nu \cdot I} \varepsilon_{\nu I}^{K} \frac{\partial F_{I}}{\partial x_{\nu}}\right\} d x^{K}
$$

Computation of $\int_{0}^{1} d_{x} F$:
Here we will use (4) and (1.3) obtaining

$$
\begin{gathered}
\int_{0}^{1} d_{x} F=\sum_{|K|=k+1}^{\prime}\left\{\int_{0}^{1}\left(\sum_{\nu \cdot I} \varepsilon_{\nu^{I}}^{K} \frac{\partial F_{I}}{\partial x_{\nu}}(\varphi, t, x)\right) d t\right\} d x^{I}= \\
=\sum_{|K|=k+1}^{\prime}\left\{\sum_{\nu, I} \varepsilon_{\nu I}^{K} \frac{\partial}{\partial x_{\nu}}\left(\int_{0}^{1} F_{I}(\varphi, t, x) d t\right)\right\} d x^{K}= \\
=\sum_{|I|=k \nu=1}^{\prime} \sum^{N} \frac{\partial}{\partial x_{\nu}}\left(\int_{0}^{1} F_{I}(\varphi, t, x) d t\right) \wedge d x_{\nu} \wedge d x^{I}
\end{gathered}
$$

Therefore

$$
\begin{equation*}
\int_{0}^{1} d_{x} F=\sum_{|I|=k \nu=1}^{\prime} \sum^{N} \frac{\partial}{\partial x_{\nu}}\left(\int_{0}^{1} F_{I}(\varphi, t, x) d t\right) d x_{\nu} \wedge d x^{I} \tag{1.4}
\end{equation*}
$$

Computation of $d\left(\int_{0}^{1} F\right)$:
Here we will differenciate (4) getting

$$
\begin{equation*}
d\left(\int_{0}^{1} F\right)=\sum_{|I|=k}^{\prime} d\left(\int_{0}^{1} F_{I}(\varphi, t, x) d t\right) \wedge d x^{I} \tag{1.5}
\end{equation*}
$$

and since clearly we have

$$
d\left(\int_{0}^{1} F_{I}(\varphi, t, x) d t\right)=\sum_{\nu=1}^{N}\left[\frac{\partial}{\partial x_{\nu}}\left(\int_{0}^{1} F_{I}(\varphi, t, x) d t\right)\right] d x_{\nu}
$$

by inserting the second member of the above identity into the second member of (1.5), we can conclude that

$$
d\left(\int_{0}^{1} F\right)=\sum_{|I|=k}^{\prime}\left[\frac{\partial}{\partial x_{\nu}}\left(\int_{0}^{1} F_{I}(\varphi, t, x) d t\right)\right] d x_{\nu} \wedge d x^{I}
$$

The above identity together (1.5) proves the result.
The generalized Poincaré lemma is as follows

Proposition 2. Let Ω be a star-shaped open subset of \mathbb{R}^{N} and

$$
f=\sum_{|I|=K}^{\prime} f_{I}(x) d x^{I} \in \mathcal{G}_{k}(\Omega)
$$

such that $d f=0$ in Ω. Then there is $u \in \mathcal{G}_{k-1}(\Omega)$ such that $d u=f$ in Ω.
Proof. Clearly we can assume that $x_{0}=0$, that is Ω is 0 -star-shaped. Hence the map

$$
\mu:=(t, x) \in \mathbf{I} \times \Omega \longmapsto \mu(t, x):=t x \in \Omega
$$

is well defined.
Next, fix an arbitrary representative $\widehat{f}=\sum_{|I|=k}^{\prime} f_{I}(\varphi, x) d x^{I} \in \mathcal{E}_{M}\left[\Omega ; \mathbf{A}_{N}^{k}\right]$ of $f \in \mathcal{G}_{k}(\Omega)$ which is fixed such that $d f=0$. The pull-back of \widehat{f} for μ is

$$
\begin{equation*}
\mu^{*} \widehat{f}=\sum_{|I|=k}^{\prime}\left(\widehat{f}_{I} \circ \mu\right) d \mu^{I} \tag{2.1}
\end{equation*}
$$

and since $d \mu_{i}=d \mu_{i}(t, x)=x_{i} d t+t d x_{i} \quad(1 \leq i \leq N)$ we can compute the factor $d \mu^{I}$ which appears in (2.1) in terms of the $d t, d x_{i}$:

$$
\begin{align*}
& \text { If } I=\left(i_{1}, i_{2}, \ldots, i_{k}\right) \text { and } 1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq N \\
& \text { then } d \mu^{I}=\sum_{\nu=1}^{k}(-1)^{\nu-1} x_{i_{\nu}} t^{k-1} d t \wedge d x^{I, \widehat{i_{\nu}}}+t^{k} d x^{I}= \tag{2.2}\\
& \qquad d t \wedge \sum_{\nu=1}^{k}(-1)^{\nu-1} x_{i_{\nu}} t^{k-1} d x^{I, \widehat{i_{\nu}}}+t^{k} d x^{I}
\end{align*}
$$

Next, by replacing the terms $d \mu^{I}$ which appear in (2.1) by the second member of (2.2) we get (note that $\widehat{f}_{I}(\varphi, \mu(t, x))=\widehat{f}_{I}(\varphi, t x)$ since $\mu(t, x)=$ $t x)$:

$$
\begin{gathered}
\mu^{*} \widehat{f}(\varphi, t, x)= \\
=\sum_{|I|=k}^{\prime}\left(\widehat{f}_{I}(\varphi, \mu(t, x))\right)\left\{d t \wedge \sum_{\nu=1}^{k}(-1)^{\nu-1} x_{i_{\nu}} t^{k-1} d x^{I, \hat{i}_{\nu}}+t^{k} d x^{I}\right\} \\
d t \wedge \widehat{f}^{0}(\varphi, t, x)+\widehat{g}(\varphi, t, x) \quad \text { where } \\
\widehat{g}=\widehat{g}(\varphi, t, x):=\sum_{|I|=k}^{\prime} \widehat{f}_{I}(\varphi, t x) t^{k} d x^{I} \in \mathcal{E}_{M}\left[\mathbf{I} \times \Omega ; \mathbf{A}_{N}^{k}\right]
\end{gathered}
$$

and (in fact, a more correct notation would be $\widehat{f}_{(k)}^{0}$ instead of \widehat{f}^{0}).

$$
\widehat{f}^{0}=\widehat{f}^{0}(\varphi, t, x):=
$$

$$
\begin{equation*}
:=\sum_{|I|=k \nu=1}^{\prime} \sum^{k}(-1)^{\nu-1} \cdot \widehat{f}_{I}(\varphi, t x) x_{i_{\nu}} t^{k-1} d x^{I, \hat{i}_{\nu}} \in \mathcal{E}_{M}\left[\mathbf{I} \times \Omega ; \mathbf{A}_{N}^{k-1}\right] \tag{2.3}
\end{equation*}
$$

Now, note that the differential forms we are working with are completely general (except the assumption $d f=0$ in Ω, which don't appear in the proof of (2.3') below). Hence from (2.3) it follows that

$$
\begin{align*}
& \forall \widehat{f} \in \mathcal{E}_{M}\left[\Omega ; \mathbf{A}_{N}^{k}\right] \exists \widehat{g} \in \mathcal{E}_{M}\left[\mathbf{I} \times \Omega ; \mathbf{A}_{N}^{k}\right] \quad \text { and } \\
& \exists \widehat{f}^{0} \in \mathcal{E}_{M}\left[\mathbf{I} \times \Omega ; \boldsymbol{A}_{N}^{k-1}\right] \quad \text { such that } \mu^{*} \widehat{f}=\widehat{g}+d t \wedge \widehat{f}^{0}
\end{align*}
$$

It is worthwhile to note that in the definitions of \widehat{g} and \widehat{f}^{0} there appear the claims:

$$
\widehat{g} \in \mathcal{E}_{M}\left[\mathbf{I} \times \Omega, \mathbf{A}_{N}^{k}\right] \text { and } \widehat{f}^{0} \in \mathcal{E}_{M}\left[\mathbf{I} \times \Omega ; \mathbf{A}_{N}^{k-1}\right]
$$

whose proofs, which follow obviously from the moderation of the functions $\widehat{f}_{I}(|I|=k)$, are trivial. Moreover, it is easily seen that the forms \widehat{g} and \widehat{f}^{0} of $\left(2.3^{\prime}\right)$ there are unique (that is, determined from $\left.\widehat{f}\right)$. Indeed, these claims follow from the computations in (2.3) and (2.2) which lead to the expression of $\mu^{*} \widehat{f}$ which appears in $\left(2.3^{\prime}\right)$.

Next, from the uniqueness of \widehat{g} and \widehat{f}^{0} in $\left(2.3^{\prime}\right)$, it follows that we can define the linear operator below:

$$
\begin{equation*}
T=T_{k}: \widehat{f} \in \mathcal{E}_{M}\left[\Omega ; \mathbf{A}_{N}^{k}\right] \longmapsto \int_{0}^{1} \widehat{f}_{(k)}^{0} \in \mathcal{E}_{M}\left[\Omega ; \mathbf{A}_{N}^{k-1}\right] \tag{2.4}
\end{equation*}
$$

for every $k=1,2, \ldots, N$ (and $T=T_{n+1}=0$, in this section of this proof, the index k in T_{k} or in $\widehat{f}_{(k)}^{0}$ can be of some help).

We are going to prove that

$$
\begin{equation*}
T_{k+1}(d \widehat{f})+d\left(T_{k} \widehat{f}\right)=\widehat{f} \forall k=1,2, \ldots, N, \forall \widehat{f} \in \mathcal{E}_{M}\left[\Omega ; \mathbf{A}_{N}^{k-1}\right] \tag{2.5}
\end{equation*}
$$

Indeed, from differentiation in $\left(2.3^{\prime}\right)$ and the identity $d\left(\mu^{*} \widehat{f}\right)=\mu^{*} d \widehat{f}$ we get

$$
\mu^{*} d \widehat{f}=d_{x} \widehat{g}+\frac{\partial \widehat{g}}{\partial t} d t+d\left(d t \wedge \widehat{f}^{0}\right)
$$

and since (see [4, Prop.19.7,p.147]) $d\left(d t \wedge \widehat{f}^{0}\right)=-d t \wedge d_{x} \widehat{f}^{0}$ we have

$$
\begin{equation*}
\mu^{*} d \widehat{f}=d_{x} \widehat{g}+d t \wedge\left(-d_{x} f^{0}+\frac{\partial \widehat{g}}{\partial t}\right) \tag{2.6}
\end{equation*}
$$

Now it is clear that (2.6) is a representation of $\mu^{*} d f$ of the kind

$$
A+d t \wedge B
$$

which is formally equal to the identity $\left(2.3^{\prime}\right)$ and since this representation is unique, from the definition of $T=T_{k}$ we get

$$
\begin{equation*}
T_{k}(d \widehat{f})=\int_{0}^{1}\left(-d_{x} \widehat{f}^{0}+\frac{\partial \widehat{g}}{\partial t}\right) \tag{2.7}
\end{equation*}
$$

From (1.1) in Lemma 1 we have

$$
\int_{0}^{1}-d_{x} \widehat{f}^{0}=-d\left(\int_{0}^{1} \widehat{f}^{0}\right) \stackrel{*}{=}-d(T \widehat{f})
$$

$\left[(*):\right.$ Indeed, $\int_{0}^{1} \widehat{f}^{0}=T \widehat{f}$ from the definition of $\left.T=T_{k}\right]$ which impliesfrom (2.7) :

$$
\begin{equation*}
T(d \widehat{f})=-d(T \widehat{f})+\int_{0}^{1} \frac{\partial \widehat{g}}{\partial t} d t \tag{2.8}
\end{equation*}
$$

From the definition of \widehat{g} we have:

$$
\widehat{g}(\varphi, 1, x)=\widehat{f}(\varphi, x) \text { and } \widehat{g}(\varphi, 0, x)=0
$$

and therefore, from (2.8) we get

$$
\begin{equation*}
T(d \widehat{f})+d(T \widehat{f})=\widehat{f} \quad\left(\Longleftrightarrow T_{k+1}(d \widehat{f})+d\left(T_{k} \widehat{f}\right)=\widehat{f}\right) \tag{2.9}
\end{equation*}
$$

which is an identity in $\mathcal{E}_{M}\left[\Omega ; \boldsymbol{A}_{N}^{k}\right]$. Next, we will prove that (2.9) can be extended to $\mathcal{G}_{k}(\Omega)$. More precisely we will prove that the operator (see (2.4)):

$$
T=T_{k}: \mathcal{E}_{M}\left[\Omega ; \mathbf{A}_{N}^{k}\right] \longrightarrow \mathcal{E}_{M}\left[\Omega ; \mathbf{A}_{N}^{k-1}\right]
$$

induces in the quotient another operator

$$
T^{*}=T_{k}^{*}: \mathcal{G}_{k}(\Omega) \longrightarrow \mathcal{G}_{k-1}(\Omega)
$$

such that the diagram below

$$
\begin{gather*}
\mathcal{E}_{M}\left[\Omega ; \boldsymbol{A}_{N}^{k}\right] \xrightarrow{T} \mathcal{E}_{M}\left[\Omega ; \mathbf{A}_{N}^{k-1}\right] \tag{2.10}\\
\pi_{1} \downarrow \\
\mathcal{G}_{k}(\Omega)-\pi_{2} \\
T^{*} \rightarrow
\end{gather*}
$$

commutes (π_{1} and π_{2} denote the canonical maps).
It is well known that the existence of a such T^{*} is equivalent to the inclusion $\mathcal{N}\left[\Omega, \mathbf{A}_{N}^{k}\right] \subset \operatorname{Ker}\left(\pi_{2} \circ T\right)$ or

$$
\begin{equation*}
\mathcal{N}\left[\Omega ; \mathbf{A}_{N}^{k}\right] \subset\left\{\widehat{h} \in \mathcal{E}_{M}\left[\Omega ; \mathbf{A}_{N}^{k}\right] \mid T(\widehat{h}) \in \mathcal{N}\left[\Omega ; \mathbf{A}_{N}^{k-1}\right]\right\} \tag{2.11}
\end{equation*}
$$

We will prove (2.11). Fix $\widehat{f} \in \mathcal{N}\left[\Omega ; \mathbf{A}_{N}^{k}\right]$ arbitrary, then $\widehat{f}=\sum_{|I|=k} \widehat{f}_{I} d x^{I}$, where $\widehat{f}_{I} \in \mathcal{N}[\Omega ; \mathbb{R}]$ for all I, which implies $\left(\mathcal{N}\right.$ is an ideal of $\left.\mathcal{E}_{M}\right)$ that the function

$$
(\varphi, t, x) \in A_{0} \times(\mathbf{I} \times \Omega) \longmapsto(-1)^{\nu-1} \widehat{f}_{I}(\varphi, t, x) x_{i_{\nu}} t^{k-1} \in \mathbb{R}
$$

belongs to $\mathcal{N}[\mathbf{I} \times \Omega ; \mathbb{R}]$ for all I and ν. Hence

$$
\widehat{f}^{0} \in \mathcal{N}\left[\mathbf{I} \times \Omega ; \mathbf{A}_{N}^{k-1}\right]
$$

and, as a consequence

$$
T \widehat{f}=\int_{0}^{1} \widehat{f}^{0} \in \mathcal{N}\left[\Omega ; \mathbf{A}_{N}^{k-1}\right]
$$

which proves (2.11) and hence the existence and uniqueness of the operator $T^{*}=T_{k}^{*}$ such that (2.10) commutes. Finally, we will prove that (2.9) hold with T^{*} and f instead of T and \widehat{f} respectively. From the commutativity of (2.10) we get

$$
\begin{equation*}
T^{*}(f)=c l(T \widehat{f}) \tag{2.12}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
T^{*}(d f)=c l(T(d \widehat{f})) \tag{2.13}
\end{equation*}
$$

Note that $d \widehat{f}$ is a representative of $d f$ therefore we can write it as $\widehat{d f}$, that is

$$
\begin{equation*}
d \widehat{f}=\widehat{d f} \text { and } d(c l(\widehat{\nu}))=\operatorname{cl}(d \widehat{\nu}) \quad(\text { any } \nu) \tag{2.14}
\end{equation*}
$$

which implies (by (2.12) and (2.14)):

$$
d\left(T^{*} f\right)=d(c l(T \widehat{f}))=c l(d(T \widehat{f}))
$$

Hence

$$
\begin{equation*}
d\left(T^{*} f\right)=c l(d(T \widehat{f})) \tag{2.15}
\end{equation*}
$$

Now, from (2.13) and (2.15) we get

$$
\begin{equation*}
T^{*}(d f)+d\left(T^{*} f\right)=c l(T(d \widehat{f}))+c l(d(T \widehat{f})) \tag{2.16}
\end{equation*}
$$

and from (2.9), the second member of (2.16) is equal to $c l(\hat{f})=f$, hence from (2.16) it follows that (remember that $T=T_{k}$)

$$
\begin{equation*}
T_{k+1}^{*}(d f)+d\left(T_{k}^{*} f\right)=f . \tag{2.17}
\end{equation*}
$$

Now, it is enough to define $u:=T_{k}^{*} f \in \mathcal{G}_{k}(\Omega)$ and remark that since $d f=0$ in Ω and T_{k+1}^{*} is linear, from (2.17) we can conclude that $d u=f$ in Ω.

Next, we will present, as an application of PROP.2, a local existence result for the $\partial \bar{\partial}$ operator. In what follows, Ω denotes an open subset of $\mathbb{C}^{n} \quad\left(n \in \mathbb{N}^{*}\right.$ fixed) $, p, q \in \mathbb{N}, 0 \leq p, q \leq n$ and $p+q>0$. We also set $\mathcal{G}_{(0,0)}(\Omega)=\mathcal{G}(\Omega)$. We don't recall the definition of the spaces $G_{(p, q)}(\Omega)$ of the (p, q)-complex differential forms on Ω. If $f \in \mathcal{G}(\Omega)$ and $\widehat{f} \in \mathcal{E}_{M}[\Omega]$ is a representative of f, then the conjugate $\overline{\hat{f}}$ of \widehat{f} belongs to $\mathcal{E}_{M}[\Omega]$ and obviously, if \widehat{f} and \widehat{f}_{1} are two representatives of f, then $\overline{\widehat{f}}-\overline{\widehat{f}_{1}} \in \mathcal{N}[\Omega]$. We denote by \bar{f} the element of $\mathcal{G}(\Omega)$ represented by $\overline{\hat{f}}$, which is called the conjugate of f.

For a given

$$
f=\sum_{|I|=p,|J|=q}^{\prime} f_{I J} d z^{I} \wedge d \bar{z}^{J} \in \mathcal{G}_{(p, q)}(\Omega)
$$

we have

$$
\bar{f}=\sum_{|I|=p,|J|=q}^{\prime} \overline{f_{I J}} d \bar{z}^{I} \wedge d z^{J} \in \mathcal{G}_{(q, p)}(\Omega) .
$$

Clearly, by conjugation as in the classical case, all the existence results for the $\bar{\partial}$ operator remain valid for the ∂ operator. From this remark, from Prop. 2 and [3,Th.5] we get the following result:

Proposition 3. Let U be an open subset of \mathbb{C}^{n} and $g \in \mathcal{G}_{(p, q)}(U)$ such that $d g=0$ in U, where $1 \leq p, q \leq n$. Then, for each $a \in U$ there are an open neighborhood W of a and $v \in \mathcal{G}_{(p-1, q-1)}(W)$ verifying

$$
\partial \bar{\partial} v=g \text { in } W .
$$

Proof. The proof is easy and consists in the application of the Poincaré Lemma for the operators $d, \bar{\partial}$ and ∂. Fix $a \in U$ arbitrary and consider an open 0 -start-shaped neighborhood N_{1} of a contained in U. Then, since $d g=0$ in U, from Prop. 2 there exists $h \in \mathcal{G}_{r-1}\left(N_{1}\right)$ such that

$$
\begin{equation*}
d h=g \text { in } N_{1} \tag{3.1}
\end{equation*}
$$

where $r:=p+q$ is the total degree of g. Now, we have

$$
\begin{equation*}
\mathcal{G}_{r-1}\left(N_{1}\right)=\underset{1 \leq l \leq r}{\oplus} \mathcal{G}_{(l-1, r-l)}\left(N_{1}\right) \tag{3.2}
\end{equation*}
$$

hence

$$
\begin{equation*}
h=\sum_{l=1}^{r} h_{(l-1, r-l)} \text { which } h_{(l-1, r-l)} \mathcal{G}_{(l-1, r-l)}\left(N_{1}\right) \forall l=1,2, \ldots, r . \tag{3.3}
\end{equation*}
$$

Then we can conclude that in N_{1} we have (see (3.1)):

$$
g=d h=(\partial+\bar{\partial}) h=\partial h+\bar{\partial} h=\sum_{l=1}^{r} \partial h_{(l-1, r-l)}+\sum_{l=1}^{r} \bar{\partial} h_{(l-1, r-l)},
$$

which implies:

$$
\begin{align*}
& \mathcal{G}_{(p, q)}\left(N_{1}\right) \ni g=d h=A+b, \text { where } \\
& A:=\sum_{l=1}^{r} \partial h_{(l-1, r-l)} \text { and } B:=\sum_{l=1}^{r} \bar{\partial} h_{(l-1, r-l)} . \tag{3.4}
\end{align*}
$$

Therefore, we can write the identity $d h=A+B$ in (3.4) in the form

$$
\begin{equation*}
d h=\partial h_{(p-1, q)}+\partial \bar{h}_{(p, q-1)} \text { in } N_{1} \tag{3.4'}
\end{equation*}
$$

and in N_{1} :

$$
\begin{gathered}
\partial h_{(l-1, r-l)}=0 \forall l \neq p \\
\partial \bar{h}_{(l-1, r-l)}=0 \forall l \neq p+1 .
\end{gathered}
$$

Therefore

$$
\begin{equation*}
\partial h_{(p, q-1)}=\bar{\partial} h_{(p-1, q)}=0 \text { in } N_{1} . \tag{3.5}
\end{equation*}
$$

Finally, from [3,Th.5] there exists a bounded open set N_{2} verifying $a \in$ $N_{2} \subset U$ and there are $u_{1}, u_{2} \in \mathcal{G}_{(p-1, q-1)}\left(N_{2}\right)$ such that

$$
\partial u_{1}=h_{(p, q-1)} \text { and } \bar{\partial} u_{2}=h_{(p-1, q)} \text { textin } N_{2}
$$

which, by (3.4'), implies in $W:=N_{1} \cap N_{2}$:

$$
g=d h=\partial h_{(p-1, q)}+\bar{\partial} h_{(p, q-1)}=\partial\left(\bar{\partial} u_{2}\right)+\bar{\partial}\left(\partial u_{1}\right)=\partial \bar{\partial}\left(u_{2}-u_{1}\right) .
$$

This proves our result by setting

$$
v:=u_{2}-u_{1} \in \mathcal{G}_{(p-1, q-1)}(W) .
$$

References

[1] J.Aragona, Colombeau generalized functions on quasi-regular sets, Publ. Math. Debrecen, 3-4, 68 (2006).
[2] J.Aragona and H.A.Biagioni, Intrinsic definition of the Colombeau algebra of genealized functions, Anal. Math. 17,2 (1991), 75-132.
[3] J.Aragona and J.F.Colombeau, On the $\bar{\partial}$ - Neumann problem for generalized functions, J. Math. Anal. Appl., 110 (1985), 179-199.
[4] J.Mujica, Complex analysis in Banach spaces, North-Holland Mathematics Studies 120, North-Holland Publishing Co. Amsterdam (1986).

