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Abstract. In this work, we give conditions that guarantee the exis-
tence and the uniqueness of the solution of the Hammerstein integral
equation in the Lp space and under such assumptions the successive ap-
proximation converges almost everywhere to the solution of the equa-
tion. Finally, we treat numerical exemples to confirm these results.

1. Introduction

Some phenomena which appear in many areas of scientific fields such as
plasma physics, fluid dynamics, mathematical biology and chemical kinetics
can be modelled by nonlinear integral equations in particular Hammerstein
integral equations [1,4,6,13]. A broad class of analytical solutions methods
and numerical solutions methods were used in handling these problems
[3,5,7]. Also this type of equations occur of scattering and radiation of
surface water wave, where due to the Green’s function we can transform any
ordinary differential equation of the second order with boundary conditions
into an Hammerstein integral equation of the general form

ϕ(t0) = ∫
1

0
k(t, t0)l(t, ϕ(t))dt, (1)
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where k(t, t0) is a map from [a, b] × [a, b], into R, l(t, ϕ(t) a nonlinear
map from [a, b] ×R, into R and the unknown ϕ(t) is defined on [a, b]. The
equation (1) can be put in the form of a nonlinear functional equation

ϕ +KLϕ(t) = 0, (2)

with the linear and nonlinear mappings K and L respectively given by

Kψ(t0) = ∫
1

0
k(t, t0)ψ(t)dt, Lϕ(t) = l(t, ϕ(t)). (3)

In this work we ensure that under weaker conditions the Niemitskyi
operator L is well-defined on the space Lq([a, b]) of functions on the interval
[a, b], and that for each element ϕ of Lp([a, b]), the superposition operator
L lies in the space Lq([a, b]). Also the linear operator K maps the space
Lq([a, b]) into the space Lp([a, b]) and therefore the composition KL of
the two operators is well-defined and maps Lp([a, b]) into itself.

1) the functionl(t, ϕ(t)) is strongly measurable in t and continuous in ϕ

2) ∥l(t, ϕ(t))∥ ≤ a0(t)+b0 ∥ϕ∥ for t ∈ [a, b] and ϕ ∈ R, where a0 ∈ L
q
([a, b])

such that
1

p
+

1

q
= 1 and b0 ≥ 0.

Let us recall that the existence theorems for solutions of (1) with a kernel
k(t, t0) ∈ L

p
([a, b] × [a, b]) were proved in the papers [8,12]. Obviously, in

this paper the kernel k(t, t0) is not necessarily integrable in Lp([a, b]×[a, b]).

2. Main Results

Theorem 1

Suppose that the functions k(t0, t) and l(t, ϕ(t)) satisfy the following
conditions

(A1) The kernel k(t0, t) is measurable on [a, b] × [a, b] and such that

(∫

b

a
∣k(t0, t)∣

σ dt0)

1
σ
≤M1, for all t ∈ [a, b],

where σ < p and σ, p > 1.

(A2) The kernel k(t0, t) is measurable on [a, b] × [a, b] and such that

(∫

b

a
∣k(t0, t)∣

p−σ
p−1 dt)

p−1
p−σ

≤M2, for all t0 ∈ [a, b].
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(A3) The function l(t, ϕ(t)) is a nonlinear map from [a, b] ×R, into R
satisfying the Carathéodory condition and such that

∣l(t, ϕ(t))∣ ≤ a0(t) + b0 ∣ϕ(t)∣
p
q ,

where a0(t) ∈ L
q
([a, b],R), b0 > 0 and

1

p
+

1

q
= 1

Under conditions (A1), (A2), (A3) the operator

Aϕ(t0) = ∫
b

a
k(t0, t)l(t, ϕ(t))dt, (4)

is a map from Lp into Lp.

Proof. From the condition (A3), we can write

∣l(t, ϕ(t))∣q ≤ (∣a0(t)∣ + b0 ∣ϕ(t)∣
p
q )

q

,

and therefore

∥l(t, ϕ(t))∥q = (∫

b

a
∣l(t, ϕ(t))∣q dt)

1
q
≤ (∫

b

a
(∣a0(t)∣ + b0 ∣ϕ(t)∣

p
q )

q

dt)

1
q
.

Using Minkovski’s inequality, it comes

∥l(t, ϕ(t))∥q ≤ c
⎛

⎜

⎝

(∫

b

a
∣a0(t)∣

q
)

1
q
+ (∫

b

a
bq0 ∣ϕ(t)∣

p
)

1
q ⎞

⎟

⎠

≤ c(∥a0(t)∥q + b0 ∥ϕ(t)∥

p
q
p ) .

Hence the operator l(t, ϕ(t)) is a continuous element of Lq([a, b],R) [4].

However, on the space Lp([a, b],R) we consider,

Aϕ(t0) = ∫
b

a
k(t0, t)l(t, ϕ(t))dt,

where following [1], we have

∣Aϕ(t0)∣ = ∣∫

b

a
k(t0, t)l(t, ϕ(t))dt∣ ,

≤ ∫

b

a
∣k(t0, t)l(t, ϕ(t))∣dt,

= ∫

b

a
(∣k(t0, t)∣

σ
∣l(t, ϕ(t))∣q)

1
p ∣k(t0, t)∣

1−σp ∣l(t, ϕ(t))∣
1− qp dt,
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≤ (∫

b

a
∣k(t0, t)∣

σ
∣l(t, ϕ(t))∣q dt)

1
p
(∫

b

a
∣k(t0, t)∣

p−σ dt)
1
p
(∫

b

a
∣l(t, ϕ(t))∣q dt)

p−q
pq
,

∣Aϕ(t0)∣ ≤ M

(p−σ)
p

2 ∥l(t, ϕ(t))∥
(p−q)
p (∫

b

a
∣k(t0, t)∣

σ
∣l(t, ϕ(t))∣q dt)

1
p
,

or again,

∣Aϕ(t0)∣
p
≤

⎛

⎜

⎝

M

(p−σ)
p

2 ∥l(t, ϕ(t))∥
(p−q)
p (∫

b

a
∣k(t0, t)∣

σ
∣l(t, ϕ(t))∣q dt)

1
p⎞

⎟

⎠

p

(∫

b

a
∣Aϕ(t0)∣

p dt0)

1
p

≤M

(p−σ)
p

2 ∥l(t, ϕ(t))∥
(p−q)
p (∫

b

a
∫

b

a
∣k(t0, t)∣

σ
∣l(t, ϕ(t))∣q dtdt0)

1
p

≤M

(p−σ)
p

2 ∥l(t, ϕ(t))∥
1− qp (∫

b

a
∣k(t0, t)∣

σ dt0)

1
p
(∫

b

a
∣l(t, ϕ(t))∣q dt)

1
p

≤M

(p−σ)
p

2 ∥l(t, ϕ(t))∥
1− qp M

σ
p
1 ∥l(t, ϕ(t))∥

q
p

∥Aϕ(t0)∥p ≤M

(p−σ)
p

2 M

σ
p
1 ∥l(t, ϕ(t))∥q .

Hence, the operatorAϕ(t0) is well defined from Lp to Lp by interpolation.

Lp solution

Consider the nonlinear integral equation

ϕ(t0) = ∫
b

a
k(t0, t)l(t, ϕ(t))dt ∶

We would like to know what conditions one require on k(t0, t) and
l(t, ϕ(t)) in order for this equation to have a solution ϕ(t) ∈ Lp([a, b]).

Theorem 2

Suppose that the functions k(t0, t) and l(t, ϕ(t)) satisfy the following
conditions
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(B1) The kernel k(t0, t) belongs to the space Lp for all t0 ∈ [a, b]

(∫

b

a
∣k(t0, t)∣

p dt)

1
p
≤ N1(t0), ∀t0 ∈ [a, b].

(B2) the function l(t, ϕ(t)) belongs to the space Lq for all t ∈ [a, b]

(∫

b

a
∣l(t, ϕ(t))∣q dt)

1
q
≤ C,

and satisfying the Lipschitz condition

∣l(t, ϕ1(t)) − l(t, ϕ2(t))∣ ≤ L(t) ∣ϕ1(t) − ϕ2(t)∣ ,

with the function L(t) belongs to the space L
pq
p−q with q ≤ p,

(∫

b

a
∣L(t)∣

pq
p−q dt)

p−q
pq

≤ N2.

Under assumptions (B1) and (B2), the successive approximation

ϕn+1(t0) = ∫
b

a
k(t0, t)l(t, ϕn(t))dt,

converges almost everywhere to the solution of the equation (1) provided

Np
2 ∫

b

a
Np

1 (t)dt = N
p
< 1.

Proof.

For this method we put ϕ0(t) as an identically null function and succes-
sively

ϕn+1(t0) = ∫
b

a
k(t0, t)l(t, ϕn(t))dt, n = 0,1,2, ..., n..,

and therefore, we obtain

∣ϕn+1(t0) − ϕn(t0)∣ ≤ ∫

b

a
∣k(t0, t)∣ ∣l(t, ϕn(t)) − l(t, ϕn−1(t))∣dt,

∣ϕn+1(t0) − ϕn(t0)∣ ≤ ∫

b

a
∣k(t0, t)∣L(t) ∣ϕn(t) − ϕn−1(t)∣dt,

≤ (∫

b
a ∣k(t0, t)∣

p dt)
1
p
(∫

b
a ∣L(t)∣

pq
p−q )

p−q
pq

(∫

b
a ∣ϕn(t) − ϕn−1(t)∣p dt)

1
p .
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Hence

∣ϕn+1(t0) − ϕn(t0)∣p ≤ Np
1 (t0)N

p
2 ∫

b

a
∣ϕn+1(t) − ϕn(t)∣p dt, (5)

using the condition ϕ0(t) = 0, we get

∣ϕ1(t0)∣
p
≤ Np

1 (t0) (∫
b

a
∣l(t,0)∣q dt)

p
q
= Np

1 (t0)C
p,

and from (5), it comes

∣ϕ2(t0) − ϕ1(t0)∣
p

≤ Np
1 t(0)N

p
2 ∫

b

a
Np

1 (t0)C
pdt0 = C

pNpNp
1 (t0),

∣ϕ3(t0) − ϕ2(t0)∣
p

≤ Np
1 t(0)N

p
2 ∫

b

a
CpNp

1 (t0)N
pdt0 = C

pN2pNp
1 (t0),

more generally

∣ϕn+1(t0) − ϕn(t0)∣p ≤ CpN2npNp
1 (t0),

or again after simplification

∣ϕn+1(t0) − ϕn(t0)∣ ≤ CN2nN1(t0).

This expression gives that the sequence ϕn(t0) taken by the series

ϕ1(t0) + (ϕ2(t0) − ϕ1(t0)) + .... + (ϕp(t0) − ϕp−1(t0)) + ...,
has the majorant

CN1(t0)(1 +N +N2
+ .....Np−1

+ ..

Naturally, this series converges. Hence the sequence ϕn(t0) converges to
the solution of the equation (1).

3. Numerical Experiments

In this section we describe some of the numerical experiments performed
in solving the Hammerstein integral equations (1). In all cases, the interval
is [0,1] and we chose the right hand side f(t) in such way that we know the
exact solution. This exact solution is used only to show that the numerical
solution obtained with the method is correct [2,9,10,11].

In each table, ϕ represents the given exact solution of the Hammerstein
equation and ϕ̃ corresponds to the approximate solution of the equation
produced by the iterative method.

Example 1

Consider the Hammerstein integral equation
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10ϕ(t0) − ∫
1

0
exp(t4 + t40)(ϕ(t))

3dt = 10t0 −
1

4
(e − 1) exp(t40),

where the function f(t0) is chosen so that the solution ϕ(t) is given by

ϕ(t) = t.

The approximate solution ϕ̃(t) of ϕ(t) is obtained by the successive ap-
proximation after N=10 iterations.

Points of t Exact solution Approx solution Error Error [3]
0.000000 0.000000e+000 2.209477e-005 2.209477e-005 2.1462e-003
0.250000 2.500000e-001 2.500222e-001 2.218125e-005 2.1546e-003
0.500000 5.000000e-001 5.000235e-001 2.351976e-005 2.2846e-003
0.750000 7.500000e-001 7.500303e-001 3.031818e-005 2.9450e-003
0.100000 1.000000e+000 1.000060e+000 6.005982e-005 2.8340e-003

Table 1. The exact and approximate solutions of example 1 in some arbitrary
points, and the error compared with the ones treated in [3].

Example 2

Consider the Hammerstein integral equation

20ϕ(t0)−∫
1

0
sin(exp(t)+t0) exp(ϕ(t))dt = 20t0+cos(exp(1)+t0)−cos(1+t0),

where the function f(t0) is chosen so that the solution ϕ(t) is given by

ϕ(t) = t.

The approximate solution ϕ̃(t) of ϕ(t) is obtained by the successive
approximation after N=10 iterations.

Points of t Exact solution Approx solution Error Error [3]
0.000000 0.000000e+000 -3.184043e-006 3.184043e-006 1.6361e-005
0.250000 2.500000e-001 2.499964e-001 3.602525e-006 4.3978e-005
0.500000 5.000000e-001 4.999962e-001 3.797019e-006 6.8861e-005
0.750000 7.500000e-001 7.499962e-001 3.755433e-006 8.9462e-005
0.100000 1.000000e+000 9.999965e-001 3.480352e-006 1.0450e-004

Table 2. The exact and approximate solutions of example 2 in some arbitrary
points, and the error compared with the ones treated in [3].

Example 3

Consider the Hammerstein integral equation
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ϕ(t0) − ∫
1

0
tt0(ϕ(t))

3dt =
1

t20 + 1
−

3

16
t0,

where the function f(t0) is chosen so that the solution ϕ(t) is given by

ϕ(t) =
1

t2 + 1
.

The approximate solution ϕ̃(t) of ϕ(t) is obtained by the successive
approximation after N=10 iterations.

Points of t Exact solution Approx solution Error Error [5]
0.000000 1.000000e+000 1.000000e+000 0.000000e+000 0.000000e+000
0.200000 9.615385e-001 9.615348e-001 3.642846e-006 1.194620e-004
0.400000 8.620690e-001 8.620617e-001 7.285693e-006 2.389660e-004
0.600000 7.352941e-001 7.352832e-001 1.092854e-005 3.581180e-004
0.800000 6.097561e-001 6.097415e-001 1.457139e-005 4.780980e-004

Table 3. The exact and approximate solutions of example 3 in some arbitrary
points, and the error compared with the ones treated in [5].

Example 4

Consider the Hammerstein integral equation

ϕ(t0)−∫
1

0
sin(t+t0) ln(ϕ(t))dt = exp(t0)−0.382 sin(t0)−0.301 cos(t0), 0 ≤ t0 ≤ 1,

where the function f(t0) is chosen so that the solution ϕ(t) is given by

ϕ(t) = exp(t).

The approximate solution ϕ̃(t) of ϕ(t) is obtained by the successive
approximation after N=10 iterations.

Points of t Exact solution Approx solution Error Error [8]
0.000000 1.000000e+000 1.000195e+000 1.953229e-004 0.000000e+000
0.200000 1.221403e+000 1.221559e+000 1.567282e-004 1.940000e-004
0.400000 1.491825e+000 1.491937e+000 1.118852e-004 5.410000e-004
0.600000 1.822119e+000 1.822181e+000 6.258175e-005 3.360000e-004
0.800000 2.225541e+000 2.225552e+000 1.078332e-005 2.890000e-004

Table 4. The exact and approximate solutions of example 4 in some arbitrary
points, and the error compared with the ones treated in [8].
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4. Conclusion

In this work we remark the convergence of the successive approximation
method to the exact solution with a considerable accuracy for the Ham-
merstein integral equation under conditions of the theorems cited above:
This numerical results show that the accuracy improves with increasing of
the number of iterations. Finally we confirm that the theorems cited above
lead us to the good approximation of the exact solution.
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