
São Paulo Journal of Mathematical Sciences 8, 2 (2014), 193–210

Some Classes of Point Processes
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Abstract. We define four classes of point processes which we call A,
B, *A, *B. Although we study point processes on R, these classes are
suitable for generalizations for point processes on Rm and other mea-
sure metric spaces. The main result is the equivalence of classes *A
and *B for point processes on R. As a matter of fact, we prove that
A  B  ∗A = ∗B  S, where S is the class of simple processes. We
also relate these classes and the class of Poisson processes.

1. Introduction

Point process intensity estimation is an important topic both for theo-
retical and practical purposes. The estimation of the intensity may be done
via wavelets (see [1], [2], [3], [4], [9], [10] and [11]). In practice, it is common
not to know if the intensity of a process belongs to some class of functions
or not. Thus it is important to have methods that can deal with as wide as
possible classes of point processes. In what follows, we will define classes of
point processes that are suitable for wavelet estimation of their intensity.
These are very wide classes. Particularly, the conditions to be fulfilled by
a point process to belong to *B are really mild.

This article is organized as follows. In section 2 we present some back-
ground and notation for point processes. In section 3 the classes are defined.
Section 4 is devoted to establish the interrelationship between classes and
in section 5 we study the special case of Poisson processes. In section 6 we
present a short conclusion.
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2. Point Processes Background and Notation

2.1. Notation. We will work with Lebesgue measurable functions, h :
Rm → R that are bounded over bounded Rm-intervals or, equivalently,
that are Lebesgue integrable and bounded over bounded Rm- intervals.
We will call this class of functions Lm. We will denote by Lm the class
of Lebesgue integrable functions over bounded Rm-intervals. The class of
Riemann integrable functions h : Rm → R over bounded Rm-intervals will
be denoted by Rm. Since all Riemann integrable functions over bounded
intervals are bounded over these intervals, we have Rm ⊂ Lm.

The Lebesgue measure on Rm will be simply denoted by ` independently
of the dimension m. Whenever it is necessary or to emphasize dimension,
we will write `m. The σ-algebra of Lebesgue measurable sets in Rm is
denoted by ΛRm and BRm stands for the σ-algebra of Borel sets. Functions
that only differ over zero measure subsets of their common domain or of a
common extension of their domains are naturally considered identical. All
functions are considered to be measurable.

We denote by N(A) the number of events that occur in A ⊂ R. If
A = (α, β], we write N(α, β] instead of N((α, β]). We also denote by N
the integer valued function defined by the equalities N(t) = N(0, t], if t >
0, N(0) = 0 and N(t) = −N(t, 0] if t < 0. Clearly N(α, β] = N(β)−N(α).
Let {· · · , τ−2 ≤ τ−1 ≤ τ0 ≤ 0 < τ1 ≤ τ2 ≤ · · · } denote the times at which
the events occur. Then N(t) = n, if and only if τn ≤ t < τn+1.

Provided that probabilities of the form

P (N(α1, β1] = n1, . . . , N(αk, βk] = nk)

are defined and consistent, for all k ∈ N∗ = {1, 2, . . .}, and all n1, . . . , nk
non-negative integers, we can define an appropriate probability space
(Ω,A, P ), such that there exists a measurable mapping from this space to
(RZ,BRZ), defining then a stochastic point process that will also be called
N .

2.2. Intensity and Product Density. Suppose that there exists a posi-
tive real number δ and a constant Kδ > 0 such that for all intervals ∆ ⊂ R
with length |∆| < δ, all integers n > 1 and all t ∈ R, not only the relation

P{N(∆) = n} ≤ Kδ|∆|n (1)

holds, but also the limit

lim
|∆|→0,t∈∆

1

|∆|
P{N(∆) = 1} = pN (t) (2)
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exists uniformly in t. Inequality (1) implies that

P{N(∆) > 1} ≤ Kδ(
∑
j≥2

|∆|j) = O(|∆|2).

Note that if inequality (1) were valid for n = 1 then we would have
P{N(∆) = 1}/|∆| ≤ Kδ and hence, if it would exist, pN (t) would be
a bounded function on R. Also observe that (2) implies that ∀x ∈ R,
P{N({x}) = 1} = 0, otherwise there would exist t ∈ R for which the limit
pN (t) would be infinite.

Due to uniformity, relation (2) is equivalent to

P{N(∆) = 1} = pN (t)|∆|+ ot,∆(|∆|),

for an infinitesimal ot,∆(z) with the following properties:

∀ε > 0, ∃δ > 0, ∀t ∈ R, ∀∆ ⊂ R, t ∈ ∆, (0 < |∆| < δ)→ |ot,∆(|∆|)| ≤ ε
2 |∆|

and ot,∆(0) = 0,

that is, ∀ε > 0, ∃δ > 0, (0 < z < δ) → sup
t∈R,∆⊂R
t∈∆,|∆|=z

|ot,∆(z)| ≤ ε
2z < εz and

ot,∆(0) = 0.

The quantity sup
t∈R,∆⊂R
t∈∆,|∆|=z

|ot,∆(z)| = o(z) is a non-negative infinitesimal in-

dependent of t and ∆. In this sense, we also write |ot,∆(|∆|)| ≤ o(|∆|).
For the ease of notation, we will write ot instead of ot,∆.

We say that pN (t) is the intensity of occurrence of events at time t,
more precisely, of single occurrence of events at t.

Suppose now that there exists a positive real number δ and a constant
kδ,m such that for all intervals ∆1, . . . ,∆m of the real line with lengths
0 < |∆i| < δ, 1 ≤ i ≤ m, all integers ni ≥ 1 and all vectors (t1, . . . , tn) ∈ Rm
with ti 6= tj for i 6= j, 1 ≤ i ≤ m, 1 ≤ j ≤ m, both properties below are
valid:

if (n1, . . . , nm) 6= (1, . . . , 1) then P{N(∆i) = ni, 1 ≤ i ≤ m} ≤ kδ,m
m∏
i=1

|∆i|ni

(3)

and for|∆| := (|∆1|, . . . , |∆m|) ∈ (R∗+)m, ti ∈ ∆i, 1 ≤ i ≤ m, there exists
the limit

lim
|∆|→0

1
m∏
i=1
|∆i|

P{N(∆i) = 1, 1 ≤ i ≤ m} = pm(t1, . . . , tm). (4)
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The limit above measures the intensity of the joint occurrence of events in
the distinct times t1, . . . , tm. We might call it the joint intensity. Since un-

der the relations (3) and (4) it is also valid that lim
|∆|→0

1
m∏
i=1
|∆i|

E{
m∏
i=1

N(∆i)}

= pm(t1, . . . , tm), pm is called product density of order m. Relation (4)
implies that

P{N(∆i) = 1, 1 ≤ i ≤ m} = pm(t1, . . . , tm)
m∏
i=1

|∆i|+ ot,
∏m

i=1 ∆i
(|∆|) (5)

for ot,
∏m

i=1 ∆i
(|∆|) an infinitesimal such that

ot,
∏m

i=1 ∆i
(|∆|)

m∏
i=1
|∆i|

→ 0 when ∆→

0.

Again, for the ease of notation, we write ot instead of o
t,

m∏
i=1

∆i

.

We can also define cumulants for N(t); and in particular, we define the
limit covariance, for u 6= v, by

q2(u, v) = lim
|∆|→0

Cov (N,N)(∆1 ×∆2)

|∆1||∆2|
.

Whenever p2(u, v), p1(u) and p2(v) exist, we write

q2(u, v) = lim
|∆|→0

Cov (N,N)(∆1 ×∆2)

|∆1||∆2|

= lim
|∆|→0

E(N(∆1)N(∆2))

|∆1||∆2|
− lim
|∆|→0

E(N(∆1))

|∆1|
E(N(∆2))

|∆2|
= p2(u, v)− p1(u)p2(v).

The following proposition and theorem will be useful in section 4.

Proposition 2.1. Under conditions (1) and (2), we have

P{N(∆) = 1} ≤ E{N(∆)} ≤ P{N(∆) = 1}+O(|∆|2),

P{N(∆) = 1} −A ≤ Var{N(∆)} ≤ P{N(∆) = 1}+B,

where A and B are O(|∆|2) whenever sup
t∈∆

pN (t) is finite.

Therefore we can write
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E{N(∆)} = pN (t)|∆|+ ot(|∆|)
and

Var{N(∆)} = pN (t)|∆|+ ot(|∆|).

These infinitesimals ot = ot,∆ may depend on t and ∆ but their absolute
values are bounded by other o’s which are independent of t.

Theorem 2.1. Let Em = {x = (x1, . . . , xm) ∈ Rm|xi = xj for some pair

i, j, i 6= j}, ϕ an E

(
m∏
i=1

dN(ti)

)
-integrable function on Rm \ Em, pm the

m-th order product density and p1 = pN the intensity function of a point
process N that satisfies (3) and (4). Then, if pm ∈ L

m
, m ≥ 1, we have∫

Rm\Em
ϕE

(
m∏
i=1

dN(ti)

)
=

∫
Rm\Em

ϕpm

m∏
i=1

dti .

Clearly, E1 = ∅ and E2 = D = {(x, x) ∈ R2|x ∈ R} is the diagonal set of
R2.

Proofs and further results can be found in [4] and [9].

3. Definition of Classes

Definition 1. We will say that a point process N satisfies

hypothesis B: when N satisfies relations (1) and (2) and p1 = pN ∈ L
1
.

Since (1), (2) and p1 ∈ L
1

imply p1 ∈ C(R,R) ⊂ R1 ⊂ L1 ⊂ L1
, hypothesis

B is equivalent to (1), (2) and p1 continuous (see [4] and [5]).
hypothesis A: when N satisfies hypothesis B and also relations (3), (4) for

m = 2 and p2 ∈ L
2
, p2 essentially bounded over bounded intervals.

The classes A and B are defined by N ∈ B if and only if N satisfies
hypothesis B and N ∈ A if and only if N satisfies hypothesis A.

Next we define two wider classes of point process.

Definition 2. A point process N satisfies hypotheses *B when not only its
expectation measure is absolutely continuous with respect to the Lebesgue

measure, EN � `, that is, when there exists dEN/d` ∈ L1
, but also the

following relation holds: ∀t ∈ R ∀∆ ⊂ R, ∆ interval, t ∈ ∆, EN(∆) =
P{N(∆) = 1}+ ot,∆(|∆|).
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The class *B is defined by N ∈ *B if and only if N satisfies hypothesis
*B.

Theorem 3.1. Let N be a point process that satisfies hypothesis *B. Then
the intensity defining limit pN exists and dEN/d` = pN a.e.[`].

Proof: For all t ∈ R, we compute the intensity defining limit pN (t):

pN (t) = lim
t∈∆
|∆|→0

P{N(∆) = 1}
|∆|

= lim
t∈∆
|∆|→0

EN(∆)− ot(|∆|)
|∆|

= lim
t∈∆
|∆|→0

EN(∆)

|∆|
,

Let f =
dEN

d`
, ϕ(x) =

x∫
c
f(y)dy, ∆ = |a, b|, a < b, h1 = b − t and

h2 = t− a. Thus,

pN (t) = lim
h1→0
h2→0

ϕ(t+ h1)− ϕ(t− h2)

h1 + h2
.

Now,
ϕ(t+ h1)− ϕ(t− h2)

h1 + h2
=

=
ϕ(t+ h1)− ϕ(t)

h1

h1

h1 + h2
+
ϕ(t− h2)− ϕ(t)

−h2

h2

h1 + h2

= (f(t) + ot(h1))
h1

h1 + h2
+ (f(t) + ot(−h2))

h2

h1 + h2

= f(t) +

(
ot(h1)

h1

h1 + h2
+ ot(−h2)

h2

h1 + h2

)
,

where, by Lebesgue’s differentiation theorem, ot is an infinitesimal a.e.[`]
(this means that the set of t’s such that ot is not an infinitesimal has zero
Lebesgue measure).

Since 0 ≤ h1
h1+h2

≤ 1 and 0 ≤ h2
h1+h2

≤ 1, we have

lim
h1→0
h2→0

ϕ(t+ h1)− ϕ(t− h2)

h1 + h2
= f(t) + 0 a.e.[`].

Thus, pN (t) =
dEN

d`
a.e.[`].

Definition 3. A point process N satisfies hypotheses *A when it is under
hypotheses *B and the equality

E(N ×N)(A ∩D) = ENπ1(A ∩D)
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holds for all A ∈ ΛR2, where D is the diagonal set of R2 and π1 is the first
canonical projection.

The class *A is defined by N ∈ *A if and only if N satisfies hypothesis
*A.

We observe that this condition is equivalent to say that the measure
E(N × N) restricted to diagonal, E(N × N)|D : ΛD → R, is the induced
measure over the diagonal by the measure EN on the real line through π1,
that is, E(N ×N)|D = ENπ1.

Definition 4. A point process is called non-internally correlated if and
only if for all A and B disjoint Lebesgue measurable sets we have
Cov(N(A), N(B)) = 0.

For non trivial examples of non internally correlated point processes, see
[8].

The following example shows the existence of point processes outside ∗B.
It also shows that EN � ` does not imply ∀t ∈ R ∀∆ ⊂ R, ∆ interval,
t ∈ ∆, EN(∆) = P{N(∆) = 1}+ ot,∆(|∆|).
Example: Let N be a Poisson point process on R with intensity λ. Let
M = 2∗N. Then, EM � ` and for all ∆, EM(∆) = 2λ|∆| and P (M(∆) =
1) = 0. Thus EM(∆) = 2λ|∆| 6= P{N(∆) = 1}+ ot,∆(|∆|) = 0 + ot,∆(|∆|)
and M /∈ ∗B.

4. Interrelationships Between Classes

Theorem 4.1. If N satisfies hypothesis B then N is also under hypotheses
*B.

Proof: Since N satisfies hypothesis B, we not only have pN ∈ L1 but also,
by Theorem 2.1, pN = dEN/d` a.e.[`]. Thus dEN/d` ∈ L1. Now, since
proposition (2.1) hypothesis is satisfied by point processes under hypothesis
B we have

P{N(∆) = 1} ≤ E{N(∆)} ≤ P{N(∆) = 1}+O(|∆|2),

from which E{N(∆)} = pN (t)|∆|+ ot,∆(|∆|)

Theorem 4.2. If N satisfies hypothesis A then N is also under hypotheses
*A.

Proof: Since N satisfies hypothesis A, it also satisfies B which implies N
satisfies *B.
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For more details on the following part of this proof, see [4], [5] and [6].

Denoting by du not only the number du but also the interval [u, u+du),
we write

E(N ×N)(du× du) = E (N [u, u+ du)N [u, u+ du))

P{N [u, u+ du) = 1} ≤ E{N [u, u+ du)2} ≤
≤ P{N [u, u+ du) = 1}+

∑
j≥2

j2P{N [u, u+ du) = j}.

Thus, E{N [u, u + du)2} = P{N [u, u + du) = 1} + o
′
u(du) = pN (u)du +

ou(du).

E(N × N)((du × du) \ D) =
∫ u+du
u

∫ u+du
u p2d` < M(du)2, since, as N

satisfies hypothesis A, there exists M > 0, such that p2(x, y) < M a.e.[`]
in du× du.

Let E(N ×N)|D(A) = E(N ×N)(A ∩D), for all A ∈ ΛR2 .

Thus, pN (u)du+ou(du)−M(du)2 ≤ E(N×N)|D(du×du) ≤ pN (u)du+

ou(du) and, consequently, E(N ×N)|D(du× du) = pN (u)du+ o
′′
u(du).

Neglecting higher order infinitesimals, we have

∫
A∩D

dE(N ×N)|D =

∫
π1(A∩D)

pN (u)du =

∫
π1(A∩D)

dEN

d`
d`,

i.e.,
E(N ×N)(A ∩D) = ENπ1(A ∩D).

Definition 5. A point process is called strictly simple if and only if ∀ω ∈ Ω
∀t ∈ R Nω({t}) ∈ {0, 1}.

That is, N is strictly simple when there are no simultaneous occurrences
of events.

Theorem 4.3. If N is a strictly simple point process under hypothesis *B
then N also satisfies hypothesis *A.

Proof: Take A ∈ ΛR bounded and let Ω′A = {ω ∈ Ω | Nω(A) = ∞}. As

dEN/d` ∈ L1
we have

∫
A(dEN/d`)d` = EN(A) < ∞. Thus P (Ω′A) = 0,

otherwise we would have EN(A) =
∫

Ω\Ω′A
Nω(A)dP +

∫
Ω′A

Nω(A)dP =∞.

Now, for all bounded A ∈ ΛR and ∀ω ∈ Ω\Ω′A we can write the measure
Nω|A as a counting measure Nω|A =

∑
j∈JA(ω) nj(ω)δxj(ω), JA(ω) finite
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set, ∀j ∈ JA(ω), xj(ω) ∈ A and Nω|A(A) =
∑

j∈JA(ω) nj(ω)δxj(ω)(A) =∑
j∈JA(ω) nj(ω) ∈ N. In this way, ∀ω ∈ Ω \ Ω′A we have

Nω|A ×Nω|A =
∑

j1∈JA(ω)

nj1(ω)δxj1 (ω) ×
∑

j2∈JA(ω)

nj2(ω)δxj2 (ω) =

=
∑

(j1,j2)∈J2
A(ω)

nj1(ω)nj2(ω)δxj1 (ω) × δxj2 (ω) =

=
∑

(j1,j2)∈J2
A(ω)

nj1(ω)nj2(ω)δ(xj1 (ω),xj2 (ω)).

Thus,
Nω ×Nω|A×A((A×A) ∩D) =

=
∑

(j1,j2)∈J2
A(ω)

nj1(ω)nj2(ω)δ(xj1 (ω),xj2 (ω))({(x, x)|x ∈ A}) =

=
∑

k∈JA(ω)

n2
k(ω)δ(xk(ω),xk(ω))({(x, x)|x ∈ A}) =

∑
k∈JA(ω)

n2
k(ω)δxk(ω)(A).

As N is simple, for all k, n2
k(ω) = nk(ω) = 1; we have Nω×Nω|A×A((A×

A) ∩D) = #JA(ω) = Nω|A(A).

In this way, we have obtained ∀A ∈ ΛR, A bounded, ∀ω ∈ Ω \ Ω′A,
P (Ω′A) = 0, (Nω ×Nω)((A×A) ∩D) = Nω(A).

Thus, E(N ×N)((A×A)∩D) =
∫

Ω\Ω′A
(Nω×Nω)((A×A)∩D)dP (ω) =∫

Ω\Ω′A
Nω(A)dP (ω) = EN(A). That is E(N ×N)((A×A)∩D) = EN(A).

Now, let C ∈ ΛR2 . If C is bounded E(N × N)(C ∩ D) = E(N ×
N)((π1(C∩D)×π1(C∩D))∩D) = EN(π1(C∩D)). If C is not bounded, let
IDz = [z, z+1)2∩D, so that C∩IDz is bounded. We have E(N×N)(C∩D) =∑

z∈ZE(N×N)(C∩D∩IDz ) =
∑

z∈ZEN(π1(C∩D∩IDz )) = EN(π1(C∩D)).
This completes the proof.

Definition 6. A point process is called simple if and only if P{ω ∈ Ω | ∃t ∈
R Nω({t}) > 1} = 0.

Lemma 4.1. Let a point process N defined on (Ω,A, P ) be under hypothesis
*B. Then, if Ω1 ⊂ Ω is such that P (Ω1) = 1, the point process N |Ω1,
restriction of N to Ω1, is still under hypothesis *B.

Proof: We denote N |Ω1 the restriction of the function N to Ω1 subset of
its domain Ω. This restriction naturally inherits a point process structure.
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It suffices to take A1 = A∩̃Ω1 = {B ∩ Ω1|B ∈ A} and P1 = P |A1 : A1 →
[0, 1].

Now, for all A ∈ ΛR we have

EN |Ω1(A) =

∫
Ω1

N |Ω1(A)dP1 =

∫
Ω1

N |Ω1(A)dP =

=

∫
Ω1

N |Ω1(A)dP +

∫
Ω\Ω1

Nω(A)dP −
∫

Ω\Ω1

Nω(A)dP =

=

∫
Ω
Nω(A)dP −

∫
Ω\Ω1

Nω(A)dP = EN(A)

since P (Ω \ Ω1) = 0. So EN |Ω1 = EN .

In this way we have EN |Ω1 = EN � ` and EN |Ω1(∆) = EN(∆) =
P{N(∆) = 1}+ot,∆(|∆|) = P{ω ∈ Ω1|N(∆) = 1}+P{ω ∈ Ω\Ω1|N(∆) =
1}+ ot,∆(|∆|) = P{N |Ω1(∆) = 1}+ ot,∆(|∆|).

Corollary 4.1. If N is a simple point process that satisfies hypothesis *B
then it also satisfies hypothesis *A.

Proof: Let Ω = Ω1 ∪ Ω2 where

Ω1 = {ω ∈ Ω | @t ∈ R N({t}) > 1}

Ω2 = {ω ∈ Ω | ∃t ∈ R N({t}) > 1}.

Since N is simple we have P (Ω1) = 1 and P (Ω2) = 0. Furthermore N |Ω1

is a strictly simple process under *B and this implies that N |Ω1 satisfies
hypothesis *A. So we write:

E(N ×N)(A ∩D) = E((N ×N)(A ∩D)|ω ∈ Ω1)P{ω ∈ Ω1}
+ E((N ×N)(A ∩D)|ω ∈ Ω2)P{ω ∈ Ω2}
= E(Nπ1(A ∩D)|ω ∈ Ω1)

= E(Nπ1(A ∩D)|ω ∈ Ω1)P (Ω1)

+ E(Nπ1(A ∩D)|ω ∈ Ω2)P (Ω2)

= ENπ1(A ∩D).

Lemma 4.2. If N satisfies relation (5) then it is simple.
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Proof: Let for all n ∈ N∗ for all i, 0 ≤ i ≤ n − 1 , ∆i = [i/n, (i + 1)/n).
Then, for all n ∈ N∗

P{ω ∈ Ω | ∃t ∈ [0, 1) N({t}) > 1} ≤
≤ P{ω ∈ Ω|∃i, 0 ≤ i ≤ n− 1, N(∆i) > 1}

≤
n∑
i=1

P{N(∆i) > 1} ≤
n∑
i=1

(
∑
j≥2

Kδ|∆i|j)

=

n∑
i=1

Kδ|∆i|2(
1

1− |∆i|
) = Kδ

1

1− 1/n

1

n
(
n∑
i=1

1

n
) =

Kδ

n− 1
.

Letting n→∞ we have 0 ≤ P{ω ∈ Ω|∃t ∈ [0, 1) N({t}) > 1} ≤ 0.

Repeating this argument for the intervals [m,m+ 1), m ∈ Z we write:

0 ≤ P{ω ∈ Ω | ∃t ∈ R N({t}) > 1}
≤

∑
m∈Z

P{ω ∈ Ω | ∃t ∈ [m,m+ 1) N({t}) > 1} ≤
∑
m∈Z

0 = 0.

Theorem 4.4. If N satisfies hypothesis B then it is simple.

Proof: Direct consequence of Lemma 4.2.

Corollary 4.2. If N satisfies hypothesis B, then N satisfies hypothesis *A.

Proof: Since N satisfies hypothesis B, it also satisfies hypothesis *B. Now,
by Theorem 4.4, N is simple and the conclusion follows by Corollary 4.1.

Theorem 4.5. If N is a point process under hypothesis *A then it is simple.

Proof: Suppose it is not so. That is, N is under hypothesis *A and it
is not simple. Then, Ω2 = {ω ∈ Ω | ∃t ∈ R N({t}) > 1} is such that
P (Ω2) > 0. Let Ω2,m = {ω ∈ Ω | ∃t ∈ [m,m + 1) N({t}) > 1}. In
this way Ω2 ⊂

⋃
m∈Z

Ω2,m and there is an m1 ∈ Z such that P (Ω2,m1) > 0,

otherwise we would have P (Ω2) ≤
∑
m∈Z

P (Ω2,m) = 0. Now, since N is under

hypothesis *A it is under hypothesis *B, consequently, pN ∈ L
1

and the set
Ω′′ such that if ω ∈ Ω′′ then N([m1,m1 +1)) =∞ has zero probability. Let
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Ω′ = Ω\Ω′′. Let X be the random variable, X = (N×N)([m1,m1+1)2∩D).

E((N ×N)([m1,m1 + 1)2 ∩D)) = E(X|Ω′)P (Ω′) + E(X|Ω′′)P (Ω′′) =

= E(X|Ω′) =

= E(X|Ω′ ∩ Ω2,m1)P (Ω2,m1) + E(X|Ω′ ∩ (Ω′ \ Ω2,m1))P (Ω′ \ Ω2,m1).

Using Theorem’s 4.3 notation we write

X(ω) =
∑

n2
k(ω) =

∑
nk(ω) = Nω[m1,m1 + 1) for all ω ∈ Ω′ \ Ω2,m1 ,

and X(ω) =
∑

n2
k(ω) ≥ 3 +

∑
nk(ω) = 3 +Nω[m1,m1 + 1),

for all ω ∈ Ω′ ∩ Ω2,m1 .

Thus, since P (Ω′) = 1 and N satisfies hypothesis *A,

E((N ×N)([m1,m1 + 1)2 ∩D)) ≥
≥ (3 + E(N [m1,m1 + 1)|Ω2,m1))P (Ω2,m1) +

+E(N [m1,m1 + 1)|Ω′ \ Ω2,m1)P (Ω′ \ Ω2,m1)

= ENπ1([m1,m1 + 1)2 ∩D)) + 3P (Ω2,m1) >

> ENπ1([m1,m1 + 1)2 ∩D)),

and this inequality implies that N is not under hypothesis *A.

Theorem 4.6. A point process is under hypothesis *A if and only if it is
simple and it satisfies hypothesis *B.

Proof: If part: Corollary 4.1.

Only if part: observe that *A implies *B by definition and that *A
implies simpleness by Theorem 4.5.

Lemma 4.3. Let a be a real number and δ : [a,∞) ⊂ R → R∗+ be a
positive function. Then from the cover of [a,∞), given by {[t, t+ δ(t))|t ∈
[a,∞)} = C, we can choose for all x > a an enumerable disjoint subclass
{[ti, ti + δ(ti))|ti ∈ I} of C that covers [a, x).

Proof: Let O be a non-enumerable ordinal and form the function f :
O → R such that f(0) = a and, for all c ∈ O, f(c+) = f(c) + δ(f(c)),
where c+ is the successor of c. In case l ∈ O is a limit ordinal then f(l) =
sup{f(c)|c < l}. This is a strictly increasing function in f−1(R). Take the
interval

⋃
c∈O[f(c), f(c+)). This interval is formed by a disjoint union of

intervals and its length is given by
∑

c∈O(f(c+)− f(c)) =
∑

c∈O(δ(f(c)).
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Since card O > card N and δ(f(c)) > 0 for all c ∈ O we have∑
c∈O

(δ(f(c)) =∞

which implies that
⋃
c∈O[f(c), f(c+)) ⊃ [a,∞).

Now, let x∗ = inf{x | [a, x) can not be covered by
⋃
c∈Oo

[f(c), f(c+)),
Oo enumerable ordinal}. Clearly x∗ ≥ a+ δ(a) > a.

Suppose x∗ ∈ R. In this way, for all y < x∗ there exists an enumerable
ordinal Oo,y such that [a, y) ⊂

⋃
c∈Oo,y

[f(c), f(c+)).

Take, for all n ∈ N∗, yn = x∗ − (x∗ − a)/(n + 1). Thus, the interval
[a, x∗) is contained in the union

⋃
n∈N∗ (

⋃
c∈Oo,yn

[f(c), f(c+))) that is it-

self an enumerable union and can be written as
⋃
c∈O∗o [f(c), f(c+)), O∗o

enumerable ordinal. Now, as a direct consequence of the definition of x∗,
the interval [a, x∗ + δ(x∗)) can not be covered by any enumerable union
of the form

⋃
c∈Oo

[f(c), f(c+)), and, at the same time, [a, x∗ + δ(x∗)) =

(
⋃
c∈O∗o [f(c), f(c+))) ∪ [x∗, x∗ + δ(x∗)) =

⋃
c∈(O∗o)+ [f(c), f(c+)), that is, it

is covered by an enumerable union of that very form.

The contradiction above leads us to the conclusion that x∗ /∈ R and that
for all x there exists an enumerable disjoint subclass of C that covers [a, x).

Theorem 4.7. If N is a point process under hypothesis *B then it is simple.

Proof: Since N in under hypothesis *B we can write ∀∆ ⊂ R, ∆ interval,
∀t ∈ R EN(∆) = P{N(∆) = 1}+ ot,∆(|∆|). Thus,

∑
n≥2 P{N(∆) = n} =

P{N(∆) > 1} ≤ ot,∆(|∆|). Let Ω2 = {ω ∈ Ω|∃t ∈ R Nω({t}) > 1} and
Ω2,m = {ω ∈ Ω|∃t ∈ [m,m + 1) Nω({t}) > 1}. We have Ω2 =

⋃
m∈Z Ω2,m

and P (Ω2) ≤
∑

m∈Z P (Ω2,m).

For every {∆(m)
i }i∈Im disjoint enumerable cover of [m,m+ 1) formed by

intervals ∆
(m)
i contained in [m,m+1), if Ω2,m,i = {ω ∈ Ω|∃t ∈ ∆

(m)
i Nω({t})

> 1} then we have Ω2,m =
⋃
i∈Im Ω2,m,i and P (Ω2,m) ≤

∑
i∈Im P (Ω2,m,i).

Now ∀t ∈ R ∀ε > 0 ∃δ(t, ε) > 0 (0 < |∆| < δ(t, ε))→ ot,∆(|∆|)
|∆| < ε. This

implies that ∀t ∈ R ∀ε > 0 P{N([t, t+ δ(t, ε)/2) > 1} < εδ(t, ε)/2.

Form a cover of [m,m+ 1) of the form {[t, t+ δ(t, ε)/2)∩ [m,m+ 1) | t ∈
[m,∞)}. From this non-enumerable cover, as a consequence of Lemma

4.3, we can choose a disjoint enumerable sub-cover of [m,m + 1),{∆(m)
i =

[ti, ti + δ(ti, ε)/2) ∩ [m,m+ 1)|i ∈ Im}, for some Im enumerable set.
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Observe that Ω2,m,i ⊂ {ω ∈ Ω|N(ω)(∆
(m)
i ) > 1}. So we can write:

P (Ω2,m) ≤
∑

i∈Im P{N(∆
(m)
i ) > 1} ≤

∑
i∈Im εδ(ti, ε)/2 = ε.

Now, letting ε→ 0 we have P (Ω2,m) = 0 which implies P (Ω2) = 0. This
proves that N is simple.

Theorem 4.8. Equivalence Theorem for Point Processes on the
Real Line. A point processes N is under hypothesis *B if and only if it is
under hypothesis *A.

Proof: By Theorem 4.6 hypothesis *A is equivalent to hypothesis *B and
simpleness. By Theorem 4.7, hypothesis *B and simpleness is equivalent
to hypothesis *B.

Theorem 4.9. Chain of class inclusions Let S be the class of simple
point processes on R. Then we have the following inclusions:A  B  ∗A =
∗B  S.

Proof: By definition, A ⊂ B. Theorem 4.1 guarantees B ⊂ ∗B and
Theorem 4.8 implies ∗B = ∗A. Now, ∗A ⊂ S by Theorem 4.5. Thus
A ⊂ B ⊂ ∗B = ∗A ⊂ S.

Let N1 be the independent sum of an homogeneous Poisson process with
a deterministic point process whose only occurrence is at t = 0 with proba-
bility one. This is a simple point process with a fixed atom at 0. Thus EN1

is not absolutely continuous w.r.t the Lebesgue measure, and, consequently,
N1 /∈ ∗B.

Take N2 a non homogeneous Poisson process with intensity equals to 1
on (−∞, 0) and intensity equals to 2 on [0,∞). Clearly, N2 ∈ ∗B. Since its
intensity is not continuous, N2 does not belong to B.

Take N3 the point process defined by the following procedure: Let X :
Ω→ [0, 1) be an uniform random variable and define the trajectories of N3

by N3,ω = X(ω) + Z. Taking δ = 0.1 and Kδ = 1, for example, we have,
for all ∆ with length less than δ, that P (N3(∆) = n) = 0 ≤ Kδ|∆|n for all
n > 1. We also have

lim
|∆|→0,t∈∆

1

|∆|
P{N3(∆) = 1} = lim

|∆|→0,t∈∆

|∆|
|∆|

= 1,

uniformly in t. Thus, N3 ∈ B. Now, choosing ∆1 = [t, t + h) and ∆2 =
[t+ 1, t+ 1 + h) we have

p2(t, t+ 1) = lim
(h,h)→0

1

h2
P{N(∆1) = 1, N(∆2) = 1} = lim

(h,h)→0

h

h2
=∞,
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and N3 /∈ ∗A. This completes the proof.

5. Equivalence Under Poisson Hypothesis

We recall that one important point process is the (non-homogeneous)
Poisson process, for which we are given a non-decreasing, right-continuous
function Λ(t), such that whenever (αi, βi] ∩ (αj , βj ] = ∅, for all i 6= j,

P (N(α1, β1] = n1, ..., N(αk, βk] = nk) =

k∏
j=1

(
[Λ(βj)− Λ(αj)]

nj

nj !
e−[Λ(βj)−Λ(αj)]

)
.

(6)

As a consequence of this formula, the random variables N(αj , βj ] are
Poisson distributed with mean Λ(βj)− Λ(αj) and form a completely inde-
pendent set. Equivalently, the number of events in any collection of disjoint
intervals are independent and Poisson distributed. An important special
case is when Λ(t) = λt, λ being the mean intensity of the process.

Observe that a Poisson process under hypothesis *B has no fixed atoms
otherwise we wouldn’t have EN � `. Note also that a Poisson processes
has no fixed atoms if and only if Λ is continuous.

The following lemma generalizes Lemma 4.2

Lemma 5.1. If for a point process N there are functions K : R → R∗+,
bounded over bounded sets, and δ : R → R∗+ with the property that infx∈A
δ(x) > 0 for all bounded sets A ⊂ R, such that for all intervals ∆ of the
form [t, t+ |∆|) with length |∆| < δ(t), all integers n > 1 and all t ∈ R we
have P{N(∆) = n} ≤ K(t)|∆|n, then N is simple.

Proof: Let a, b ∈ R, a < b, ∆i = [a + i(b−a)
n , a + (i+1)(b−a)

n ), Ka,b =
sup{K(t)|t ∈ [a, b)} and δa,b = inf{δ(t)|t ∈ [a, b)}. There is an n∗ such

that b−a
n∗ < min{1, δa,b}. For all n > n∗ we have

P{ω ∈ Ω | ∃t ∈ [a, b) N({t}) > 1} ≤ P{ω ∈ Ω | ∃i, 0 ≤ i ≤ n−1, N(∆i) > 1}

≤
n∑
i=1

P{N(∆i) > 1} ≤
n∑
i=1

(
∑
j≥2

Ka,b|∆i|j) =

= Ka,b(
b− a
n

)(
1

1− (b− a)/n
)

n∑
i=1

b− a
n

=
Ka,b(b− a)2

n− (b− a)
→ 0 as n→∞.
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In this way,

0 ≤ P{ω ∈ Ω | ∃t ∈ R N({t}) > 1} ≤

≤
∑
m∈Z

P{ω ∈ Ω | ∃t ∈ [m,m+ 1) N({t}) > 1} ≤

≤
∑
m∈Z

0 = 0.

We already know that classes ∗A and ∗B are equivalent for point pro-
cesses on R. The following theorem is weaker than Theorem 4.8 since we
assume that N is a Poisson process with pN ∈ L1. As a matter of fact
it is presented here because its proof, as well as the previous lemma, are
suitable for generalizations to higher dimensions.

Theorem 5.1. If N is a Poisson process with pN ∈ L1 then N is under
hypothesis *B if and only if N is under hypothesis *A.

Proof: It suffices to prove that N is simple. Observe that ∀x ≥ 0
maxn∈N{x

n

n! } ≤ xbxc and also that K1 : R → R, K1(x) = xbxc for pos-
itive x and K1(x) = 0 otherwise, is a monotone non-decreasing function
that belong to L1. Construct the function

K(t) =



K1

(
sup

[−2,2]
pN

)
, for t ∈ [−1, 1]

K1

(
sup

[−3,3]
pN

)
, for t ∈ [−2, 2] \ [−1, 1],

...

K1

(
sup

[−(m+1),(m+1)]
pN

)
, for t ∈ [−m,m] \ [−(m− 1), (m− 1)],

...

Clearly we have K ∈ L1.

Since N satisfies hypothesis *B we have:

EN([a, b)) =

∫ b

a
pN (t)dt ≤ (b− a) sup

t∈[a,b]
pN (t)

from which (Λ(b)−Λ(a)
b−a ) ≤ sup

t∈[a,b]
pN (t).
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Now, take δ : R → R the constant function δ(t) = 1/2. For all intervals
∆ = [a, b) with length |∆| < δ(t) = 1/2 we have

P{N [a, b) = n} =
1

n!

(
Λ(b)− Λ(a)

b− a

)n
e−(Λ(b)−Λ(a))(b− a)n

≤
(

Λ(b)− Λ(a)

b− a

)bΛ(b)−Λ(a)
b−a

c
(b− a)n

≤

(
sup

[a,a+ 1
2

)

pN (t)

)b sup
[a,a+ 1

2 )

pN (t)c

(b− a)n ≤ K(a)(b− a)n,

and Lemma’s 5.1 hypothesis is fulfilled.

6. Conclusions

In this work we have defined four classes of point processes. We have
focused on point processes on the real line but the definitions of hypothesis
and classes are suitable for direct generalization to point process on Rm
and more general spaces. An important result is the equivalence of classes
*B and *A for point process on the real line. We observe that to obtain
this equality of classes we have strongly used the order of the real num-
bers, although for Poisson process such that pN ∈ L1, this equivalence was
derived in such way that generalization for higher dimensions are possible.
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