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1. Introduction

This paper aims to present a brief survey on the study of copulas and its
relationship with chaotic process and univariate time series. This work does
not intend to be complete or in-depth, but rather to reflect the preferences
and the research conducted by the authors on these subjects.

For any set of random variables X1, · · · , Xn with joint distribution func-
tion H and marginals F1, · · · , Fn, respectively, copulas are a very helpful
tool for understanding statistical properties of these family of distributions
and, consequently, of the vector (X1, · · · , Xn)′.
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The name “copula” dates back to the work of Sklar (1959), where the
celebrated Sklar’s theorem was first proven. The use of such functions,
however, predates Sklar’s work. Sklar’s theorem is considered the most
important theorem in the theory because it elucidates the role played by
copulas on “coupling”, that is, tieing together any multivariate distribu-
tion with its marginals. Sklar’s theorem is also the base of most, if not all,
applications of copulas in statistics and stochastic processes. The reader in-
terested on the history of copulas is referred to Schweizer (1991), Schweizer
and Sklar (2005), Nelsen (2006) and references therein.

The interest on copulas in late 1950’s to early 1980’s was motivated by the
development of the theory of probabilistic metric spaces. Although most of
the crucial theorems on the theory of copulas dates back to that epoch, the
theory of copulas became dormant for almost a decade when in late 1980’s
to early 1990’s, the discovery of new applications of copulas in finances and
statistics, renewed the interest on them. After late 1990’s the theory and
application of copulas and its ramifications to stochastic processes grew
enormously. For an account of these developments see Nelsen (2006) and
Cherubini et al. (2004). More details on copulas will be provided in Section
2.

Consider a smooth function T : I → I, where I := [0, 1], and assume
µT is a T -invariant probability measure. Let U0 be a random variable
distributed as µT . We can define a stochastic process by setting

Xt := ϕ
(
T t(U0)

)
, t ∈ N, (1.1)

for a given µT -integrable function ϕ : [0, 1] → R. This is often called a
(pure) chaotic process. In the literature, however, sometimes a signal plus
noise type of process where the signal is the process defined in (1.1) plus
a random noise is considered. In this work we shall call a chaotic process
such the one defined in (1.1).

From the definition of chaotic process, we observe that, for a given fixed
ω, Xt(ω) = ϕ

(
T t(U0(ω))

)
and, from setting w0 := U0(ω), we see that the

trajectory {Xt(ω)}t∈N is the avaliation of ϕ in the t-th iteration of T in the
initial point w0. This means that a realization of {Xt}t∈N can be seen as
a deterministically generated sequence. Nevertheless, a realization of such
process present a complex/chaotic dynamics, with very unstable and erratic
behavior and instability with respect to the initial point w0 = U0(ω). This
type of process has been applied on a variety of problems from rock drilling
to the study of intermittency on human cardiac rate (see Zebrowsky, 2001,
Lasota and Mackey, 1994 and references therein). As an illustration, Figure
1 shows two sample paths of the Manneville-Pomeau process for two initial
points distant 0.0001 of one another. Notice that after 10 steps or so the
two sample paths become far apart.
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Figure 1. Two realizations of the Manneville-Pomeau pro-
cess for 2 distinct initial points distant 10−3 from each other.

Although the literature on dynamical system and ergodic theory related
to these type of processes is vast (see Lasota and Mackey, 1994, Pollicott
and Yuri, 1998 and references therein), the statistics aspects related to
such processes is still in its infancy and has seen grown attention in the last
decade (see, for instance, Chazottes et al., 2005 and references therein).
Olbermann et al. (2007), Lopes and Pumi (2013) and Pumi and Lopes
(2013a) discuss parameter estimation on chaotic process while parameter
estimation on a signal plus noise setting is discussed in Lopes and Lopes
(1998).

The connection between copulas and dynamical systems/ergodic theory
is also a subject not very much explored. Some works on this direction are
Kolesárová et al. (2008), Lopes and Pumi (2013), Pumi and Lopes (2013a)
and Schmidl et al. (2013).

The interest in the connections between copulas and stochastic pro-
cess/time series has also seem a grown of attention in the last years. Most
of the literature is based on the seminal paper on copula-based Markov pro-
cesses by Darsow et al. (1992) and later development by Ibragimov (2009)
on copula-based higher order Markov processes. See also Pumi and Lopes
(2013b) and references therein.

Our paper is organized as follows: in the next section we consider some
preliminaries results necessary to the work. Section 3 presents some nomen-
clature and review some facts on chaotic process while in Section 4 we dis-
cuss the copulas related to certain chaotic processes, approximations and
applications in parameter estimation in these processes. In Section 5 we
review the literature on copula-based Markov process as well as consider
some extensions to time series with non-Markovian dependence, including
long-range dependent ones. In Section 6 we present an application and
Section 7 concludes the paper.
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2. Preliminaries

We start by recalling some facts on copulas. An n-dimensional copula is
a distribution function for which the marginals are uniformly distributed
on I and whose support is contained in the hypercube In. We recall that
the support is the whole hypercube In only when the independence copula
is considered. The usefulness of copulas in applications lies on its capability
to allow the manipulation of the joint and marginal dependence structure
separately from each other, leading to great flexibility.

Copulas have been successfully applied and widely spread in several ar-
eas. In finances, copulas have been applied, and become standard tools, in
major topics such as asset pricing, risk management and credit risk analysis
among many others (see the books by Cherubini et al., 2004 and McNeil
et al., 2005 for details). In hydrology, the modeling of rainfalls and storms
often employ copulas to describe joint features among variables in the mod-
els (see, for instance, Palynchuk and Guo, 2011 and references therein). In
econometrics, copulas have been widely employed in constructing multidi-
mensional extensions of complex models (see, for instance Lee and Long,
2009, Wang et al., 2009 and references therein). In statistics, copulas have
been applied in all sort of problems, such as development of dependence
measures, modeling, testing, just to cite a few (see Mari and Kotz, 2001,
Nelsen, 2006 and references therein). It has also been successfully applied
as a tool in simulation of time series and stochastic processes for which it
is desired to compare different marginal structure under exactly the same
joint structure and vice-versa. See, for instance, Lopes et al. (2013).

The main result in the theory of copulas is the celebrated Sklar’s theorem,
which we recall below. Sklar’s theorem unravel the role played by copulas
on coupling a multivariate distribution to its marginals and vice-versa. The
original proof is due to Sklar (1959), but see Rüschendorf (2009) for a
considerably simpler proof in the n-dimensional case and Nelsen (2006) for
a more detailed proof in the bidimensional case on the lines of Sklar (1959).

Theorem 2.1 (Sklar’s Theorem). Let X1, · · · , Xn be random variables with
joint distribution function H and marginals F1, · · · , Fn, respectively. Then,
there exists a copula C such that

H(x1, · · · , xn) = C
(
F1(x1), · · · , Fn(xn)

)
, for all (x1, · · · , xn) ∈ Rn.

If the Fi’s are continuous, then C is unique. Otherwise, C is uniquely
determined on Ran(F1)× · · · × Ran(Fn), where Ran(F ) denotes the range
of the function F . The converse also holds. Furthermore,

C(u1, · · · , un) = H
(
F

(−1)
1 (u1), · · · , F (−1)

n (un)
)
, for all (u1, · · · , un) ∈ In,

where for a function F , F (−1) denotes its pseudo-inverse given by F (−1)(x)
:= inf

{
u ∈ Ran(F ) : F (u) ≥ x

}
.
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For more details on the theory of copulas and its applications we refer
to the books by Joe (1997), Cherubini et a. (2004), McNeil et al. (2005)
and Nelsen (2006).

3. Chaotic Processes

Before proceeding further we need to establish some notation and some
nomenclature, on the lines of Pumi and Lopes (2013a). We consider piece-
wise monotone maps with finitely many branches T : I → I for which
each branch is of class C1+α, for α ∈ (0, 1) (the class of differentiable func-
tions whose derivatives are α-Hölder continuous). Each branch is defined
in Ik which is assumed to be of the form Ik := [ak−1, ak), k = 1, · · · , s
where {a0, · · · , as} are the discontinuity points of T . We assume T (Ik) =
T ([ak−1, ak)) = [0, 1) is a bijection for each k = 1, · · · , s. Also, without loss
of generality, T will be assumed to be right continuous, except at 1, where
it will be taken as left continuous. A map T satisfying these conditions
is called finitely piecewise monotone C1+α function. We shall denote the
set of finitely piecewise monotone C1+α functions for which there exists an
absolutely continuous invariant probability measure µT by T .

Examples of piecewise monotone maps of such functions T are the fol-
lowing:

(1) The Tent transformation with parameter a ∈ (0, 1) given by

Ta(x) :=


x

a
, if 0 ≤ x < a,

1− x
1− a

, if a ≤ x ≤ 1.

It can be shown that the Lebesgue measure in I is invariant. Figure
2(a) presents a typical graph of a Tent transformation. Lopes and
Lopes (1995) consider large deviation properties, the spectral anal-
ysis and parameters a and σξ estimation for the signal-plus-noise
process given by Zt = Xt + ξt = ϕ(Ta(Xt−1)) + ξt, when ϕ(x) = x
and the noise {ξt}t∈N is Gaussian, for different signal-to-noise ratio
values.

(2) The Giampieri-Isola transformation with parameter r ∈ (0, 1) given
by

Tr(x) :=


(2−r)x
1−rx , if 0 ≤ x ≤ 1

2 ,

(2−r)(1−x)
1−r(1−x) , if 1

2 < x ≤ 1.

It can be shown that fr(x) := − r
log(1−r)(1−r+rx) is the density of

the absolute continuous and Tr-invariant probability measure µT
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(cf. Giampieri and Isola, 2005). Figure 2(b) presents a typical
graph of a Giampieri-Isola transformation.

Recall that, the T -invariant probability measure considered here is ab-
solutely continuous with respect to the Lebesgue measure on I. Under
different hypothesis one can show the existence of such kind of probabil-
ity measure. The literature in the subject is vast, see for instance Réinyi
(1957), Lasota and Yorke (1973), Bowen (1979), Pianigiani (1980, 1981),
Inoue and Ishitani (1991) and references therein, just to cite a few.

We observe that if T has s ≥ 1 full branches, then T h will have sh full
branches. For T ∈ T with s > 1 full branches, we shall denote

K↑t := {k : T t|Ik is increasing} and K↓t := {k : T t|Ik is decreasing}.
(3.2)

We formally define the class of chaotic process we are interested here.

Definition 3.1. Let T ∈ T and let µT be the corresponding T -invariant
probability measure. Let U0 be a random variable distributed according to
µT and ϕ : I → R be a function in L1(µT ). The stochastic process given
by

Xt := (ϕ ◦ T t)(U0), for all t ∈ N, (3.3)

is called a Tϕ-induced process (or Tϕ process, for short).

Figures 2(d) and 2(e) present a typical realization of the Tϕ process
associated to the Tent and Giampieri-Isola transformation, respectively.
Figure 2(c) presents the graph of the transformation given by

Ta,b(x) :=

 a+ (1−a)x
b , if 0 ≤ x < b,

a(x−b)
1−b , if b ≤ x < 1,

(3.4)

where a, b ∈ (0, 1). It can be shown that there exists an absolutely contin-
uous Ta,b-invariant probability measure (cf. Coelho et al., 1995), but since
the transformation does not have full branches, it follows that Ta,b /∈ T .
Figure 2(f) presents a typical realization of the process given by (3.3) asso-
ciated to Ta,b(·), given by (3.4). Notice the contrast with the other cases.
Lopes and Lopes (1998) consider large deviation properties, the spectral
analysis and parameters α, β and σξ estimation for the signal-plus-noise
process given by Zt = Xt + ξt = ϕ(T ta,b(X0)) + ξt, when ϕ(x) = x and
the noise is Gaussian, for different signal-to-noise ratio values. The values
α and β are related to the values a and b of the Ta,b(·) transform by the

relationship α = T ′a,b(x) = 1−a
b , if 0 ≤ x < b and β = T ′a,b(x) = a

1−b , if
b ≤ x ≤ 1.
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(a) (b) (c)

(d) (e) (f)

Figure 2. Typical graph of the (a) Tent transformation;
(b) Giampieri-Isola transformation and (c) transformation
(3.4). Typical sample from (3.3) with T as (d) Tent transfor-
mation with parameter a = 0.8; (e) Giampieri-Isola trans-
formation with parameter r = 0.8; (f) transformation (3.4)
with parameters a = 0.8 and b = 0.6. In all cases ϕ(x) = x
and x0 =

√
2(mod 1).

Given T ∈ T , without further mention we shall consider that an ab-
solutely continuous T -invariant probability measure has been fixed which
shall be denoted by µT , except otherwise explicitly said. Now let ϕ ∈
L1(µT ) be an almost surely increasing function and consider {Xt}t∈N the
Tϕ process associated to T . For all t ∈ N, let Ft(·) be the distribution
function of Xt. The T -invariance of µT , implies that, for any t ∈ N, t > 0,
and x ∈ I,

Ft(x) := P
(
T t(U0) ≤ x

)
= µT

(
(T t)−1

(
[0, x]

))
= µT

(
[0, x]

)
= F0(x). (3.5)
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Hence, a Tϕ process is always strongly stationary. Also, µT � λ implies
that µT is non-atomic and therefore, Ft is continuous, increasing and its
inverse is well defined.

We need to further introduce a notation for the inverse image of a single-
ton y ∈ I by a transformation T ∈ T . For T ∈ T with s > 1 full branches,
the restriction of T h to each branch Ik defines a bijective map for which the
inverse is well-defined. This inverse, denoted by Th,k(y) := (T h)−1|Ik(y),
can be then written as a vector

(T t)−1(y) =
(
(T t)−1|I1(y), · · · , (T t)−1|Ist (y)

)
=
(
Tt,1(y), · · · , Tt,st(y)

)
.

4. Copulas Related to Chaotic Processes

In this section we shall review some of the results in the literature on
copulas and chaotic process of the form (3.3). The main idea in this case is
to study the copulas related to vectors coming from {Xt}t∈N. In Lopes and
Pumi (2013) the authors study the chaotic process induced by the so-called
Manneville-Pomeau transformation (MP transformation, for short) given
by

Ts(x) = x+ x1+s(mod 1),

for s > 0. When s ∈ (0, 1), there exists a Ts-invariant probability measure
so that Ts ∈ T when s ∈ (0, 1). The induced chaotic process is called the
Manneville-Pomeau process (MP process for short) and the copulas related
to any vector of an MP process are called Manneville-Pomeau copulas (MP
copulas for short). Figure 3 show the graph of the Manneville-Pomeau
transformation and a typical sample path of the MP process. In Lopes and
Pumi (2013) the authors derive the MP copulas in the bidimensional and
multidimensional cases, when ϕ is a monotone function. These copulas
are shown to be singular with respect to the two-dimensional Lebesgue
measure and their support, on the bidimensional case, is shown to be the
lines connecting the discontinuity points of the MP transformation. We
shall refrain from presenting the explicit formulas for the MP copulas here,
as they are a particular case of what will be presented in the subsequent.

Lopes and Pumi (2013) also consider some computational issues, ap-
proximations and random variate generation problems related to the MP
processes. In this work the authors also derive a fast procedure to estimate
the underlying parameter in Manneville-Pomeau processes. In Pumi and
Lopes (2013a), the authors derive the copulas related to any transforma-
tion T ∈ T . Let T ∈ T , µT be the T -invariant probability measure and
{Xt}t∈N be the associated Tϕ process for ϕ ∈ L1(µT ) an almost everywhere
increasing function. For simplicity, let Fh,k : I → [F0(ah,k−1), F0(ah,k)] be

São Paulo J.Math.Sci. 8, 2 (2014), 241–264
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(a) (b)

Figure 3. (a) Graph of the Manneville-Pomeau transfor-
mation for s ∈ {0.1, 0.5, 0.9}; (b) a typical sample path of
an MP process.

the functions defined by

Fh,k(x) := F0

(
Th,k

(
F−10 (x)

))
, (4.6)

for h > 0 and k ∈ {1, · · · , sh}. For a given set S, we also define δS(u)

as being 1, if u ∈ S, and 0, otherwise. If we let {ah,k}s
h

k=0 denote the

discontinuity points of T h, then the copula related to (Xt, Xt+h) is given
by

CXt,Xt+h
(u, v) =

∑
k∈n↑0

[
Fh,k(v)− F0(ah,k−1)

]
+

+
[

min
{
u,Fh,n0(v)

}
− F0(ah,n0−1)

]
δ
K
↑
h

(n0) +

+
∑
k∈n↓0

[
F0(ah,k)−Fh,k(v)

]
+ max

{
0, u−Fh,n0

(v)
}
δ
K
↓
h

(n0),

(4.7)

where n0 := n0(u;h) =
{
k : u ∈

[
F0(ah,k−1), F0(ah,k)

)}
, and, with K↑h and

K↓h as in (3.2),

n↑0 :=

{
{1, · · · , n0 − 1}⋂K↑h, if n0 > 1;

∅, if n0 = 1;

and

n↓0 :=

{
{1, · · · , n0 − 1}⋂K↓h, if n0 > 1;

∅, if n0 = 1.
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We notice that if T is taken to be the MP transformation for s ∈ (0, 1),

then n↓0 = ∅ and we obtain the MP copula of (Xt, Xt+h) upon the obvious
substitution on (4.7) (Lopes and Pumi, 2013 applies a slightly different
indexing for the sets involved). In Pumi and Lopes (2013a) it is shown
that the copulas related to any bidimensional vector (Xt, Xt+h) from a Tϕ
process is singular with respect to the Lebesgue measure and its support
comprehend the graph of the lines joining the consecutive discontinuity
points of T h. In Figure 4 we show the three dimensional plots of the lag
2 MP copula, the level plots and 500 sample points obtained with the
approximations presented.

Figure 4. From left to right, upper panel, three dimen-
sional plots of the lag 2 MP copula for s ∈ {0.1, 0.4} and
respective level sets obtained using approximations. On the
bottom panel, 500 approximated sample points from a lag
2 MP copula for s ∈ {0.1, 0.4}

The copulas related to n-dimensional vectors from a Tϕ process can also
be shown to be singular with respect to the Lebesgue measure, but its
support is much harder to describe. In the multivariate case, the formula
of the copulas related to Tϕ processes are involved and we shall refrain
from showing them here, but they are explicitly derived in Pumi and Lopes
(2013a) (and so is the multivariate MP copula in Lopes and Pumi, 2013).

4.1. The Need of Approximations. For concrete applications it is nec-
essary to have a closed form for the copula. In order to calculate copulas
of random variables coming from chaotic processes related to a T map one
needs an explicit form for the density of the T -invariant probability measure
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µT . In practice, however, finding a closed form of such probability mea-
sure is usually a non-trivial task. In most cases when such a probability
measure exists, it does not have a closed formula. But since the copulas de-
pend on µT through F0 and F−1

0 , non-explicit formula for µT translates as
non-explicit formulas for the copulas. Another potentially complex task is
determining precisely the discontinuity points of a map T , and if the exact
location of such points cannot be analytically determined, it means that the
copula cannot be explicitly determined either. So in practice there is a need
to develop approximations for these (and other) elements to implement and
analyze the studied copulas.

More explicitly, the elements to be known in other to determine the
copulas related to bidimensional vectors coming from a Tϕ process are the

distribution function F0 and its inverse F−1
0 , the inverse of T h in each

branch ({Th,k}s
h

k=1) and the discontinuity points {ah,k}s
h

k=0 associated to T h.
In the case where T ∈ T , an approximation to the T invariant measure µT
based on a sample of size n of the respective Tϕ process, say x0, · · · , xn−1,
at a µT -continuity set A is

µn(A;T, x0) :=
1

n

n−1∑
k=0

δxi(A).

An approximation F̂n to the distribution F0 is then obtained through the
obvious relationship F̂n(x) := µn

(
[0, x];T, x0

)
. Notice that in this context,

F̂n is just the empirical distribution calculated on the data, so that the
approximation F̂−1

n for F−1
0 can be taken as the empirical quantile function,

or an interpolation method can be used to improve the local estimation of
F̂−1
n based on the empirical quantile function.

In the case where T is the Manneville-Pomeau transformations, Lopes
and Pumi (2013) present some empirical results on the convergence of these
approximations, which were found to be satisfactory and well-behaved with
respect to x0 even though, as mentioned before, the process itself is not.
The authors apply a linear interpolation over the values of the empirical
quantile function as approximation to F−1

0 .

There is no general optimal way to approximate neither the inverse image
of T h nor its discontinuity points. In Lopes and Pumi (2013) a method
based on the empirical inverse of T h and a linear interpolation step is
used for the case of the Manneville-Pomeau transformation. A general

and relatively precise way to approximate {Th,k}s
h

k=1 and {ah,k}s
h

k=0 in the
case T ∈ T is devised in Pumi and Lopes (2013a). The method is based on
isolating the points on each branch. On each given branch, an interpolation
on the point nearest to the end points of the branch and the closest one on
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the adjacent branch±1, depending whether the transformation is increasing
or decreasing on the branch, is performed. However, the authors present
examples where simpler and faster ways to determine the inverse image and
discontinuity points of a transformation exist in some specific cases.

The approximations devised in both papers are shown to be uniformly
convergent to their targets. The approximation to the copula is then ob-
tained by plugging-in these intermediate approximations directly into the
formula of the copula. Lopes and Pumi (2013) show that the approximation
to the copula, in the bidimensional case, converges to the true MP copula
as the sample size increases and the result holds uniformly in I2. Pumi
and Lopes (2013a) show more: in the bidimensional case, as long as the
intermediate approximations applied converge uniformly to their targets,
the approximation to the copula will converge uniformly in I2 to the true
copula. These results are exemplified through Monte Carlo experiments in
both, Lopes and Pumi (2013) in the context of MP copulas and in Pumi
and Lopes (2013a) in the more general case of Tϕ processes.

The problem of random variate generation in the bidimensional case is
also discussed in Lopes and Pumi (2013) and Pumi and Lopes (2013a).
Given that the support of the copula of (Xt, Xt+h) is simply the line con-
necting adjacent discontinuity points of T h, the following general simple
method can be used: take u a random variate from an U(0, 1) distribution.
This point will lie on a certain branch of T h, say the k-th branch. Set v as
the image of u by the linear function connecting the endpoints in the k-th
branch. The desired point is then (u, v).

4.2. Application to the Parameter Estimation in Chaotic Pro-
cesses. Parametric estimation on a signal-plus-noise context was first con-
sidered in Lopes and Lopes (1998). Through examples that generalize the
classical harmonic model, the authors present a method for obtaining the
spectral distribution functions and large deviation properties of the esti-
mated parameters of the model. Parametric estimation on Manneville-
Pomeau processes was considered in Olbermann et al. (2007). The idea in
the paper is to apply classical spectral density based estimators from the
theory of long-range dependent time series in order to estimate the param-
eter of the Mannevile-Pomeau transformation. This idea was motivated by
the fact that, on certain regions, the MP process presents slow decay of
correlation (see, for details, Olbermann et al., 2007 and references therein).

In Lopes and Pumi (2013) a method for parameter estimation on MP
processes inspired by the theory developed is devised. The idea is to take
advantage of the simple form of the support of the MP copula to make
inference on the parameter of the transformation. More specifically, given
a sample x0, · · · , xn−1 from the MP process, the idea is to form a new
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sequence vi := (xi, xi+1), sort these vectors with respect to the branch they
belong to and them locally interpolate near the discontinuity points. This
can be achieved in several ways, see Lopes and Pumi (2013) for a least
square and a minimum-maximum type of interpolation as well as a Monte
Carlo simulation study.

In Pumi and Lopes (2013a), three methods of estimation are discussed,
but two of them (curiously, the more natural and straightforward ones) are,
as the authors argue, computationally too expensive for practical applica-
tions. The third method can be explained as follows. Let Tθ ∈ T , with
s > 1 branches and θ := (θ1, · · · , θp) ∈ S ⊆ Rp, for 1 ≤ p ≤ s − 1. Let
{ak}sk=0 denote the discontinuity points of Tθ. Suppose that θ is identifiable
through the knowledge of the {ak}sk=0 alone, that is, θ := f(a0, · · · , as),
where f : Is+1 → S is a known invertible function. Let {Xt}t∈N be the as-
sociated Tϕ process and assume that ϕ is the identity map to fix the ideas.
Let x1, · · · , xN be a sample from Xt. Since Tθ ∈ T , F0 is generally smooth
so that, near each of its discontinuity points Tθ should behave close to a
linear function. The procedure then is to identify the points that are closer
to endpoints on a given branch and perform a linear interpolation between
these points and their respective images by Tθ (only one of then suffices).

This is a refinement of the minimum-maximum method in Lopes and
Pumi (2013). The authors present a Monte Carlo simulation study on the
finite sample performance of the estimator on certain chaotic process. The
simulation results suggest that the procedure performs very well with small
bias and small variability. Also indicates that nuisance parameters do not
affect the parameter estimation.

5. Copulas and Univariate Time Series

In this section we present a brief survey about copula-based univariate
time series. This survey does not intend to be neither a thorough nor an
in-depth work, but instead, it intends to reflect the author’s preferences
and their research on the subject.

Copulas are fundamentally a multivariate tool for understanding and
modeling joint dependence structure and marginal structure separately. Let
{Xt}∞t=0 be a weakly stationary process.

From a strictly probabilistic/measure theoretical point of view, associ-
ated to any time series, there is a sequence of distributions {Fn}∞n=0, and
to every random vector (Xt1 , · · · , Xtn) from the process, there is an n di-
mensional copula Ct1,··· ,tn associated to it. Describing how these copulas
behave starting from an univariate time series and how one can construct
a time series starting from its copulas is the subject of many studies.
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5.1. Markovian Framework. The seminal work of Darsow et al. (1992)
provides a complete description of Markov processes in terms of copulas.
More specifically, they studied how to translate the Chapman-Kolmogorov
equations for transition probabilities into copulas framework. They also
study how to specify copulas for each pair (Xr, Xs) so that the resulting
process is a Markov process. This technique to construct copula-based
Markov process is quite different from the usual ones in that one specifies
copulas and then the marginal distributions can be chosen at will. Given
its importance, we outline the methodology.

Fundamentally, the idea in Darsow et al. (1992) is to determine a certain
product on the space of all bidimensional copulas and then to connect this
operation to the theory of Markov processes. For any pair of bidimensional
copulas C1 and C2, it is defined a product ∗ on the space of all copulas by
setting

(C1 ∗ C2)(u, v) :=

∫
I

∂C1(u, t)

∂t

∂C2(t, v)

∂t
dt.

In Darsow et al. (1992), several properties of the ∗ operation are dis-
cussed. For instance, for two copulas C1, C2, C1 ∗ C2 is also a copula; as
a binary operation in the space of copulas, ∗ is right and left distributive
over linear combinations, continuous in each place (but not jointly contin-
uous), associative and the copulas M and Π are the identity and null ele-
ments, respectively, with respect to ∗. All these properties together make
the set of all copulas with the operation ∗ and the transpose operation,
CT (u, v) = C(v, u), a symmetric Markov algebra1.

If {Xt}t∈T , T ⊂ R, is a continuous time process for which we denote the
copula related to (Xs, Xt) by Cs,t. A necessary and sufficient conditions
on the copulas in order to assure that {Xt}t∈T is a Markov process is
given in Darsow et al. (1992). In particular they show that the transition
probabilities of {Xt}t∈T satisfy the Chapman-Kolmogorov equations if and
only if Cs,t = Cs,u∗Cu,t for all s, t, u ∈ T , s < u < t. To specify a first order
Markov chain in the simplest case where the marginal distributions do not
vary over time (say F ), based on a single bidimensional copula C with
density c, one observe that, from Sklar’s theorem, the conditional density
of Xt given Xt−1 (say fXt|Xt−1

) can be written as

fXt|Xt−1
(xt|xt−1) = c

(
F (xt−1), F (xt)

)
f(xt−1).

1In Darsow et al. (1992), a Markov algebra is defined as a compact convex subset
of a real Banach space on which a product is defined which is continuous in each place,
associative, distributive over convex combinations and which possesses a null and unit
elements. It is said to be symmetric if it possesses a continuous operation T such that
T
(
T (A)

)
= A, T (AB) = T (B)T (A) and it is distributive under convex combinations.
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More details can be found in Darsow et al. (1992) and in Section 6.4 of
Nelsen (2006) and references therein. See also L̊ageras (2010) which reports
some non-standard behavior of copula-based Markov chains.

Joe (1997) discusses how to construct short memory time series based on
conditional copulas as well as a method of constructing short memory pro-
cesses based on the parameterization of the distributions on a convolution
closed family. Based on the well established theory of copula-based Markov
processes constructed in Darsow et al. (1992), many works studied how to
characterize short memory time series based on copulas, as well as how to
apply these techniques on parameter estimation. One of the first rigorous
approach to this type of problem is given in Chen and Fan (2006) and
later augmented in Chen et al. (2009). These works study the problem of
semiparametric estimation in a copula-based univariate strictly stationary
Markov processes context.

The main idea is to notice that if one apply the integral probability
transform to a Markov process, the resulting process will still be a Markov
process and the joint distributions are copulas. After that one can rewrite
the original Markov process into a semiparametric generalized linear model
depending on the copula and its parameter alone. Let {Xt}nt=1 be a sample
from a stationary first order Markov process and let F be the true invariant
distribution. Suppose that F is absolutely continuous with respect to the
Lebesgue measure in R. Let Cθ be the true parametric copula associated
to the pair (Xt−1, Xt) up to an unknown parameter θ and suppose that
it is absolutely continuous with respect to the Lebesgue measure in I2.
Also suppose that Cθ is neither of Fréchet-Hoeffding’s bounds. In this
setting, if one considers a new time series by setting Ut = F (Xt), t =
1, · · · , n, the transformed process is still a stationary Markov process, the
joint distribution of (Ut−1, Ut) will be Cθ(u, v) and the conditional density
of Ut|Ut−1 = u0 will be fUt|Ut−1

(u|u0) := cθ(u0, u). This implies that this
setting is consistent with the following semiparametric generalized linear
model

ϕ(Ut) = ψ(Ut−1) + εt, E(εt|Yt−1) = 0,

where ϕ is an increasing parametric function, ψ(·) is given by

ψ(u) = E
(
ϕ(Ut)

∣∣Ut−1 = u
)

=

∫ 1

0
ϕ(v)cθ(u, v)du

and the conditional density of εt given Ut−1 = u0 is given by

fεt|Ut−1
(x|u0) =

cθ
(
u0, ϕ

−1
(
x+ ψ(u0)

))
d
dx

(
ϕ
(
x+ ψ(u0)

)) .
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To estimate the copula parameter, Chen and Fan (2006) apply a MLE
method based on the rescaled empirical distribution while Chen et al.
(2009) apply a sieve MLE methodology. The authors argue that the method-
ology is useful in certain financial and economic applications. A method
for simulating such time series can be found in Pumi and Lopes (2010).

The study on copula-based Markov processes also includes some ergodic
theoretical properties. Chen and Fan (2006) find sufficient conditions for
their copula-based Markov process to be β-mixing at (least) a polynomial
rate. Beare (2010) derive a condition under which a copula-based Markov
process presents geometric β-mixing. This condition translates into the
copula being absolutely continuous with square integrable density, a rather
strong requirement that rules out, for instance, any copula presenting tail
dependence or asymmetry. Beare (2012) derive sufficient conditions on the
generator of an Archimedean copula so that the related Markov processes
present geometric ergodicity. Chen et al. (2009) show the geometric ergod-
icity of copula-based Markov processes obtained from some popular copula
families presenting tail dependence. Beare and Seo (2012) discuss in de-
tail the property of time reversibility in copula-based Markov processes (in
this case the copula family must be exchangeable) and introduce a test for
time reversibility similar to the test of exchangeability for copulas in Nelsen
(2007).

Recently the literature turned its focus to the study of higher order types
of dependence. Ibragimov (2009) extends the work of Darsow et al. (1992)
to higher order Markov process. In particular, as intuitively expected,
it is shown that a Markov process of order n is fully determined by its
n + 1-dimensional copula and its marginal distributions. Ibragimov and
Lentzas (2009) discuss the slow decay of some copula-based dependence
measure which motivated the authors to define a non-standard definition
of “long-range dependence”. They present empirical evidences that, for
the Markov process based on the Clayton copula, the non-standard copula-
based long-range dependence concept introduced points to the existence
of “long memory” on the simulated time series. However, the theoretical
results in Chen et al. (2009) show that the Markov process based on the
Clayton copula actually presents short memory in the classical sense. This
implies that the copula-based long-memory concepts introduced in Ibragi-
mov and Lentzas (2009) are not compatible with the classical definition of
long-range dependence.

5.2. Non-Markovian Framework. So far the works mentioned here only
consider Markovian processes. The main reason for that is that outside the
well-structured and well-developed theory of copula-based Markov process,
it is hard to overcome the difficulties imposed by the so-called compatibility
problem. In few words, the compatibility problem is an statement of the
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fact that given an arbitrary collection of
(
n
2

)
2-dimensional copulas, there

may not exist an n-dimensional copula whose bidimensional marginals are
the given copulas. This is probably the most important open problem in
the theory of copula to date.

Pumi and Lopes (2013b) present an alternative approach to deal with
the covariance decay based in copulas without relying on Markovian as-
sumptions. For a process {Xt}∞t=0 with absolutely continuous marginal
distributions {Ft}∞t=0 and for a given parametric family of copulas {Cθ}θ∈Θ
satisfying some minor regularity conditions, the authors investigate how
to translate the covariance decay in the process into a parameterization
{θn}∞n=1 for the respective copula family. The only joint assumption is
that the copulas related to a pair (Xr, Xs) belong to a predefined paramet-
ric family, allowing the theory to cover (weakly and strongly) stationary
processes as well as non-stationary ones. This condition can be actually
relaxed to require that the pair (Xr, Xs) has a copula Cθr,s belonging to a
predefined family for values of r and s such that |r − s| is large.

The main focus of Pumi and Lopes (2013b) is classical long-range de-
pendent process, but the theory is developed in order to accommodate any
type of covariance decay, including convergence to a constant, which covers
the case when the variables Xt and Xt+h are asymptotically correlated.

The main advantage of the approach developed in Pumi and Lopes
(2013b) is to be free from the compatibility problem. This is attained
by focusing on pairs (Xr, Xs) associating a copula Cθr,s and then studying
the behavior of the covariance of the pair (Xr, Xs) as |r− s| increases. The
non-standard results of Tiit (2002) on the compatibility problem provides
the necessary theoretical result to show the compatibility-free nature of
this approach. The copula version of Hoeffding’s lemma, which connects
the covariance between two random variables to its bidimensional copula
and marginal distribution, is also an important ingredient on the theory.

The conditions imposed on the particular chosen parametric family of
copulas, say {Cθ}θ∈Θ, are the existence of a point {a ∈ Θ} such that
limθ→aCθ(u, v) = Π(u, v) = uv, the independence copula, and, as a func-
tion of its parameter, the copulas are twice differentiable in a neighborhood
of a. As shown in Pumi and Lopes (2013b), many widely applied families
of copulas satisfy such requirements. Under these assumptions the authors
show that, asymptotically, the covariance decay of (Xt, Xt+n) with copula
Cθn behaves like the product of a certain function K(n) (depending on
the marginal distributions alone) and the behavior of the difference θn− a,
as n increases. When the marginals of the process do not vary, K(n) is
a constant and, hence, the behavior of θn − a dictates the long run co-
variance behavior of the process. In the case where the copula family is
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multiparametric, a similar result holds, with the decay being dominated by
the slowest decay among the parameter coordinates.

In Pumi and Lopes (2013b) a method for parameter estimation based on
the studied theory is proposed. The method is a multi-stage procedure. Let
{Xt}t∈N be a process for which Xt is identically distributed with common
absolutely continuous distribution F , for all t ∈ N and let {xt}nt=1 be a
sample from it. Assume that the bidimensional copulas related to the
process belong to a predetermined parametric family {Cθ}θ∈Θ satisfying the
assumptions of the previous paragraph. We also assume that the covariance
of {Xt}t∈N at lag h is a known function R(h, γ) where γ is a parameter of
interest identifiable from R(·). The first step in the procedure is to estimate

the marginal distribution based on the given sample, say F̂ , and then form
a new time series yi := F̂ (xi), i = 1, · · · , n. From this new time series

we construct a bidimensional process {u(s)
k }

n−s
k=1 by u

(s)
i := (yi, yi+s), i =

1, · · · , n−s, where s ∈ N is a user-defined number called the starting lag of

estimation. Next an estimate of the copula parameter related to {u(s)
k }

n−s
k=1

is obtained, say θ̂s. In view of the developed theory, the quantity θ̂s − a is
regarded as an estimate of the covariance decay at lag s. The procedure is
repeated until a sequence of estimates θ̂s, · · · θ̂s+m is obtained, where m > s
is the maximum desired lag of estimation. Finally the estimated value of
γ is set to be the value that minimizes the distance between the observed
decay and the expected R(h, γ) one through some predetermined metric.

The authors discuss large sample properties of the proposed estimator
and prove its consistency under mild conditions. The authors also present a
Monte Carlo study to determine the small sample properties of the proposed
estimator. Simulation of stationary and non-stationary time series in this
framework is also discussed and an application to real data is presented. In
the next section we show an application of the method to the S&P500.

6. Application

To exemplify the ideas presented on Section 5.2, we reproduce here the
example given in Pumi and Lopes (2013b). The methodology is applied
to the daily returns of the S&P500 US stock market index in the period
from January 01, 2000 to November 03, 2011 yielding a total sample size
of n = 2, 980. Figure 5(a) to Figure 5(c) present the S&P500 time se-
ries, the correspondent returns {rt}2979

t=1 and the absolute returns {|rt|}2979
t=1 ,

respectively.

It is commonly found that in financial time series related to stock market
indexes, the daily returns are uncorrelated while the absolute and squared
returns present slow decay of covariance, usually proportional to n−β for
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(a) (b) (c)

Figure 5. S&P500 (a) original time series; (b) return time
series; (c) absolute return time series.

β ∈ [0.2, 0.4] (see Cont, 2001 and references therein and also Lopes and
Prass, 2013 for the intradaily case). Our goal is to apply the methodology
in Pumi and Lopes (2013b) to estimate β. The study of the absolute and
squared returns in financial time series are of great importance since they
contain information about the (unobservable) volatility.

In order to do that we shall assume that the underlying process is strongly
stationary and ergodic and that all underlying bivariate copulas belong to
the same one parameter copula family. The autocorrelation and the peri-
odogram functions of the absolute return time series of the S&P500 index
is presented in Figure 6(a). The slow decay of the sample autocorrelation
function and the pronounced peak at the zero frequency in the periodogram
function are commonly found in this type of data and both suggest long-
range dependence on the absolute return time series. Given the behavior
of the sample autocovariance function, it is often assumed that {|rt|}∞t=0
follows an ARFIMA(p, d, q) model, so that estimation of d is of interest.

The first step on the methodology is to estimate the underlying marginal
distribution of the data. As argue in Pumi and Lopes (2013b), an exponen-
tial distribution seems to be a good fit for the data and, by using a MLE
method, an Exp(10.688) distribution was found to be a good fit for the

data. Hence, we take F̂ ∼ Exp(10.688) as the estimator for the underlying

marginals and set yi = F̂ (|rt|), t = 1, · · · , 2979.

Next step is to identify the underlying family of bidimensional copulas
related to the process. Even though in the literature, the use of the Gauss-
ian copula on financial data sets is often contested, the authors argue that
in this case it is perfectly reasonable to assume the bidimensional copulas
to be Gaussian ones.

For the Gaussian copula with Exp(10.688) marginals, it can be show
that K1

∼= 260.47 and K2
∼= 40.53. The next step is to estimate the copula
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(a) (b) (c)

Figure 6. (a) Autocorrelation function; (b) periodogram
function; (c) histogram of the S&P500 absolute return time
series and the fitted exponential density.

parameter ρ from the pseudo samples {(yi, yi+s)}2979−s
i=1 . Figure 7 presents

the estimated copula parameter obtained via maximum likelihood method
up to lag 400. Chosen a particular lag `, let ρ̂1, · · · , ρ̂` denote the estimates
obtained in the previous step. In Lopes and Pumi (2013b), three possible
estimators, based on different functions R(·, ·) are compared. For simplicity
we shall present one of the estimators. In this case we are assuming that the
underlying process is an ARFIMA(0, d, 0) process with exponentially dis-
tributed marginals. In the literature, the correlation decay on the squared
returns is observed to be proportional to n−β for β ∈ [0.2, 0.4] (see Cont,
2001) and the relationship to the parameter d of an ARFIMA(0, d, 0) model
is β = 1− 2d. The estimator is defined through the following optimization
procedure:

d̂ := argmin
d∈(−0.5,0.5)

{
1

m+ 1

s+m∑
h=s

∣∣ρ̂h − Γ(d)−1h2d−1
∣∣}, β̂ := 1− 2d̂.

For the data, d̂ = 0.3370 with 95% confidence interval (0.3320, 0.3432)

which gives β̂ = 0.3260 with 95% confidence interval (0.3136, 0.3360), all
coherent with the findings reported on literature (see Cont, 2001 and refer-
ences therein). These findings are also consistent with non-linear modeling
of the S&P500 data as reported, for instance, in Prass and Lopes (2013)
(see also references therein).

7. Conclusions

In this work we present a brief summary on the modern and classical
results on the role played by copulas in the theory of chaotic processes and
univariate time series.
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Figure 7. Copula parameter estimated values.

In Section 1 and 2 the problem is introduced and some results on copulas
are briefly reviewed. In Section 3 we briefly review some facts on the the-
ory of chaotic processes necessary to the work. We formally define chaotic
processes, discuss some of its properties and introduce the class of trans-
formations considered in the reviewed literature. We proceed in Section 4
to review the connection between copulas and chaotic process and some of
its properties.

The copulas related to the class of chaotic processes considered here
usually do not present closed formulas so that the study and application
of such copulas rely on approximations. Some ideas on the approximations
presented in the literature as well as applications to parameter estimation
in chaotic process and random variate generation are also discussed.

In Section 5 we briefly review the connections between copulas and uni-
variate time series through the copula lens. The section is divided in Mar-
kovian and non-Markovian theory. In the Markovian case, we review some
of the ideas in the seminal paper by Darsow et al. (1992) on the theory of
copula-based Markov processes as well as some applications to the parame-
ter estimation in copula-based (short memory) time series. We also briefly
review some results on the ergodic properties of copula-based Markov pro-
cesses. Some extensions are also discussed.

In the non-Markovian case we shortly discuss the compatibility-free ap-
proach to general dependence in Pumi and Lopes (2013b), focusing on the
ideas behind the theory developed there and its applications. We also pro-
vide an application of the methodology to real time series.
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