Nanostructured lipid carriers as a novel tool to deliver sclareol

physicochemical characterisation and evaluation in human cancer cell lines

Authors

  • Gabriel Silva Marques Borges Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil https://orcid.org/0000-0002-7360-8231
  • Pedro Henrique Dias Moura Prazeres Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil https://orcid.org/0000-0002-1933-3230
  • Ângelo Malachias de Souza Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
  • Maria Irene Yoshida 4 Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil,
  • José Mario Carneiro Vilela Technology and Innovation Center, Industrial Learning National Service, Belo Horizonte, Brazil
  • Aline Teixeira Maciel e Silva Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazi
  • Mariana Silva Oliveira Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
  • Dawidson Assis Gomes Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
  • Margareth Spangler Andrade Technology and Innovation Center, Industrial Learning National Service, Belo Horizonte, Brazil
  • Elaine Maria de Souza-Fagundes Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil,
  • Lucas Antônio Miranda Ferreira https://orcid.org/0000-0003-2474-5536

DOI:

https://doi.org/10.1590/s2175-97902020000418497

Keywords:

Cancer. Sclareol. Solid lipid nanoparticles. Nanostructured lipid carriers. Small-angle X-ray scattering.

Abstract

Sclareol (SC) is arousing great interest due to its cytostatic and cytotoxic activities in several cancer cell lines. However, its hydrophobicity is a limiting factor for its in vivo administration. One way to solve this problem is through nanoencapsulation. Therefore, solid lipid nanoparticles (SLN-SC) and nanostructured lipid carriers (NLC-SC) loaded with SC were produced and compared regarding their physicochemical properties. NLC-SC showed better SC encapsulation than SLN-SC and was chosen to be compared with free SC in human cancer cell lines (MDA-MB-231 and HCT-116). Free SC had slightly higher cytotoxicity than NLC-SC and produced subdiploid DNA content in both cell lines. On the other hand, NLC-SC led to subdiploid content in MDA-MB-231 cells and G2/M checkpoint arrest in HCT-116 cells. These findings suggest that SC encapsulation in NLC is a way to allow the in vivo administration of SC and might alter its biological properties.

Downloads

Download data is not yet available.

References

Akanda MH, Rai R, Slipper IJ, Chowdhry BZ, Lamprou D, Getti G et al. Delivery of retinoic acid to LNCap human prostate cancer cells using solid lipid nanoparticles. Int J Pharm. 2015;493(1-2):161-171.

Atasanov AG, Waltenberger B, Pferschy-Wenzig, Linder T, Wawrosch C, Uhrin P et al. Discovery and ressuply of pharmacologically active plant derived natural Products: a review. Biotechnol Adv. 2015;33(8):1582-1614.

Bayón-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials. 2019;9(3):E474.

Beloqui A, Solinís MA, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomedicine. 2016;12:143-161.

Benita S, Levy MY. Submicron emulsions as colloidal drug carriers for intravenous administration: comprehensive physicochemical characterization. J Pharm Sci. 1993;82(11):1069-1079.

Carbone C, Campisi A, Musumeci T, Raciti G, Bonfanti R, Puglisi G. FA-loaded lipid drug delivery systems: Preparation, characterization and biological studies. Eur J Pharm Sci. 2014;52:12-20.

Carneiro G, Silva EL, Pacheco LA, Souza-Fagundes EM, Corrêa NCR, GOES AM et al. Formation of ion pairing as an alternative to improve encapsulation and anticancer activity of all-trans retinoic acid loaded in solid lipid nanoparticles. Int J Nanomedicine. 2012;7:6011-6020.

Castro GA, Coelho ALLR, Oliveira CA, Mahecha GA, Oréfice RL, Ferreira LA. Formation of ion pairing as an alternative to improve encapsulation and stability and to reduce skin irritation of retinoic acid loaded in solid lipid nanoparticles. Int J Pharm. 2009;381:77-83.

Darzynkiewicz Z, Halicka HD, Zhao H. Analysis of cellular DNA content by flow and laser scanning cytometry. Adv Exp Med Biol. 2010;676:137-147.

Dimas K, Kokkinopoulos, Demetzos C, Vaos B, Marselos M, Malamas M et al. The Effect of sclareol on growth and cell cycle progression of human leukemic cell lines. Leuk Res. 1999;23(3):217-234.

Dimas K, Demetzos C, Vaos V, Ioannidis P, Trangas T. Labdene type diterpenes down-regulate the expression of c-myc protein, but not of bcl-2 in human leukemia T-cells undergoing apoptosis. Leuk Res. 2001;25(6):449-454.

Dimas K, Papadaki M, Tsimplouli C, Hatziantoniou S, Alevizopoulos K, Pantazis P et al. Labd-14-ene-8,13-diol (sclareol) induces cell cycle arrest and apoptosis in human breast cancer and enhances the activity of anticancer drugs. Biomed Pharmacother. 2006;60(3):127-133.

Dimas K, Hatziantoniou S, Tseleni S, Khan H, Georgopoulos A, Alevizopoulos K et al. Sclareol induces apoptosis in human HCT116 colon cancer cells in vitro and suppression of HCT116 tumor growth in immunodeficient mice. Apoptosis. 2007;12(4):685-694.

Doktorovova S, Souto EB, Silva AM. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers- a systematic review of in vitro data. Eur J Pharm Biopharm. 2014;87:1-18.

Ebenstein Y, Nahum E, Banin, U. Tapping Mode Atomic Force Microscopy for Nanoparticle Sizing: Tip-Sample Interaction Effects. Nano Lett. 2002;2(9):945-950.

Fang C, Al-Suwayehb SA, Fang JY. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recents Pat Nanotechnol. 2013;7(1):41-55.

Filippi-Chiela EC, Villodre ES, Zamin LL, Lenz G. Autophagy interplay with apoptosis and cell cycle regulation in the growth inhibiting effect of resveratrol in glioma cells. PLoS One. 2011;6(6):1-23.

Golunski G, Borowik A, Derewonko N, Kawiak A, Rychlowski M, Woziwodzka A, et al. Pentoxifylline as a modulator of anticancer drug doxorubicin. Part II: reduction of doxorubicin DNA binding and alleviation of its biological effects. Biochimie. 2016;123:95-102.

Han B, Le M. Paclitaxel-induced G2/M arrest via different mechanism of actions in glioma cell Lines with differing p53 mutational status. Inter J Pharmacol. 2016;12(1):19-27.

Hatziantoniou S, Dimas K, Georgopoulos A, Sotiriadou N, Demezos C. Cytotoxic and antitumor activity of liposome-incorporated sclareol against cancer cell lines and human colon cancer xenografts. Pharmacol Res. 2006;53(1):80-87.

Hsieh YH, Deng JS, Pan HP, Liao JC, Huang SS, Huang GJ. Sclareol ameliorate lipopolysaccharide-induced acute lung injury through inhibition of MAPK and induction of HO-1 signaling. Int Immunopharmacol. 2017;44:16-25.

Jenning V, Thünemann AF, Gohla SH. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm. 2000a;199:167-177.

Jenning V, Mäder K, Gohla SH. Solid lipid nanoparticles (SLN(tm)) based on binary mixtures of liquid and solid lipids: a 1H-NMR study. Int J Pharm. 2000b;205:15-21.

Kalam MA, Sultana Y, Ali A, Aqil M, Mishra AK, Chuttani K. Preparation, characterization, and evaluation of gatifloxacin loaded solid lipid nanoparticles as colloidal ocular drug delivery system. J Drug Target. 2010;18(3):191-204.

Kalam MA, Sultana Y, Ali A, Aqil M, Mishra AK, Aljuffali IA et al. Part I: Development and optimization of solid-lipid nanoparticles using Box-Behnken statistical design for ocular delivery of gatifloxacin. J Biomed Mater Res A. 2013;101(6):1813-1827.

Kuzma L, Skrzypek Z, Wysokinska H. Diterpenoids and triterpenoids in hairy roots of Salvia sclarea. Plant Cell Tissue Organ Cult. 2006;84:171-179.

Lambert LA, Qiao N, Hunt KK, Lambert DH, Mills GB, Meijer L et al. Autophagy: a novel mechanism of synergistic cytotoxicity between doxorubicin and roscovitine in sarcoma model. Cancer Res. 2008;68(19):7966-7974.

Li F, Wang Y, Liu Z, Lin X, He H, Tang X. Formulation and characterization of bufadienolides-loaded nanostructured lipid carriers. Drug Dev Ind Pharm. 2010;36(5):508-517.

Liu K, Sun J, Wang Y, He Y, Gao K, He Z. Preparation and characterization of 10-hydroxycamptothecin loaded nanostructured lipid carriers. Drug Dev Ind Pharm. 2008;34(5):465-471.

Lukowski G, Kasbohm J, Pflegel P, Iling A, Wulff, H. Crystallographic investigation of cetylpalmitate solid lipid nanoparticles. Int. J. Pharm. 2000; 196, 201-205.

Mahaira LG, Tsimplouli C, Sakellaridis N, Alevizopoulos K, Demetzos C, Han Z et al. The labdane diterpene sclareol (labd-14-ene-8, 13-diol) induces apoptosis in human tumor cell lines and suppression of tumor growth in vivo via a p53-independent mechanism of action. Eur J Pharmacol. 2011;666:173-182.Marquele-Oliveira F, Santana DCA, Taveira SF, Vermeulen DM, Oliveira ARM, Silva RS et al. Development of nitrosyl ruthenium complex-loaded lipid carriers for topical administration: improvement in skin stability and in nitric oxide release by visible light irradiation. J Pharm Biomed Anal. 2010;53(4):843-851.

Mazzaferro S, Bouchemal K, Ponchel G. Oral delivery of anticancer drugs I: general considerations. Drug Discov Today. 2013;18(1-2):25-34.

Nahak P, Karmakar G, Chettri P, Roy B, Guha P, Besra SE et al. Influence of Lipid Core Material on Physicochemical Characteristics of Ursolic Acid Loaded Nanostructured Lipid Carrier: An Attempt to Enhance Anticancer Activity. Langmuir. 2016;32(38):9816-9825.

Nam C, Doi K, Nakayama H. Etoposide induces G2/M arrest and apoptosis in neural progenitor cells via DNA damage and an ATM/p53-related pathway. Histol Histopathol. 2010;25:485-493.

Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991;139(2):271-279.

Noori D, Hassan ZM, Mohammadi M, Habibi Z, Sohrabi N, Bayanolhagh S. Sclareol modulates the Treg intra-tumoral infiltrated cell and inhibits tumor growth in vivo. Cell Immunol. 2010;263:148-153.

Pan Y, Tikekar RV, Nitin N. Distribution of a model bioactive within solid lipid nanoparticles and nanostructured lipid carriers influences its loading efficiency and oxidative stability. Int J Pharm. 2016;511(1):322-330.

Panzarini E, Inguscio V, Tenuzzo BA, Carata E, Dini L. Nanomaterials and autophagy: new insights in cancer treatment. Cancers. 2013;5:296-319.

Paradissis A, Hatziantoniou S, Georgopoulos A, Psarra AM, Dimas K, Demetzos C. Liposomes modify the subcellular distribution of sclareol uptake by HCT-116 cancer cell lines. Biomed Pharmacother. 2007a;61:120-124.

Paradissis A, Hatziantoniou S, Georgopoulos A, Dimas K, Demetzos C. Uptake studies of free and liposomal sclareol by MCF-7 and H-460 human cancer cell lines. In: Mozafari MR, editor. Nanomaterials and Nanosystems for Biomedical Applications. 1st ed. Dordrecht: Springer; 2007b. p. 125-133.

Patel N.R, Hatziantoniou S, Georgopoulos A, Demetzos C, Torchilin VP, Weissig V et al. Mitochondria-targeted liposomes improve the apoptotic and cytotoxic action of sclareol. J Liposome Res. 2010;20(3):244-249.

Patil-Gadhe A, Kyadarkunte A, Patole M, Pokharkar V. Montelukast-loaded nanostructured lipid carrier: Part II pulmonary drug delivery and in vitro-in vivo aerosol performance. Eur J Pharm Biopharm. 2014;88(1):169-177.

Shakeel-u-Rehman, Rah B, Lone SH, Rasool RU, Farooq S, Nayak D et al. Design and synthesis of antitumor heck-coupled sclareol analogues: modulation of BH3 family members by SS-12 in autophagy and apoptotic cell death. J Med Chem. 2015;58(8):3432-3444.

Seo S, Gomi K, Kaku, H, Abe H, Seto H, Nakatsu S et al. Identification of natural diterpenes that inhibit bacterial wilt disease in tobacco, tomato and arabidopsis. Plant Cell Physiol. 2012;53(8):1432-1444.

Silva EL, Carneiro G, Caetano PA, Goulart G, Costa DF, Souza-Fagundes EM et al. Nanostructured lipid carriers loaded with tributyrin as an alternative to improve anticancer activity of all-trans retinoic acid. Expert Rev Anticancer Ther. 2015;15(2):247-256.

Silva EL, Lima FA, Carneiro G, Ramos JP, Gomes DA, Souza-Fagundes EM et al. Improved in vitro antileukemic activity of all-trans retinoic acid loaded in cholesteryl butyrate solid lipid nanoparticles. J Nanosci Nanotechnol. 2016;16:1291-1300.Taurin S, Nehoff H, Greish K. Anticancer nanomedicine and tumor vascular permeability: where is the missing link? J Control Release. 2012;164:265-275.

USP. 729 Globule size distribution in lipid injectable emulsions. The United States Pharmacopeia 33. 2009. pp. 314-316.

Voland C, Bord A, Péleraux A, Pénarier G, Carrière D, Galiègue S et al. Repression of cell cycle-related proteins by oxaliplatin but not cisplatin in human colon cancer cells. Mol Cancer Ther. 2006;5(9):2149-2157.

Wang J, Wang H, Zhou X, Tang Z, Liu G, Liu G et al. Physicochemical characterization, photo-stability and cytotoxicity of coenzyme Q10-loading nanostructured lipid carrier. J Nanosci Nanotechnol. 2012;12:2136-2148.

Wong HL, Benadayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007;59:491-504.

Downloads

Published

2022-11-09

Issue

Section

Original Article

How to Cite

Nanostructured lipid carriers as a novel tool to deliver sclareol: physicochemical characterisation and evaluation in human cancer cell lines. (2022). Brazilian Journal of Pharmaceutical Sciences, 57. https://doi.org/10.1590/s2175-97902020000418497