Chemical composition, larvicidal and cytotoxic activity of Annona salzmannii (Annonaceae) seed oil

Authors

  • Jane Cristina Lara Ribeiro Department of Pharmacy, Federal University of Paraná, Curitiba, Paraná, Brazil
  • Estevan Bruginski Department of Pharmacy, Federal University of Paraná, Curitiba, Paraná, Brazil
  • Tatiana Zuccolotto Department of Pharmacy, Federal University of Paraná, Curitiba, Paraná, Brazil
  • Alan Diego da Conceição Santos NMR Center, Federal University of Paraná, Curitiba, Paraná, Brazil;Department of Chemistry, Federal University of Amazonas, Manaus, Amazonas, Brazil
  • Larissa Mendes Bomfim Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
  • Suellen Laila Andrade Rocha Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
  • Andersson Barison NMR Center, Federal University of Paraná, Curitiba, Paraná, Brazil
  • Guilherme Sassaki NMR Center, Federal University of Paraná, Curitiba, Paraná, Brazil
  • Sócrates Cabral de Holanda Cavalcanti Department of Pharmacy, Federal University of Sergipe, Brazil
  • Emmanoel Vilaça Costa Department of Chemistry, Federal University of Amazonas, Manaus, Amazonas, Brazil
  • Milena Botelho Pereira Soares Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
  • Daniel Pereira Bezerra Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil https://orcid.org/0000-0002-6774-2063
  • Francinete Ramos Campos Department of Pharmacy, Federal University of Paraná, Curitiba, Paraná, Brazil https://orcid.org/0000-0002-9688-2030

DOI:

https://doi.org/10.1590/s2175-97902020000418479

Keywords:

Annona salzmannii. Annonaceae. Larvicidal activity. Cytotoxic activity. Seed oil

Abstract

The seed oil of Annona salzmannii A. DC. was analyzed by GC-MS and 1 H qNMR, revealing a mixture of unsaturated (80.5%) and saturated (18.7%) fatty acids. Linoleic (45.3%) and oleic (33.5%) acid were the major unsaturated fatty acids identified, while palmitic acid (14.3%) was the major saturated fatty acid. The larvicidal effects of A. salzmannii seed oil were evaluated against third-instar larvae of Aedes aegypti (Linn.). The oil exhibited moderate larvicidal activity, with a
LC50 of 569.77 ppm (95% CI = 408.11 to 825.88 ppm). However, when the cytotoxic effects of the oil were evaluated, no expressive antiproliferative effects were observed in tumor cell lines B16-F10 (mouse melanoma), HepG2 (human hepatocellular carcinoma), K562 (human chronic myelocytic leukemia), HL-60 (human promyelocytic leukemia), and non-tumor cell line PBMC (peripheral blood mononuclear cells), with IC50 values > 50 μg·mL-1. This is the first study to evaluate the chemical composition, larvicidal and cytotoxic activity of A. salzmannii seed oil.

Downloads

Download data is not yet available.

References

Ahmed SA, Gogal RM, Walsh JE. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to 3H thymidine incorporation assay. J Immunol Methods. 1994;170(2):211-24.

Ansari MH, Afaque S, Ahmad M. Isoricinoleic acid in Annona squamosa seed oil. J Am Oil Chem Soc. 1985;62(10):1514-1514.

Barison A, Silva CWP, Campos FR, Simonelli F, Lenz CA, Ferreira AG. A simple methodology for the determination of fatty acid composition in edible oils through 1H NMR spectroscopy. Magn Reson Chem. 2010;48(8):642-650.

Bobadilla M, Sisniegas M, Zavaleta G. Evaluacíon larvicida de suspensiones acuosas de Annona muricata Linnaeus " guanábana " sobre Aedes aegypti Linnaeus (Diptera, Culicidae). Rev Peru Biol. 2005;12(1):145-152.

Castro FA de, Maia GA, Flavio L, Holanda F, Guedes ZB, Moura DEA. Características Físicas e Químicas da Graviola. Pesq Agropec Bras. 1984;19(3):361-365.

Chatrou LW, Rainer H, Maas PJM. Annonaceae. In: Smith N, Mori SA, Henderson, A, Stevenson DW, Heald SV. (eds.) Flowering plants of the Neotropics. Princeton University Press and The New York Botanical Garden, Princeton; 2004. p. 18-20.

Chen Y, Chen Y, Shi Y, Ma C, Wang X, Li Y, et al. Antitumor activity of Annona squamosa seed oil. J Ethnopharmacol. 2016;193:362-367.

Comba A, Maestri DM, Berra MA, Garcia C, Das UN, Eynard AR, et al. Effect of ?-3 and ?-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model. Lipids Health Dis. 2010;9(1):1-11.

Corrêa MP. Dicionário de plantas úteis do Brasil e de plantas exóticas cultivadas. Rio de Janeiro: Ministe´rio da Agricultura, Instituto Brasileiro de Desenvolvimento Florestal; 1984. p. 151-162.

Costa EV, Dutra LM, Jesus HCR, Nogueira PCL, Moraes VRS, Salvador MJ, Cavalcanti SCH, Santos RC, Prata APN. Chemical Composition and Antioxidant, Antimicrobial, and Larvicidal Activities of the essential Oils of Annona salzmannii and A. pickelii (Annonaceae). Nat Prod Comm. 2011;6(6):907-912.

Costa EV, Dutra LM, Salvador MJ, Ribeiro LH, Gadelha FR, Carvalho JE. Chemical composition of the essential oils of Annona pickelii and Annona salzmannii (Annonaceae), and their antitumour and trypanocidal activities. Nat Prod Res. 2013a;27(11):997-1001.

Costa EV, Cruz PEO da, Lourenço CC, Moraes VRS, Nogueira PCL, Salvador MJ. Antioxidant and antimicrobial activities of aporphinoids and other alkaloids from the bark of Annona salzmannii A. DC. (Annonaceae). Nat Prod Res. 2013b;27(11):1002-1006.

Costa MS, Pereira MJB, Oliveira SS, Souza PT, Dall'oglio EL, Alves TC. Anonaceas provocam mortalidade em larvas de Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). Rev Bras de Bioci. 2013c;11(2):184-190.

Dill EM, Pereira MJB, Costa MS. Efeito residual do extrato de Annona coriacea sobre Aedes aegypti. Arq Inst Biol. 2012;79(4):595-601.

Du Toit PJ, Van Aswegen CH, Du Plessis DJ. The effect of essential fatty acids on growth and urokinase-type plasminogen activator production in human prostate DU-145 cells, Prostaglandins Leukot. Essent Fat. Acids. 1996;55(3):173-177.

Fauser JK, Prisciandaro LD, Cummins AG, Howarth GS. Fatty acids as potential adjunctive colorectal chemotherapeutic agents. Cancer Biol Ther. 2011;11(8):724-731.

Ferreira FR, Vieira RF, Costa TSA, Silva DB, Sano SM. Frutas nativas da região Centro-Oeste do Brasil. 1a ed. Brasília: Embrapa Recursos Genéticos e Biotecnologia; 2006. 320 p.

Finney DJ, Stevens WL. A Table for the Calculation of Working Probits and Weights in Probit Analysis. Biometrika. 1948;35(1/2):191-201.

Grzybowski A, Tiboni M, Silva MAN, Chitolina RF, Passos M, Fontana JD. Pest Manag Sci. 2013;69:589-601.

Issaoui M, Delgado AM. Grading, Labeling and Standardization of Edible Oils. In: Ramadan MF. (eds.) Fruit Oils: Chemistry and Functionality. Springer Nature Switzerland AG; 2019. p. 9-52.

Jiang WG, Bryce RP, Horrobin DF. Essential fatty acids: molecular and cellular basis of their anti-cancer action and clinical implications. Crit Rev Oncol Hematol. 1998;27(3):179-209.

Lima LARS, Johann S, Cisalpino PS, Pimenta LPS, Boaventura MAD. In vitro antifungal activity of fatty acid methyl esters of the seeds of Annona cornifolia A. St.-Hil. (Annonaceae) against pathogenic fungus Paracoccidioides brasiliensis. J Braz Trop Med. 2011;44:777-780.

Lima LARS, Alves TMA, Zani CL, Pimenta LPS, Boaventura MA. Antioxidant and citotoxic potential of fatty acid methil esters from the seeds of Annona cornifolia A. ST.-Hil. (Annonaceae). Food Research International. 2012;48:873-875.

Luzia DMM, Jorge N. Soursop (Annona muricata L.) and sugar apple (Annona squamosa L.). Nutr Food Sci. 2012;42(6):434-441.

Luzia DMM, Jorge N. Bioactive substance contents and antioxidant capacity of the lipid fraction of Annona crassiflora Mart. seeds. Ind Crops Prod. 2013;42(1):231-235.

Meterissian SH, Forse RA, Steele GD, Thomas P. Effect of membrane free fatty acid alterations on the adhesion of human colorectal carcinoma cells to liver macrophages and extracellular matrix proteins. Cancer Lett. 1995;89(2):145-52.

Moon H-S, Batirel S, Mantzoros CS. Alpha linolenic acid and oleic acid additively down-regulate malignant potential and positively cross-regulate AMPK/S6 axis in OE19 and OE33 esophageal cancer cells. Metabolism. 2014;63(11):1447-1454.

Morales CA, Gonzales RO, Aragon R. Evaluacion de la actividad larvicida de extractos polares y no polares de acetogeninas de Annona muricata sobre larvas de Aedes aegypti y Anopheles albimanus (Diptera: Culicidae). Rev Colomb Entomol. 2004;30(2):187-192.

National Institute of Standard and Technology, NIST/EPA/NIH Mass Spectral Database, Standard Reference Database 1, National Institute of Standard and Technology, Gaithersburg, MD; 1992.

National Institute of Standard and Technology, NIST 98, Standard Reference Database 1, Standard Reference Data Program, National Institute od Standards and Technology, Gaithersburg, MD; 1998.

Paulo MQ, Barbosa-Filho JM, Lima EO, Maia RF, Barbosa RC, Kaplan MA. Antimicrobial activity of benzylisoquinoline alkaloids from Annona salzmanii A. DC. J. Ethnopharmacol. 1992; 36:39-41.

Pereira MCT, Nietsche S, Costa MR, Crane JH, Corsato CDA, Mizobutsi EH. Anonáceas: pinha, atemoia e graviola. Inf Agropecuário. 2011;32(264):1-9.

Ramadan MF. Chemistry and Functionality of Fruit Oils: An Introduction. In: Ramadan MF. (eds.) Fruit Oils: Chemistry and Functionality. Springer Nature Switzerland AG; 2019. p. 3-8.

Rasmussen, S.A.; Jamieson, D.J.; Honein, M.A.; Petersen, L.R., Zika Virus and Birth Defects--Reviewing the Evidence for Causality. New Engl J Med. 2016;374(20): 1981-1987.

Reyes-Trejo B, Guerra-Ramírez D, Zuleta-Prada H, Cuevas-Sánchez JA, Reyes L, Reyes-Chumacero A, et al. Annona diversifolia seed oil as a promising non-edible feedstock for biodiesel production. Ind Crops Prod. 2014;52:400-404.

Ribeiro SS, De Jesus AM, Dos Anjos CS, Da Silva TB, Santos ADC, De Jesus JR, et al. Evaluation of the cytotoxic activity of some Brazilian medicinal plants. Planta Med. 2012;78(14):160-606.

São José AR, Pires MDM, Freitas ALGE de, Ribeiro DP, Perez LAA. Atualidades e perspectivas das Anonáceas no mundo. Rev Bras Frutic. 2014;36(spe1):86-93.

Santos SRL, Silva VB, Melo MA, Barbosa JDF, Santos RLC, Sousa DP, Cavalcanti SCH. Toxic effects on and structure-toxicity relationships of phenylpropanoids, terpenes, and related compounds in Aedes aegypti larvae. Vector Borne Zoonotic Dis. 2010;10:1049-1054.

Sassaki GL, Souza LM, Serrato RV, Cipriani TR, Gorin PAJ, Iacomini M. Application of acetate derivatives for gas chromatography-mass spectrometry: Novel approaches on carbohydrates, lipids and amino acids analysis. J Chromatogr A. 2008;1208(1-2):215-222.

Senthil R, Silambarasan R. Annona: A new biodiesel for diesel engine: A comparative experimental investigation. J Energy Inst. 2015;88(4):459-469.

Silva LE, Reis RA, Moura EA, Amaral W, Sousa Jr PT. Plantas do Gênero Xylopia: Composição Química e Potencial Farmacológico. Rev Bras Pl Med. 2015;17(4):814-826.

Sobrinho RB. Potencial de Exploração de Anonaceaes no Nordeste do Brasil. Fortaleza: Embrapa Agroindústria Tropical. 2010. 27 p.

Songa, EA, Okonkwo JO. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: A review. Talanta. 2016;155:289-304.

Soto-Guzman A, Villegas-Comonfort S, Cortes-Reynosa P, Perez Salazar E. Role of arachidonic acid metabolism in Stat5 activation induced by oleic acid in MDA-MB-231 breast cancer cells. Prostaglandins. Leukot Essent Fat Acids. 2013;88(3):243-249.

Suffness M, Pezzuto JM. Assays related to cancer drug discovery. In: Hostettmann K, editor. Methods in plant biochemistry: assays for bioactivity. Academic Press: London; 1990. p. 71-133.

Wang Z, Liu D, Zhang Q, Wang J, Zhan J, Xian X, et al. Palmitic acid affects proliferation and differentiation of neural stem cells in vitro. J Neurosci Res. 2014;92(5):574-586.

WHO. Pesticides and their Application for the Control of Vectors and Pests of Public Health Importance. World Health Organization, Geneva. 2006.

WHO/CDS/NTD/WHOPES/GCDPP/2006.1, Geneva. WHO (2015) Dengue and Severe Dengue. Fact sheet 117, Geneva.

Zajdel A, Wilczok A, Tarkowski M. Toxic effects of n-3 polyunsaturated fatty acids in human lung A549 cells. Toxicol Vitr. 2015;30(1):486-491.

ACKNOWLEDGEMENTS:

The authors are grateful to the Brazilian agencies CAPES, CNPq, FINEP, FAPITEC/SE, FAPESB, Fundação Araucária for their financial support and fellowships. The authors also thank Prof. Dr. Ana Paula Nascimento Prata, a taxonomist in the Department of Biology at the Federal University of Sergipe, for identification of the botanical material. Additional thanks to Dr. Vinci Hung for critical reading and revision of this manuscript.

Downloads

Published

2022-11-09

Issue

Section

Original Article

How to Cite

Chemical composition, larvicidal and cytotoxic activity of Annona salzmannii (Annonaceae) seed oil. (2022). Brazilian Journal of Pharmaceutical Sciences, 57. https://doi.org/10.1590/s2175-97902020000418479