Quinolinotriazole antiplasmodials via click chemistry

synthesis and in vitro studies of 7-Chloroquinoline-based compounds

Authors

  • Guilherme Rocha Pereira a Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Departamento de Física e Química Instituto de Ciências Exatas e Informática ICEI, Belo Horizonte, MG, Brazil, b Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, UFMG, Campus Pampulha, Belo Horizonte, MG, Brazil, https://orcid.org/0000-0002-0665-7738
  • Andreza Cristina Gomes Ferreira Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Departamento de Física e Química Instituto de Ciências Exatas e Informática ICEI, Belo Horizonte, MG, Brazil
  • Pedro Henrique de Almeida Simões Neves Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Departamento de Física e Química Instituto de Ciências Exatas e Informática ICEI, Belo Horizonte, MG, Brazil
  • Erick Bruman Souza Gomes a Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Departamento de Física e Química Instituto de Ciências Exatas e Informática ICEI, Belo Horizonte, MG, Brazil
  • Maria Fernanda Alves do Nascimento Departamento de Farmácia, Escola de Farmácia, UFOP, Campus Morro do Cruzeiro, Ouro Preto, MG, Brazil
  • Juliana de Oliveira Santos Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, UFMG, Campus Pampulha, Belo Horizonte, MG, Brazil,
  • Geraldo Célio Brandão Departamento de Farmácia, Escola de Farmácia, UFOP, Campus Morro do Cruzeiro, Ouro Preto, MG, Brazil
  • Alaíde Braga de Oliveira Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, UFMG, Campus Pampulha, Belo Horizonte, MG, Brazil

DOI:

https://doi.org/10.1590/s2175-979020200004181086

Keywords:

7-Chloroquinolinotriazoles. Quinolines. Click reaction. Plasmodium falciparum. Antimalarial activity.

Abstract

Malaria is nowadays one of the most serious health concerns in a global scale and, although there is an evident increase in research studies in this area, pointed by the vast number of hits and leads, it still appears as a recurrent topic every year due to the drug resistance shown by the parasite exposing the urgent need to develop new antimalarial medications. In this work, 38 molecules were synthesized via copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) or “click” chemistry, following different routes to produce 2 different organic azides, obtained from a 4,7 dicholoquinoline, reacted with 19 different commercially available terminal alkynes. All those new compounds were evaluated for their in vitro activity against the chloroquine resistant malaria parasite Plasmodium falciparum (W2). The cytotoxicity evaluation was accomplished using Hep G2 cells and SI index was calculated for every molecule. Some of the quinoline derivatives have shown high antimalarial activity, with IC50 values in the range of 1.72–8.66 µM, low cytotoxicity, with CC50>1000 µM and selectivity index (SI) in the range of 20-100, with some compounds showing SI>800. Therefore, the quinolinotriazole hybrids could be considered a very important step on the development of new antimalarial drugs.

Downloads

Download data is not yet available.

References

Andrade-Neto VF, Goulart MOF, Da Silva Filho JF, Da Silva MJ, Pinto MDCFR, Pinto AV, et al. Antimalarial activity of phenazines from lapachol, β-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorganic Med Chem Lett. 2004;14(5):11459.

Bakka TA, Strøm MB, Andersen JH, Gautun OR. Synthesis and antimicrobial evaluation of cationic low molecular weight amphipathic 1,2,3-triazoles. Bioorg Med Chem Lett. 2017;27(5):1119-23.

Barreiro EJ. Estratégia de simplificação molecular no planejamento racional de fármacos: a descoberta de novo agente cardioativo. Quim Nova. 2002;25(6b):1172-80.

Brown WH. Malarial Pigment (so-called Melanin): Its Nature and Mode of Production. J Exp Med. 1911;13(2):290-9.

Calvocalle JM, Moreno A, Eling WMC, Nardin EH. In Vitro Development of Infectious Liver Stages of P. yoelii and P. berghei Malaria in Human Cell Lines. Exp Parasitol. 1994;79(3):362-73.

Chopra R, Chibale K, Singh K. Pyrimidine-chloroquinoline hybrids: Synthesis and antiplasmodial activity. Eur J Med Chem. 2018;148:39-53.

Coronado LM, Nadovich CT, Spadafora C. Malarial hemozoin: From target to tool. Biochim Biophys Acta. 2014;1840(6):2032-41.

Guantai EM, Ncokazi K, Egan TJ, Gut J, Rosenthal PJ, Smith PJ, et al. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorg Med Chem. 2010,18(23):8243-56.

Guillon J, Mouray E, Moreau S, Mullié C, Forfar I, Desplat V, et al. New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: Synthesis, and in vitro antimalarial activity e Part II. Eur J Med Chem. 2011;46(6):2310-26.

Harvard Medical School. Malaria [Internet]. Boston. 2013.

Hou W, Luo Z, Zhang G, Cao D, Li D, Ruan H, et al. Click chemistry-based synthesis and anticancer activity evaluation of novel C-14 1,2,3-triazole dehydroabietic acid hybrids. Eur J Med Chem. 2017;138:1042-52.

Joshi MC, Wicht KJ, Taylor D, Hunter R, Smith PJ, Egan TJ. In vitro antimalarial activity, β-haematin inhibition and structure-activity relationships in a series of quinoline triazoles. Eur J Med Chem. 2013;69:338-47.

Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001;40(11):2004-21.

Kouznetsov V V, Gó Mez-Barrio A. Recent developments in the design and synthesis of hybrid molecules based on aminoquinoline ring and their antiplasmodial evaluation. Eur J Med Chem. 2009;44:3091-113.

Kumar A, Srivastava K, Raja Kumar S, Puri SK, Chauhan PMS. Synthesis and bioevaluation of hybrid 4-aminoquinoline triazines as a new class of antimalarial agents. Bioorg Med Chem Lett. 2008;18(24):6530-3.

Kumar S, Saini A, Gut J, Rosenthal PJ, Raj R, Kumar V. 4-Aminoquinoline-chalcone/-N-acetylpyrazoline conjugates: Synthesis and antiplasmodial evaluation. Eur J Med Chem. 2017;138:993-1001.

Ladan H, Nitzan Y, Malik Z. The antibacterial activity of haemin compared with cobalt, zinc and magnesium protoporphyrin and its effect on potassium loss and ultrastructure of Staphylococcus aureus. FEMS Microbiol Lett. 1993;112(2):173-7.

Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979;65(3):418-20.

Madureira M, Paula Martins A, Gomes M, Paiva J, Proença Da Cunha A, Do Rosário V. Antimalarial activity of medicinal plants used in traditional medicine in S. Tomé and Príncipe islands. J Ethnopharmacol. 2002;81(1):23-9.

Manohar S, Khan SI, Rawat DS. Synthesis of 4-aminoquinoline-1,2,3-triazole and 4-aminoquinoline1,2,3-triazole-1,3,5-triazine hybrids as potential antimalarial agents. Chem Biol Drug Des. 2011;78(1):124-36.

Melato S, Prosperi D, Coghi P, Basilico N, Monti D. A Combinatorial Approach to 2,4,6-Trisubstituted Triazines with Potent Antimalarial Activity: Combining conventional synthesis and microwave-assistance. Chem Med Chem. 2008,3(6):873-6.

Mishra M, Mishra VK, Kashaw V, Iyer AK, Kashaw SK. Comprehensive review on various strategies for antimalarial drug discovery. Eur J Med Chem. 2016.

Mistry B, Patel R V., Keum Y-S. Access to the substituted benzyl-1,2,3-triazolyl hesperetin derivatives expressing antioxidant and anticancer effects. Arab J Chem. 2017;10(2):157-66.

Noedl H, Bronnert J, Yingyuen K, Attlmayr B, Kollaritsch H, Fukuda M. Simple histidine-rich protein 2 double-site sandwich enzyme-linked immunosorbent assay for use in malaria drug sensitivity testing. Antimicrob Agents Chemother. 2005;49(8):3575-7.

O’Neill PM, Bray PG, Hawley SR, Ward SA, Park BK. 4-Aminoquinolines-past, present, and future: a chemical perspective. Phmmmol Ther. 1998;77(1):29-58.

Okombo J, Chibale K. Insights into Integrated Lead Generation and Target Identification in Malaria and Tuberculosis Drug Discovery. Acc Chem Res. 2017;50(7):1606-16.

Pagola S, Stephens PW, Bohle DS, Kosar AD, Madsen SK. The structure of malaria pigment β-haematin. Nature. 2000;404(6775):307-10.

Pereira GR, Brandão GC, Arantes LM, De Oliveira HA, De Paula RC, Do Nascimento MFA, et al. 7-Chloroquinolinotriazoles: Synthesis by the azide-alkyne cycloaddition click chemistry, antimalarial activity, cytotoxicity and SAR studies. Eur J Med Chem. 2014;73:295-309.

Pérez BC, Teixeira C, Figueiras M, Gut J, Rosenthal PJ, Gomes JRB, et al. Novel cinnamic acid/4-aminoquinoline conjugates bearing non-proteinogenic amino acids: Towards the development of potential dual action antimalarials. Eur J Med Chem. 2012;54:887-99.

de Pilla Varotti F, Botelho ACC, Andrade AA, de Paula RC, Fagundes EMS, Valverde A, et al. Synthesis, Antimalarial Activity, and Intracellular Targets of MEFAS, a new hybrid compound derived from mefloquine and artesunate. Antimicrob Agents Chemother. 2008;52(11):3868-74.

Piper RC, Williams JA, Makler MT, Gibbins BL, Hinrichs DJ, Ries JM, et al. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am J Trop Med Hyg. 1993;48(6):739-41.

Raj R, Singh P, Singh P, Gut J, Rosenthal PJ, Kumar V. Azide-alkyne cycloaddition en route to 1H-1,2,3-triazoletethered 7-chloroquinoline-isatin chimeras: Synthesis and antimalarial evaluation. Eur J Med Chem. 2013;62:590-6.

Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chemie Int Ed Engl. 2002;41(14):2596-9.

De Sá MS, Costa JFO, Krettli AU, Zalis MG, De Azevedo Maia GL, Sette IMF, et al. Antimalarial activity of betulinic acid and derivatives in vitro against Plasmodium falciparum and in vivo in P. berghei-infected mice. Parasitol Res. 2009;105(1):275-9.

Sherman IW, Tanigoshi L. Incorporation of 14C-amino-acids by malaria (Plasmodium lophurae) IV. In vivo utilization of host cell haemoglobin. Int J Biochem. 1970,1(5):635-7.

da Silva EN, de Melo IMM, Diogo EBT, Costa VA, de Souza Filho JD, Valença WO, et al. On the search for potential anti-Trypanosoma cruzi drugs: Synthesis and biological evaluation of 2-hydroxy-3-methylamino and 1,2,3-triazolic naphthoquinoidal compounds obtained by click chemistry reactions. Eur J Med Chem. 2012;52:304-12.

Sullivan DJ, Gluzman IY, Russell DG, Goldberg DE. On the molecular mechanism of chloroquine’s antimalarial action. Proc Natl Acad Sci USA. 1996;93(21):11865-70.

Sunduru N, Sharma M, Srivastava K, Rajakumar S, Puri SK, Saxena JK, et al. Synthesis of oxalamide and triazine derivatives as a novel class of hybrid 4-aminoquinoline with potent antiplasmodial activity. Bioorg Med Chem. 2009;17(17):6451-62.

Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193(4254):673-5.

Twentyman P, Luscombe M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer. 1987;56(3):279-85.

WHO. World Malaria Report 2018 [Internet]. WHO. Geneva: World Health Organization. 2018.

Yamada R, Hiraizumi M, Narita S, Sakurai K. Two-step synthesis of a clickable photoaffinity probe from an anticancer saponin OSW-1 and its photochemical reactivity. Asian J Org Chem. 2016;5(3):330-4.

Ziegler J, Linck R, Wright D. Heme Aggregation Inhibitors: Antimalarial Drugs Targeting an Essential Biomineralization Process. Curr Med Chem. 2001;8(2):171-89.

Downloads

Published

2022-11-09

Issue

Section

Original Article

How to Cite

Quinolinotriazole antiplasmodials via click chemistry: synthesis and in vitro studies of 7-Chloroquinoline-based compounds. (2022). Brazilian Journal of Pharmaceutical Sciences, 57. https://doi.org/10.1590/s2175-979020200004181086