Chemical evaluation and anticholinesterase activity of Hippeastrum puniceum (Lam.) Kuntz bulbs (Amaryllidaceae)

Authors

  • Letícia Carlesso Soprani Department of Pharmaceutical Science, Universidade Federal do Espírito Santo, VitóriaES, Brazil
  • Jean P. de Andrade Department of Pharmaceutical Science, Universidade Federal do Espírito Santo, VitóriaES, Brazil.
  • Vanessa Dias dos Santos Department of Chemistry, Universidade Federal do Espírito Santo, VitóriaES, Brazil.
  • Anderson Alves-Araújo Department of Botany, Universidade Federal do Espírito Santo, São Mateus, Brazil.
  • Jaume Bastida Department of Biology, Healthcare and Environment, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
  • Cristian A. Gasca Silva Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Campus Darcy Ribeiro, Brasília, Brazil
  • Damaris Silveira Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Campus Darcy Ribeiro, Brasília, Brazil https://orcid.org/0000-0003-1851-5224
  • Warley de Souza Borges Department of Chemistry, Universidade Federal do Espírito Santo, VitóriaES, Brazil.
  • Claudia Masrouah Jamal Department of Pharmaceutical Science, Universidade Federal do Espírito Santo, VitóriaES, Brazil https://orcid.org/0000-0002-7453-2726

DOI:

https://doi.org/10.1590/s2175-97902020000419154

Keywords:

Hippeastrum puniceum. Amaryllidaceae. GC-MS. Acetylcholinesterase inhibitory activity

Abstract

Hippeastrum puniceum is a species that belongs to the Amaryllidaceae family. A particular characteristic of this family is the consistent and very specific presence of isoquinoline alkaloids, which have demonstrated a wide range of biological activities such as antioxidant, antiviral, antifungal, antiparasitic, and acetylcholinesterase inhibitory activity, among others. In the present work, fifteen alkaloids were identified from the bulbs of Hippeastrum puniceum (Lam.) Kuntz using a GC-MS approach. The alkaloids 9-O-demethyllycoramine, 9-demethyl-2α-hydroxyhomolycorine, lycorine and tazettine were isolated through chromatographic techniques. The typical Amaryllidaceae alkaloids lycorine and tazettine, along with the crude and ethyl acetate extract from bulbs of the species were evaluated for their inhibitory potential on α-amylase, α-glucosidase, tyrosinase and acetylcholinesterase activity. Although no significant inhibition activity was observed against α-amylase, α-glucosidase and tyrosinase from the tested samples, the crude and ethyl acetate extracts showed remarkable acetylcholinesterase inhibitory activity. The biological activity results that correlated to the alkaloid chemical profile by GC-MS are discussed herein. Therefore, this study contributed to the knowledge of the chemical and biological properties of Hippeastrum puniceum (Lam.) and can subsidize future studies of this species.

Downloads

Download data is not yet available.

References

Andrade JP, Pigni NB, Torras-Claveria L, Berkov S, Codina C, Viladomat F, et al. Bioactive alkaloid extract from Narcissus broussonetii: mass spectral studies. J Pharm Biomed Anal. 2012;70:13-25.

Andrade JP, Guo Y, Font-Bardia M, Calvet T, Dutilh J, Viladomat, F, et al. Crinine-type alkaloids from Hippeastrum aulicum and H. calyptratum Phytochemistry. 2014;103:188195.

Andrade JP, Giordani RB, Torras-Claveria L, Pigni NB, Berkov S, Font-Bardia M, et al. The Brazilian Amarylldaceae as a source of acetylcholinesterase inhibitory alkaloids. Phytochem Rev. 2016;15:147-160.

Bartolucci C, Perola E, Pilger C, Fels G, Lamba D. Threedimensional structure of a complex of Galanthamine (Nivalin®) with acetylcholinesterase from Torpedo californica: implications for the design of new anti-alzheimer drugs. Proteins: Struct Funct Genet. 2001;42(2):182-191.

Bastida J, Codina C, Viladomat F, Rubiralta M, Quirion JC, Husson HP. 9-O-Demethyl-2α-hydroxyhomolycorine, an alkaloid from Narcissus tortifolius Phytochemistry. 1990;29(8):2683-2684.

Bastida J, Lavilla R, Viladomat F. Chemical and biological aspects of Narcissus alkaloids, in: Cordell GA, editor. The Alkaloids, Vol. 63. Amsterdam: Elsevier Inc, 2006. p.87-179.

Berkov S, Bastida J, Nikolova M, Viladomat F, Codina C. Rapid TLC/GC-MS identification of acetylcholinesterase inhibitors in alkaloid extracts. Phytochem Anal. 2008;19(4):411-419.

Boskurt B, Coban G., Kaya GI, Onur MA, Unver-Somer N. Alkaloids profiling anticholinesterase activity and molecular modeling study of Galanthus elwesii South Afr J Bot. 2017;113:119-127.

Boskurt B, Ehmir A, Kaya GI, Onur MA, Berkov S, Bastida J, et al. Alkaloids profiling of Galanthus woronowii Losinsk. by GC-MS and evaluation of its biological activity. Marmara Pharm J. 2017;21(4):915-920.

Burlando B, Clericuzio M, Cornara L. Moraceae plants with tyrosinase inhibitory activity: a review. Mini Rev Med Chem. 2017;17(2):108-121.

Evidente A. Identification of 11-Hydroxyvittatine in Sternbergia lutea J Nat Prod. 1986;49(1):168-169.

Freitas MM, Fontes PR, Souza PM, Fagg CW, Guerra ENS, Nóbrega YKM, et al. Extracts of Morus nigra L. Leaves standarized in chlorogenic acid, rutin and isoquercitrin: tyrosinase inhibition and citotoxicity. PLOS One. 2016;11(9):e0163130. DOI:10.1371/journal.pone.0163130.

» https://doi.org/10.1371/journal.pone.0163130

Giordani RB, Brum PV, Weizenmann M, Rosember DB, Souza AP, Bonorino C, et al. Candimine-induced cell death of the amitochondriate parasite Trichomonas vaginalis J Nat Prod. 2010;73(12):2019-2023.

Heirich M, Teoh HL. Galanthamine from snowdrop - the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J Ethnopharmacol. 2004;92(2-1):147-162.

Jin Z. Amaryllidaceae and Sceletium alkaloids. Nat Prod Rep. 2013;30(6):849-868.

Kornienko A, Evidente A. Chemistry, biology and medicinal potential of narciclasine and its congeners. Chem Rev. 2008;108(6):1982-2014.

Kihara, M.; Konishi, K.; Xu, l.; Kobayashi, S. Alkaloidal constituents of the flowers of Lycoris radiata herb. amaryllidaceae. Chem Pharm Bull. 1991;39(7):1849-1853.

López S, Bastida J, Viladomat F, Codina C. Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts. Life Sci. 2002;71(21):2521-2529.

McNulty J, Nair JJ, Singh M, Crankshaw DJ, Holloway AC, Bastida J. Selective cytochrome P450 3A4 inhibitory activity of Amaryllidaceae alkaloids. Bioorg Med Chem Lett. 2009;19(12):3233-3237.

Nair JJ, Bastida J, Codina C, Viladomat F, van Staden J. Alkaloids of the South African Amaryllidaceae: a review. Nat Prod Commun. 2013;8(9):1335-1350.

Ortiz JE, Garro A, Pigni NB, Agüero MB, Roitman G, Slanis A, et al. Cholinesterase-inhibitory effect and in silico analysis of alkaloids from bulbs of Hieronymiella species. Phytomedicine. 2018;39:66-74.

Rodrigues PM, Gomes JVD, Jamal CM, Neto AC, Santos ML, Fagg CW, et al. Triterpenes from Pouteria ramiflora (Mart.) Radlk. leaves (Sapotaceae). Food Chem Toxicol. 2017;109(Pt 2):1063-1068.

Shinde J, Taldone T, Barletta M, Kunaparaju N, Hu B, Kumar S, et al. α-Glucosidase inhibitory activity of Syzygium cumini (Linn.) skeels seed kernel in vitro and Goto-Kakizaki (GK) rats. Carbohydr Res. 2008;343(7):1278-1281.

Torras-Claveria L, Berkov S, Codina C, Viladomat F, Bastida J. Metabolomic analysis of bioactive Amaryllidaceae alkaloids of ornamental varieties of Narcissus by CG-MS combined with k-means cluster analysis. Ind Crops Prod. 2014;56:211-222.

Wang L, Yin ZQ, Cai Y, Zhang XQ, Yao XS, Ye WC. Amaryllidaceae alkaloids from the bulbs of Lycoris radiata Biochem Syst Ecol. 2010;38(3):444-446.

Downloads

Published

2022-11-09

Issue

Section

Original Article

How to Cite

Chemical evaluation and anticholinesterase activity of Hippeastrum puniceum (Lam.) Kuntz bulbs (Amaryllidaceae). (2022). Brazilian Journal of Pharmaceutical Sciences, 57. https://doi.org/10.1590/s2175-97902020000419154