Seasonal and pluviometric effects on the phenolic compound composition and antioxidant potential of Licania macrophylla Benth (Chrysobalanaceae), a medicinal plant from the Amazon rainforest

Authors

  • Ramon Diego Cunha Araujo Postgraduate Program in Pharmaceutical Sciences, Federal University of Amapá (UNIFAP), Macapa, Brazil https://orcid.org/0000-0001-8540-9021
  • Anderson Pena Costa Postgraduate Program in Pharmaceutical Sciences, Federal University of Amapá (UNIFAP), Macapa, Brazil https://orcid.org/0000-0002-7876-0187
  • Luis Maurício Abdon da Silva Institute of Scientific and Technological Research of Amapá (IEPA), Brazil
  • Jardel Pinto Barbosa Collegiate of Chemistry, Amapá State University (UEAP), Macapa, Amapá, Brasil
  • Gabriel Araujo da Silva Postgraduate Program in Pharmaceutical Sciences, Federal University of Amapá (UNIFAP), Macapa, Brazil; Collegiate of Chemistry, Amapá State University (UEAP), Macapa, Amapá, Brasil https://orcid.org/0000-0002-9073-1995

DOI:

https://doi.org/10.1590/s2175-97902022e19558%20

Keywords:

Anauera, Antioxidant activity, Extracts, Rain, Seasonality

Abstract

Licania macrophylla is a medicinal plant from the Amazon. It is mainly used in the form of a decoction and has been reported to contain several phenolic compounds. However, the effect of seasonality on the phenolic composition and antioxidant potential of this plant has not been well studied, especially in the Amazon region, an area affected by the rainy and less-rainy seasons. Therefore, we evaluated the seasonality of these aromatic compounds and the antioxidant potential of the extracts from L. macrophylla stem bark. We also determined the correlation between the extraction methods used and precipitation levels during each period for 1 year. The total flavonoid and phenolic content, DPPH-scavenging potential, percentage of phosphomolybdenum complex reduction, and iron-reducing power were quantified. The levels of phenolic compounds were the highest in June, whereas those of flavonoids were the highest in September and October; however, these differences were not significant. The extracts from April, November, and June showed the best results for DPPH scavenging, phosphomolybdenum reduction, and iron reduction power, respectively. Significant differences in the phenolic content and DPPH-scavenging activity were observed between the more- and less-rainy seasons. The total phenolic content was positively correlated with FRAP and DPPH, whereas flavonoid levels were negatively correlated.

Downloads

Download data is not yet available.

References

Araujo TAS, Almeida e Castro VTN, Solon LGS, Silva GA, Almeida MG, Costa JGM, et al. Does rainfall affect the antioxidant capacity and production of phenolic compounds of an important medicinal species? Ind Crops Prod. 2015;76:550-556.

Amanajas JC, Braga CC. Padrões espaço-temporal pluviométricos na Amazônia Oriental utilizando análise multivariada. Rev Bras Meteorol. 2012;27(4):423-434.

Botha LE, Prinsloo G, Deutschlander MS. Variations in the accumulation of three secondary metabolites in Euclea undulata Thunb. var. myrtina as a function of seasonal changes. S Afr J Bot. 2018;117:34-40.

Brazilian Pharmacopoeia. 5° ed. Brasília: Anvisa. 2010; 1-2.

Bujor OC, Ginies C, Popa VI, Dufour C. Phenolic compounds and antioxidant activity of lingonberry (Vaccinium vitis-idaea L.) leaf, stem and fruit at different harvest periods. Food Chem. 2018;252:356-365.

Bulbovas P, Rinaldi MCS, Delitti WBC, Domingos M. Variacão sazonal em antioxidantes em folhas de plantas jovens de Caesalpinia echinata Lam.(pau-brasil). Rev Bras Botân. 2005;28(4):687-696.

Correa AF, Segovia JFO, Gonçalves MCA, De Oliveira VL, Silveira D, Carvalho JCT, et al. Amazonian plant crude extract screening for activity against multidrug-resistant bacteria. Eur Rev Medic Pharm Sci. 2008;12(6):369-380.

Dalmagro AP, Camargo A, Filho HHS, Valcanaia MM, Jesus PC, Zeni ALB. Seasonal variation in the antioxidant phytocompounds production from the Morus nigra leaves. Ind Crops Prod. 2018;123:323-330.

de Freitas MA, Alves AIS, Andrade JC, Leite-Andrade MC, Dos Santos ATL, de Oliveira TF, et al. Evaluation of the antifungal activity of the Licania rigida leaf ethanolic extract against biofilms formed by Candida Sp. isolates in acrylic resin discs. Antibiotics. 2019;8(250):1-11.

Dorman HJD, Kosar M, Kahlos K, Holm Y, Hiltunen R. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J Agric Food Chem. 2003;51(16):4563-4569.

Esteban JIA, Pinela J, Barros L, Ciric A, Sokovic M, Calhelha RC, et al. Phenolic composition and antioxidant, antimicrobial and cytotoxic properties of hop (Humuluslupulus L.) Seeds. Ind Crops Prod. 2019;134:154-159.

Farias DF, Souza TM, Viana MP, Soares BM, Cunha AP, Vasconcelos IM, et al. Antibacterial, antioxidant, and anticholinesterase activities of plant seed extracts from brazilian semiarid region. Biomed Res Int. 2013;2013:1-9.

Falcão DQ, Costa ER, Alviano DS, Kuster RM, Menezes FS. Atividade antioxidante e antimicrobiana de Calceolaria chelidonioides Humb. Bonpl. & Kunth. Rev Bras Farmacogn. 2006;16(1):73-76.

Gobbo-Neto L, Lopes NP. Plantas Medicinais: Fatores De Influência No Conteúdo De Metabólitos Secundários. Quím Nova. 2007;30(2):374-381.

Gobbo-Neto L, Bauermeister A, Sakamoto HT, Gouvea DR, Lopes JLC, Lopes NP. Spatial and Temporal Variations in Secondary Metabolites Content of the Brazilian Arnica Leaves (Lychnophora ericoides Mart., Asteraceae). J Braz Chem Soc. 2017;28(12):2382-2390.

Gomes ML, Oliveira JS, Jardim MAG, Silva JC. Usos medicinais e composição química das folhas de Licania macrophylla Benth (Chrysobalanaceae). Rev Bras de Farm. 2006;87:26-29.

Ko HC, Lee JY, Jang MG, Song H, Kim SJ. Seasonal variations in the phenolic compounds and antioxidant activity of Sasaquel paertensis Ind Crops Prod. 2018;122:506-512.

Lall N, Kishore NJ. Are plants used for skin care in South Africa fully explored?. Ethnopharmacology. 2014;153(1):61-84.

Lavola A, Aphalo PJ, Lahti M, Julkunen-Tiitto R. Nutrient availability and the effect of increasing UV-B radiation on secondary plant compounds in Scotspine Environ Exp Bot. 2003;49(1):49-60.

Leitão GG, Pereira JPB, Carvalho PR, Ropero DR, Fernandes PD, Boylan F. Isolation of quinoline alkaloids from three Choisya species by high-speed countcurrent chromatography and the determination of their antioxidant capacity. Rev Bras Farmacogn. 2017;27:297-301.

Lima de Medeiros J, de Almeida TS, Lopes Neto JJ, Almeida Filho LCP, Ribeiro PRV, Brito ES, et al. Chemical composition, nutritional properties, and antioxidant activity of Licania tomentosa (Benth.). Food Chem. 2020;313:126117.

Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118.

Lopes-Lutz D, Alviano DS, Alviano CS, Kolodziejczyk PP. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry. 2008;69(8):1732-1738.

Macêdo JBM. Capacidade antioxidante in vitro e avaliação da toxicidade aguda in vivo de extratos de folhas de Licania rigida Benth., Licania tomentosa (Benth) Fritsch e Couepia impressa Prance (Chrysobalanaceae). [dissertação]. Natal: Universidade Federal do Rio Grande do Norte, Centro de Ciências da saúde; 2011.

Mahomoodally MF, Zengin G, Zheleva-Dimitrova D, Mollica A, Stefanucci A, Sinan KI, et al. Metabolomics profiling, bio-pharmaceutical properties of Hypericum lanuginosum extracts by in vitro and in silico approaches. Ind Crops Prod. 2019;133:373-382.

Martelli F, Nunes FMF. Radicais livres: em busca do equilíbrio. Ciência e Cultura. 2014;66(3):54-57.

Medeiros FA, Medeiros AAN. Licanol, um novo flavanol, e outros constituintes de Licania macrophylla Benth. Quím Nova . 2012;35(6):1179-1183.

Merino FJZ, Oliveira VB, Paula CS, Cansian FC, Souza AM, Zuchetto M, et al. Análise fitoquímica, potencial antioxidante e toxicidade do extrato bruto etanólico e das frações da espécie Senecio westermanii Dusen frente à Artemia salina Rev Bras Pl Med. 2015;17(4):1031-1040.

Moreira-Araujo RSR, Barros NVA, Porto RGCL, Brandão ACAS, Lima A, Fett R. Compostos bioativos e atividade antioxidante de três espécies frutíferas do Cerrado brasileiro. Rev Bras Frutic. 2019;41(3):e-011.

Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K. Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot. 2007;58(8):1935-1945.

Neto FC, Pilon AC, Bolzani VSB, Gamboa IC. Chrysobalanaceae: secondary metabolites, ethnopharmacology and pharmacological potential. Phytochem Rev. 2013;12:121-146.

Oliveira GLS. Determinação da capacidade antioxidante de produtos naturais in vitro pelo método do DPPH: estudo de revisão. Rev Bras Plant Med. 2015;17(1):33-44.

Oyaizu M. Studies on products of browning reaction: Antioxidative activity of products of browning reaction. J Nutrition. 1986;44:307-315.

Pereira RJ, Cardoso MG. Metabólitos secundários vegetais e benefícios antioxidants. J Biotechol Biodiversity. 2012;3(4):146-152.

Pessoa IP, Neto JJL, Almeida TS, Farias DF, Vieira LR, Medeiros JL, et al. Polyphenol Composition, Antioxidant Activity and Cytotoxicity of Seeds from Two Underexploited Wild Licania Species: L. rigida and L. tomentosa Molecules. 2016;21(12):1755.

Pio IDSL, Lavor AL, Damasceno CMD, Menezes PMN, Silva FS, Maia GLA. Traditional knowledge and uses of medicinal plants by the inhabitants of the islands of the São Francisco river, Brazil and preliminary analysis of Rhaphiodon echinus (Lamiaceae). Braz J Biol. 2019;79(1):87-99.

Prance GT. Flora da Reserva Ducke, Amazonas, Brasil: Chrysobalanaceae. Rodriguésia. 2007;8:493-531.

Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidante capacity through the formation of a Phosphomolybdenum Complex: Specific application to the determination of vitamin E. Anal Biochem. 1999;269(2):337-341.

Ramos SR, Rodrigues ABL, Almeida SSMS. Preliminary study of the extract of the barks of Licania macrophylla Benth: phytochemicals and toxicological aspects. Biota Amaz. 2014;4(1):94-99.

Ribeiro AR, Camilo CJ, Nonato CFA, Rodrigues FFG, Menezes IRA, Ribeiro-Filho J, et al. Influence of seasonal variation on phenolic content and in vitro antioxidant activity of Secondatia floribunda A. DC. (Apocynaceae). Food Chem . 2020;315:126277.

Sales PF, Nóbrega PA, Nascimento, Corrêa FRFB, Cabral GNV, Silva EG. Atividade antiulcerogênica do extrato etanólico de Licania macrophylla Benth. O Mundo da Saúde. 2019;43(4):814-833.

Santos ES, de Morais Oliveira CD, Menezes IRA, do Nascimento EP, Correia DB, de Alencar CDC, et al. Anti-inflammatory activity of herb products from Licania rigida Benth. Complement Ther Med. 2019;45:254-261.

Shin KK, Park JG, Hong YH, Azis N, Park SH, Kim S, et al. Anti-Inflammatory Effects of Licania macrocarpa Cuatrec Methanol Extract Target Src- and TAK1-Mediated Pathways. Evid Based Complement Alternat Med. 2019;2019:4873870.

Siatka T, Kasparová M. Seasonal variation in total phenolic and flavonoidcontents and DPPH scavenging activity of Bellis perennis L. flowers. Molecules . 2010;15(12):9450-9461.

Silva JBNF, Menezes IRA, Coutinho HDM, Rodrigues FFG, Costa JGM, Felipe CFB. Antibacterial and antioxidant activities of Licania tomentosa (Benth.) fritsch (crhysobalanaceae). Arch Biol Sci. 2012;64(2):459-464.

Simões CMO, Schenckel EP, Gosmann G, Mello JCP. Farmacognosia: Da planta ao medicamento. 6º edição. Porto Alegre/ Florianópolis. Editora: UFRGS/UFSC. 2010.

Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth Enzym. 1999;299:152-178.

Sousa CMM, Silva HR, Vieira-Jr GM, Ayres MCC, Costa CLS, Araujo DS, et al. Fenóis totais e atividade antioxidante de cinco plantas medicinais. Quím Nova . 2007;30(2):351-355.

Spayd SE, Tarara JM, Mee DL. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. Am J Enol Viticult. 2002;53(3):171-182.

Tálos-Nebehaj E, Hofmann T, Albert L. Seasonal changes of natural antioxidant content in the leaves of Hungarian forest trees. Ind Crop Prod. 2017;98:53-59.

Veiga M, Costa EM, Silva S, Pintado M. Impact of plant extracts upon human health: A review. Food Sci Nutri. 2018;45(12):1-14.

Vilhena JES, Silva RBL, Freitas JL. Climatologia do Amapá: Quase um século de história. Rio de Janeiro: Gramma Livraria e Editora; 2018. 100 p.

Woisky RG, Salantino A. Analysis ospropolis: some parameters ondprodecore for chemical fuality control. J Apicul Res. 1998;37(2):99-105.

Yao L, Caffin N, D’arcy B, Jiang Y, Shi J, Singanusong R, et al. Seasonal variations of phenolic compounds in Australia-grown tea (Camellia sinensis). J Agric Food Chem . 2005;53(16):6477-6483.

Yao XH, Zhang ZB, Song P, Hao JY, Zhang DY, Zhang YF. Different harvest seasons modify bioactive compounds and antioxidant activities of Pyrola incarnata Ind Crops Prod . 2016;9(4):405-412.

Downloads

Published

2022-11-23

Issue

Section

Original Article

How to Cite

Seasonal and pluviometric effects on the phenolic compound composition and antioxidant potential of Licania macrophylla Benth (Chrysobalanaceae), a medicinal plant from the Amazon rainforest. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e19558