Synthesis, antimicrobial and antioxidant activities of pyridyl substituted thiazolyl triazole derivatives

Authors

  • Naime Funda Tay Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Chemistry, TR 26480 Eskisehir, Turkey https://orcid.org/0000-0002-5765-8212
  • Murat Duran Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Chemistry, TR 26480 Eskisehir, Turkey
  • İsmail Kayagil Burdur Mehmet Akif Ersoy University, Faculty of Arts & Science, Department of Chemistry, 15030, Burdur, Turkey
  • Leyla YURTTAŞ Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470, Eskişehir, Turkey
  • Gamze Göger Trakya University, Faculty of Pharmacy, Department of Pharmacognosy, 22030, Edirne, Turkey
  • Fatih Göger Anadolu University, Faculty of Pharmacy, Department of Pharmacognosy, 26470, Eskişehir, Turkey
  • Fatih Demirci Eastern Mediterranean University, Faculty of Pharmacy, 99450 Famagusta, N. Cyprus, Mersin 10, Turkey
  • Şeref Demirayak Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry, 34083, İstanbul, Turkey

DOI:

https://doi.org/10.1590/s2175-97902022e191026

Keywords:

Triazole, Thiazole, Pyridine, Antimicrobial activity, Antioxidant activity, DPPH radical scavenging

Abstract

In this present study, 63 different 5-[4-methyl-2-(pyridin-3/4-yl)thiazole-5-yl]-4-substituted-3-substituted benzylthio-4H-1,2,4-triazole derivatives were synthesized, and evaluated for their in vitro antimicrobial activity against various human pathogenic microorganisms and antioxidant activity. The derivatives were synthesized in a multi-step synthesis procedure including triazole and thiazole ring closure reactions, respectively. The synthesized derivatives (A1-24; B1-39) were screened for their antibacterial, antifungal, and antioxidant activities compared to standard agents. The derivatives possessing 3-pyridyl moiety particularly exhibited relatively high antibacterial activity (MIC= < 3.09-500 µg/mL) against Gram-positive bacteria, and compounds possessing 4-pyridyl moiety showed remarkable antioxidant activity.

Downloads

Download data is not yet available.

References

Abdel-Wahab BF, Abdel-Aziz HA, Ahmed EM. Synthesis and antimicrobial evaluation of some 1,3-thiazole, 1,3,4-thiadiazole, 1,2,4-triazole, and 1,2,4-triazolo[3,4-b][1,3,4]-thiadiazine derivatives including a 5-(benzofuran-2-yl)-1-phenylpyrazole moiety. Monatsh Chem. 2009;140(6):601-605.

Althagafi I, El-Metwaly N, Farghaly TA. New series of thiazole derivatives: synthesis, structural elucidation, antimicrobial Activity, molecular modeling and MOE docking. Molecules. 2019;24(9):1741.

Arfan M, Siddiqui SZ, Abbasi MA, Rehman A, Shah Syed AA, Ashraf M, et al. Synthesis, in vitro and in silico studies of s-alkylated 5-(4-methoxyphenyl)-4-phenyl-4H-1,2,4-triazole-3-thiols as cholinesterase inhibitors. Pak J Pharm Sci. 2018;31(6):2697-2708.

Baviskar BA, Shiradkar MR, Khadabadi SS, Deore SL, Bothara KG. Synthesis of thiazolyltriazole substituted azetidinones as antimicrobial agents. Indian J Chem B. 2011;50(3):321-325.

Bayomi SM, El-Kashef HA, El-Ashmawy MB, Nasr MNA, El-Sherbeny MA, Abdel-Aziz NI, et al. Synthesis and biological evaluation of new curcumin analogues as antioxidant and antitumor agents: molecular modeling study. Eur J Med Chem. 2015;101:584-594.

Bektas H, Karaali N, Sahin D, Demirbas A, Karaoglu SA, Demirbas N. Synthesis and antimicrobial activities of some new 1,2,4-triazole derivatives. Molecules. 2010;15(4):2427-2438.

Bindu B, Vijayalakshmi S, Manikandan A. Synthesis and discovery of triazolo-pyridazine-6-yl-substituted piperazines as effective anti-diabetic drugs; evaluated over dipeptidyl peptidase-4 inhibition mechanism and insulinotropic activities. Eur J Med Chem . 2020;187:111912.

Behalo MS, Amine MS, Fouda IM. Regioselective synthesis, antitumor and antioxidant activities of some 1,2,4-triazole derivatives based on 4-phenyl-5-(quinolin-8-yloxy) methyl-4H-1,2,4-triazole-3-thiol. Phosphorus Sulfur. 2017;192(4):410-417

Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M, et al. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms. 2016;4(1):1-19.

Ceylan S, Bektas H, Bayrak H, Demirbas N, Alpay-Karaoglu S, Ulker S. Synthesis and biological activities of new hybrid molecules containing different heterocyclic moieties. Arch Pharm. 2013;346(10):743-756.

Chao S, Wang Y. Synthesis of novel s-glucosides containing 5-methylisoxazole substituted 1,2,4-triazole. J Chem. 2013:Article ID 568907.

Chaubey A, Pandeya SN. Pyridine a versatile nucleuse in pharmaceutical field. Asian J Pharm Clin Res. 2011;4(4):5-8.

Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, CLSI M7-A7, Clinical and Laboratory Standards Institue, 940 West Valley Road, Wayne, PA, USA 2006.

Clinical and Laboratory Standards Institute (CLSI) Reference Method for Broth Dilution Antifungal SusceptibilityTesting of Yeast, Approved Standard, CLSI 27-A3, 3rd ed., PA, USA 2008.

Cui SF, Ren Y, Zhang SL, Peng XM, Damu GL, Geng RX, et al. Synthesis and biological evaluation of a class of quinolone triazoles as potential antimicrobial agents and their interactions with calf thymus DNA. Bioorg Med Chem Lett. 2013;23(11):3267-3272.

Çavusoglu Kaya B, Yurttas L, Cantürk Z. The synthesis, antifungal and apoptotic effects of triazole-oxadiazoles against Candida species. Eur J Med Chem . 2018;144:255-261.

Demirayak Ş, Benkli K, Güven K. Synthesis of some 3-arylamino-5-aryloxymethyl [1,2,4]triazole derivatives and their antimicrobial activity. Pharm Acta Helv. 1998;72(5):285-290.

Dharavath R, Boda S. A synthesis and biological screening of newly substituted 9-methyl-6-aryl-[1,2,4] triazolo[4,3-a][1,8]naphthyridines using chloranil. Synth Commun. 2019;49(14):1741-1749.

Dorovic J, Milenkovic D, Joksovic L, Joksovic M, Markovic Z. Study of influence of free radical species on antioxidant activity of selected 1,2,4-Triazole-3-thiones. ChemistrySelect. 2019;4(25):7476-7485.

Elkanzi NAA, Bakr RB, Ghoneim AA. Design, synthesis, molecular modeling study, and antimicrobial activity of some novel pyrano[2,3-b]pyridine and pyrrolo[2,3-b]pyrano[2.3-d]pyridine derivatives. J Heterocycl Chem. 2019;56(2):406-416.

El-Naggar M, Almahli H, Ibrahim HS, Eldehna WM, Hatem AAA. Pyridine-ureas as potential anticancer agents: Synthesis and in vitro biological evaluation. Molecules. 2018;23(6):1459.

Eryılmaz S, Türk Çelikoğlu E, İdil Ö, İnkaya E, Kozak Z, Mısır E, et al. Derivatives of pyridine and thiazole hybrid: synthesis, DFT, biological evaluation via antimicrobial and DNA cleavage activity. Bioorg Chem. 2020;95:103476.

Gaikwad ND, Patil SV, Bobade VD. Hybrids of ravuconazole: synthesis and biological evaluation. Eur J Med Chem . 2012;54:295-302.

Halliwell B. Antioxidants in human health and disease. Annu Rev Nutr. 1996;16:33-50.

Halliwell B. Role of free radicals in the neurodegenerative diseases - therapeutic implications for antioxidant treatment. Drug Aging. 2001;18(9):685-716.

Hosseinzadeh Z, Razzaghi-Asl N, Ramazani A, Aghahosseini H, Ramazani A. Synthesis, cytotoxic assessment, and molecular docking studies of 2,6-diaryl-substituted pyridine and 3,4- dihydropyrimidine-2(1H)-one scaffolds. Turk J Chem. 2020;44(1):194-213.

Iqbal J, Rehman AR, Abbas MA, Siddiqui SZ, Khalid H, Laulloo SJ, et al. BSA binding, molecular docking and in vitro biological screening of some new 1, 2, 4-triazole heterocycles bearing azinane nucleus. Pak J Pharm Sci . 2020;33(1):149-160.

Jalilian AR, Sattari S, Bineshmarvasti M, Shafiee A, Daneshtalab M. Synthesis and in vitro antifungal and cytotoxicity evaluation of thiazolo-4H-1,2,4-triazoles and 1,2,3-thiadiazolo-4H-1,2,4-triazoles. Arch Pharm . 2000;333(10):347-354.

Kaddouri Y, Abrigach F, Yousfi EB, Kodadi ME, Touzani R. New thiazole, pyridine and pyrazole derivatives as antioxidant candidates: synthesis, DFT calculations and molecular docking study. Heliyon. 2020;6(1):e03185.

Kashyap SJ, Garg VK, Sharma PK, Kumar N, Dudhe R, Gupta JK. Thiazoles: having diverse biological activities. Med Chem Res. 2012;21(8):2123-2132.

Koparir P. Synthesis, antioxidant and antitumor activities of some of new cyclobutane containing triazoles derivatives. Phosphorus Sulfur. 2019;194(11):1028-1034.

Kharb R, Sharma PC, Yar MS. Pharmacological significance of triazole scaffold. J Enzyme Inhib Med Chem. 2011;26(1):1-21.

Kumarasamy Y, Byres M, Cox PJ, Jaspars M, Nahar L, Sarker SD. Screening seeds of some scottish plants for free radical scavenging activity. Phytother Res. 2007;21(7):615-621.

Kumar GVS, Prasad YR, Chandrashekar SM. Synthesis and pharmacological evaluation of some novel 4-isopropyl thiazole-based sulfonyl derivatives as potent antimicrobial and antitubercular agents. Med Chem Res . 2013;22(9):4239-4252.

Kumar P, Kumar A, Makrandi JK. Synthesis and evaluation of bioactivity of thiazolo[3,2-b]-[1,2,4]-triazoles and isomeric thiazolo[2,3-c]-[1,2,4]-triazoles. J Heterocyclic Chem. 2013;50(5):1223-1229.

Li QY, Chen J, Luo SY, Xu JL, Huang QX, Liu TY. Synthesis and assessment of the antioxidant and antitumor properties of asymmetric curcumin analogues. Eur J Med Chem . 2015;93:461-469.

Login CC, Bâldea I, Tiperciuc B, Benedec D, Vodnar DC, Decea N, et al. A novel thiazolyl schiff base: antibacterial and antifungal effects and in vitro oxidative stress modulation on human endothelial cells. Oxid Med Cell Longev. 2019;Article ID 1607903.

Mange YJ, Isloor AM, Malladi S, Isloor S, Fun HK, Synthesis and antimicrobial activities of some novel 1,2,4-triazole derivatives. Arab J Chem. 2013;6(2):177-181.

Mentese MY, Bayrak H, Uygun Y, Mermer A, Ulker S, Karaoglu SA, et al. Microwave assisted synthesis of some hybrid molecules derived from norfloxacin and investigation of their biological activities. Eur J Med Chem . 2013;67:230-242.

Miliovsky M, Svinyarov I, Prokopova E, Batovska D, Stoyanov S, Bogdanov MG. Synthesis and antioxidant activity of polyhydroxylated trans-restricted 2-arylcinnamic Acids. Molecules. 2015;20(2):2555-2575.

Padmavathi V, Mohan AVN, Mahesh K, Padmaja A. Aroylethenesulfonylacetic acid methyl ester - A synthon for novel sulfone linked bis heterocycles. Chem Pharm Bull. 2008;56(6):815-820.

Panda SS, Jain SC. Synthesis and QSAR studies of some novel disubstituted 1,2,4-triazoles as antimicrobial agents. Med Chem Res . 2014;23(2):848-861.

Patel NB, Khan IH, Rajani SD, Pharmacological evaluation and characterizations of newly synthesized 1,2,4-triazoles. Eur J Med Chem . 2010;45(9):4293-4299.

Perron GG, Inglis RF, Pennings PS, Cobey S. Fighting microbial drug resistance: a primer on the role of evolutionary biology in public health. Evol Appl. 2015;8(3):211-222.

Pitucha M, Pachuta-Stec A, Kaczor AA. New five-membered ring heterocyclic compounds with antibacterial and antifungal activity. In: Méndez-Vilas A, ed. microbial pathogens and strategies for combating them: Science, Technology and Education. Badajoz: Formatex Research Center. 562-573 p, 2013.

Prakash TB, Reddy GD, Padmaja A, Padmavathi V. Synthesis and antimicrobial activity of amine linked bis- and tris-heterocycles. Eur J Med Chem . 2014;82:347-354.

Pricopie AI, Ionut I, Marc G, Arseniu A, Vlase L, Grozav A, et al. Design and synthesis of novel 1,3-thiazole and 2-hydrazinyl-1,3-thiazole derivatives as anti-candida agents: in vitro antifungal screening, molecular docking study, and spectroscopic investigation of their binding interaction with bovine serum albumin. Molecules. 2019;24(19):3435.

Radulescu C, Stihi C. Biological activity of new heterocyclic systems containing thiazolic ring. Rev Chim-Bucharest. 2009;60(11):1164-1168.

Rauf A, Farshori NN. Microwave-induced synthesis of aromatic heterocycles. Berlin: Springer Press; 2012. 15p.

Rostami Z, Manesh AA, Samie L. QSAR modeling of antimicrobial activity with some novel 1,2,4-triazole derivatives, comparison with experimental study. Iran J Math Chem. 2013;4(1):91-109.

Sahin D, Bayrak H, Demirbas A, Demirbas N, Alpay-Karaoglu S. Design and synthesis of some azole derivatives as potential antimicrobial agents. Med Chem Res . 2012;21(12):4485-4498.

Sekhar MM, Yamini G, Gari Divya KR, Padmavathi V, Padmaja A. Synthesis and bioassay of a new class of disubstituted 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazoles. Med Chem Res . 2019;28:1049-1062.

Singh R, Kashaw SK, Mishra VK, Mishra M, Rajoriya V, Kashaw V. Design and synthesis of new bioactive 1,2,4-triazoles, potential antitubercular and antimicrobial agents. Indian J Pharm Sci. 2018;80(1):36-45.

Shiradkar MR, Murahari KK, Gangadasu HR, Suresh T, Kalyan CA, Panchal D, et al. Synthesis of new s-derivatives of clubbed triazolyl thiazole as anti-Mycobacterium tuberculosis agents. Bioorgan Med Chem. 2007;15(12):3997-4008.

Sun GX, Yang MY, Shi YX, Sun ZH, Liu XH, Wu HK, et al. Microwave assistant synthesis, antifungal activity and DFT theoretical study of some novel 1,2,4-triazole Derivatives containing pyridine moiety. Int J Mol Sci. 2014;15(5):8075-8090.

Suryawanshia M, Gujarb V, Ottoorb D, Bobade V. Synthesis, characterization and photophysical properties of novel thiazole substituted pyridine derivatives. Indian J Chem Sect B. 2019;58:1361-1374.

Tiperciuc B, Zaharia V, Colosi I, Moldovan C, Crisan O, Pirnau A, et al. Synthesis and evaluation of antimicrobial activity of some new hetaryl-azoles derivatives obtained from 2-Aryl-4-methylthiazol-5-carbohydrazides and isonicotinic acid hydrazide. J Heterocyclic Chem . 2012;49(6):1407-1414.

Tomasic T, Zidar N, Mueller-Premru M, Kikelj D, Masic LP. Synthesis and antibacterial activity of 5-ylidenethiazolidin-4-ones and 5-benzylidene-4,6-pyrimidinediones. Eur J Med Chem . 2010;45(4):1667-1672.

Tumosienė I, Kantminienė K, Jonuškienė I, Peleckis A, Belyakov S, Mickevičius V. Synthesis of 1-(5-Chloro-2-hydroxyphenyl)-5-oxopyrrolidine-3-carboxylic acid derivatives and their antioxidant activity. Molecules. 2019;24(5):971.

Tumosienė I, Peleckis A, Jonuškienė I, Vaickelioniene R, Kantminiene K, Šiugždaitė J, et al. Synthesis of novel 1,2- and 2-substituted benzimidazoles with high antibacterial and antioxidant activity. Monatsh Chem . 2018;149:577-594.

Tumosienė I, Jonuškienė I, Kantminienė K, Šiugždaitė J, Mickevičius V, Beresnevičius ZJ. Synthesis and biological activity of 1,3,4-oxa(thia)diazole, 1,2,4-triazole-5-(thio)one and s-substituted derivatives of 3-((2-carboxyethyl)phenylamino)propanoic acid. Res Chem Intermed. 2016;42:4459-4477.

Turan-Zitouni G, Kaplancikli ZA, Yildiz MT, Chevallet P, Kaya D. Synthesis and antimicrobial activity of 4-phenyl/cyclohexyl-5-(1-phenoxyethyl)-3-[N-(2-thiazolyl) acetamido]thio-4H-1,2,4-triazole derivatives. Eur J Med Chem . 2005;40(6):607-613.

Yang L, Bao XP. Synthesis of novel 1,2,4-triazole derivatives containing the quinazolinyl piperidinyl moiety and N-(substituted phenyl)acetamide group as efficient bactericides against the phytopathogenic bacterium Xanthomonas oryzae pv. oryzae. RSC Adv. 2017;7:34005.

Yurttas L, Özkay Y, Karaca Gençer H, Acar U. Synthesis of some new thiazole derivatives and their biological activity evaluation. J Chem. 2015; Article ID 464379.

Zaki YH, Al-Gendey MS, Abdelhamid AO. A facile synthesis, and antimicrobial and anticancer activities of some pyridines, thioamides, thiazole, urea, quinazoline, β-naphthyl carbamate, and pyrano[2,3-d]thiazole derivatives. Chem Cent J. 2018;12(1):70.

Zia M, Akhtar T, Hameed S, Al-Masoudic N. New aryl-1,3-thiazole-4-carbohydrazides, their 1,3,4-oxadiazole-2-thione, 1,2,4-triazole, isatin-3-ylidene and carboxamide derivatives. Synthesis and anti-HIV activity. Z Naturforsch. 2012;67b(7):747-758.

Zoumpoulakis P, Camoutsis C, Pairas G, Sokovic M, Glamoclija J, Potamitis C, et al. Synthesis of novel sulfonamide-1,2,4-triazoles, 1,3,4-thiadiazoles and 1,3,4-oxadiazoles, as potential antibacterial and antifungal agents. Biological evaluation and conformational analysis studies. Bioorgan Med Chem . 2012;20(4):1569-1583.

Downloads

Published

2022-11-23

Issue

Section

Original Article

How to Cite

Synthesis, antimicrobial and antioxidant activities of pyridyl substituted thiazolyl triazole derivatives. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e191026

Funding data