Efavirenz dissolution enhancement V - A combined top down/bottom up approach on nanocrystals formulation

Authors

  • Gabriela Julianelly Sartori Programa de Pós-Graduação Profissional em Gestão, Pesquisa e Desenvolvimento na Indústria Farmacêutica / Farmanguinhos / Fiocruz / Rio de Janeiro / Rio de Janeiro / Brasil https://orcid.org/0000-0001-7717-9633
  • Livia Deris Prado Laboratório de Micro e Nanotecnologia / Farmanguinhos / Rio de Janeiro / Rio de Janeiro / Brasil; Programa de Pós-Graduação em Química / Universidade Federal Fluminense / Niterói / Rio de Janeiro / Brasil
  • Helvécio Vinícius Antunes Rocha Programa de Pós-Graduação Profissional em Gestão, Pesquisa e Desenvolvimento na Indústria Farmacêutica / Farmanguinhos / Fiocruz / Rio de Janeiro / Rio de Janeiro / Brasil; Laboratório de Micro e Nanotecnologia / Farmanguinhos / Rio de Janeiro / Rio de Janeiro / Brasil https://orcid.org/0000-0002-9624-6405

DOI:

https://doi.org/10.1590/s2175-97902022e18800

Keywords:

Efavirenz, Particle size, Nanocrystals, Anti-solvent precipitation, Dissolution

Abstract

Efavirenz is one of the most commonly used drugs in HIV therapy. However the low water solubility tends to result in low bioavailability. Drug nanocrystals, should enhance the dissolution and consequently bioavailability. The aim of the present study was to obtain EFV nanocrystals prepared by an antisolvent technique and to further observe possible effect, on the resulting material, due to altering crystallization parameters. A solution containing EFV and a suitable solvent was added to an aqueous solution of particle stabilizers, under high shear agitation. Experimental conditions such as solvent/antisolvent ratio; drug load; solvent supersaturation; change of stabilizer; addition of milling step and solvents of different polarities were evaluated. Suspensions were characterized by particle size and zeta potential. After freeze- dried and the resulting powder was characterized by PXRD, infrared spectroscopy and SEM. Also dissolution profiles were obtained. Many alterations were not effective for enhancing EFV dissolution; some changes did not even produced nanosuspensions while other generated a different solid phase from the polymorph of raw material. Nevertheless reducing EFV load produced enhancement on dissolution profile. The most important modification was adding a milling step after precipitation. The resulting suspension was more uniform and the powder presented grater enhancement of dissolution efficacy.

Downloads

Download data is not yet available.

References

Alves LDS, De La Roca Soares MF, Albuquerque CT, Silva ER, Vieira ACC, Fontes DAF, et al. Solid dispersion of efavirenz in pvp k-30 by conventional solvent and kneading methods. Carbohydr Polym. 2014;104:166-74.

Beck C, Dalvi SV, Dave RN. Controlled Liquid Antisolvent Precipitation Using a Rapid Mixing Device. Chem Eng Sci. 2010, 65(21):5669-75.

Blachére JR, Brittain HG. X-Ray Diffacttion Methods for the Characterization of Solid Pharmaceutical Materials. In: Adeyeye M, Brittain HG, editor. Drugs and Pharmaceutical Sciences: Preformulation in Solid Dosage Form Development. 1st ed. New York: Informa Healthcare. 2008. p. 229-52.

BRASIL. Farmacopéia Brasileira. 5ª. ed. [s.l.] Agencia Nacional de Vigilância Sanitária - ANVISA, 2010.

Burger D, van der Heiden I, la Porte C, van der Ende M, Groeneveld P, Richter C, et al. Interpatient variability in the pharmacokinetics of the hiv non-nucleoside reverse transcriptase inhibitor efavirenz: the effect of gender, race, and CYP2B6 polymorphism. Br J Clin Pharmacol. 2006;61(2):148-54.

Carstensen JT, Drugs and the Pharmaceutical Sciences: Advanced Pharmaceutical Solids. 1st ed. New York: Marcel Dekker, Inc. 2001.

Chadha R, Poonam A, Anupam S, Jain DS. An Insight into thermodynamic relationship between polymorphic forms of efavirenz. J Pharm Pharm Sci. 2012;15(2):234-51.

Chiappetta DA, Hocht C, Taira C, Sosnik A. Oral pharmacokinetics of the Anti-HIV efavirenz encapsulated within polymeric micelles. Biomaterials. 2010;32(9):2379- 87.

Cho E, Cho W, Cha KH, Park J, Kim MS, Kim JS, et al. Enhanced dissolution of megestrol acetate microcrystals prepared by antisolvent precipitation process using hydrophilic additives. Int J Pharm. 2010;396(1-2):91-98.

Comba S, Sethi R. Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res. 2009;43(15):3717-26.

da Costa MA, Lione VOF, Rodrigues CR, Cabral LM, Rocha HVA. Efavirenz dissolution enheancement II: aqueous co- spray-drying. Int J Pharm Sci Res. 2015;6(9):3807-20.

da Costa MA, Seicera RC, Rodrigues CR, Hoffmeister CRD, Cabral LM, Rocha HVA, et al. Efavirenz dissolution enhancement I: Co-Micronization. Pharmaceutics. 2013;5(1):1-22.

Cristofoletti R, Nair A, Abrahamsson B, Groot DW, Kopp S, Langguth P, et al. Biowaiver monographs for immediate release solid oral dosage forms: efavirenz. J Pharm Biomed Anal. 2013;102(2):318-29.

Fandaruff C, Rauber GS, Araya-sibaja AM, Pereira RN, Campos CEM, Rocha HVA, et al. Polymorphism of Anti- HIV drug efavirenz : investigations on thermodynamic and dissolution properties. Cryst Growth Des. 2014;14:4968-75.

Flint EB, Suslick KS. The Temperature of cavitation. Science. 1991;253(5026):1397-99.

Gao L, Liu G, Ma J, Wang X, Zhou L, Li X, et al. Drug nanocrystals: in vivo performances. J Control Release. 2012;160(3):418-30.

Gao L, Liu G, Ma J, Wang X, Zhou L, Li X, et al. Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs. Pharm Res. 2013;30(2):307-24.

Gomes ECL, Mussel WN, Resende JM, Fialho SL, Barbosa J, Yoshida MI. Chemical interactions study of antiretroviral drugs efavirenz and lamivudine concerning the development of stable fixed-dose combination formulations for AIDS treatment. J Braz Chem Soc. 2013;24(4):573-79.

Hoffmeister C, Fandaruff C, Costa M, Cabral L, Pitta L, Bilatto S, et al. Efavirenz dissolution enhancement iii: colloid milling, pharmacokinetics and eletronic tongue evaluation. Eur J Pharm Sci. 2017;99:310-17.

Jain S, Sharma JM, Agrawal AK, Mahajan RR. Surface stabilized efavirenz nanoparticles for oral bioavailability enhancement. J Biomed Nanotechnol. 2013;9(11):1862-74.

Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, et al. ScienceDirect Pharmaceutical Particle Technologies : An Approach to Improve Drug Solubility, Dissolution and Bioavailability. Asian J Pharm. 2014;1-13.

Laot CM. Spectroscopic characterization of molecular interdiffusion at a poly(vinyl pyrrolidone)/vinyl ester interface. [Master’s dissertation] Blacksburg: Virginia Polytechnic Institute and State University, 1997.

Lee J, Cheng Y. Critical Freezing Rate in Freeze Drying Nanocrystal Dispersions. J Controlled Release. 2006;111(1-2):185-92.

Liu G, Zhang D, Jiao Y, Zheng D, Liu Y, Duan C, et al. Comparison of different methods for preparation of a Stable Riccardin D Formulation via nano-technology. Int J Pharm. 2012;422(1-2):516-22.

Mahapatra S, Thakur TS, Joseph S, Varughese S, Desiraju GR. New solid state forms of the Anti-HIV drug efavirenz. Conformational flexibility and High Z’ Issues. Cryst Growth Des . 2010;10(7):3191-32.

Matteucci ME, Hotze MA, Johnston KP, Williams RO. Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. Langmuir. 2006;22(21):8951-59.

Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs--a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol. 2004;113(1-3):151-70.

Nickerson B, Joseph R, Palmer C, Opio A, Beresford G. Analytical method development: Challenges and solutions for low-dose oral dosage forms. In: Zheng J, editor. Formulation and Analytical Development for Low-Dose Oral Drug Products 1st ed. Hoboken: Wiley, 2009. p. 241-264.

Patel AP, Patel JK, Patel KS, Deshmukh AB, Mishra BR. A review on drug nanocrystal a carrier free drug delivery. Int J Res Ayurveda Pharm. 2011;2(2):448-58.

Patel GV, Patel VB, Pathak A, Rajput SJ. Nanosuspension of efavirenz for improved oral bioavailability: formulation optimization, in vitro, in situ and in vivo evaluation. drug. Dev Ind Pharm. 2014;40(1):80-91.

Peltonen L, Hirvonen J. Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J Pharm Pharmacol. 2010;62(11):1569-79.

Salazar J, Ghanem A, Müller RH, Möschwitzer JP. Nanocrystals: comparison of the size reduction effectiveness of a novel combinative method with conventional top-down approaches. Eur J Pharm Biopharm. 2012;81(1):82-90.

Sartori GJ, Prado LD, Rocha HVA. Efavirenz dissolution enhancement iv-antisolvent nanocrystallization by sonication, physical stability, and dissolution. AAPS PharmSciTech. 2017;18(8):3011-3020.

Savjani KT, Gajjar AK, Savjani JK. Drug solubility : importance and enhancement techniques. ISRN Pharmaceutics. 2012;2012:1-10.

Sawant SV, Kadam VJ, Jadhav KR, Sankpal SV. Drug Nanocrystals: novel technique for delivery of poorly soluble drugs. I. J Sci Innov Disc. 2011;1(3):1-15.

Shankar S, Rhim J. Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite Films. Carbohydr Polym . 2016;135:18-26.

Sinha B, Müller RH, Möschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle Size. Int J Pharm . 2013a;453(1):126-41.

Sinha B, Müller RH, Möschwitzer JP. Systematic investigation of the cavi-precipitation process for the production of ibuprofen nanocrystals. Int J Pharm . 2013b;458(2):315-23.

Stuart B. Infrared Spectroscopy: Fundamentals and Applications. Hoboken: J. Wiley, 2004.

Sze A, Erickson D, Ren L, Li D. Zeta-potential measurement using the smoluchowski equation and the slope of the current- time relationship in electroosmotic flow. J Colloid Interface Sci. 2003;261(2):402-10.

Theophile T. Infrared Spectroscopy - Materials science, engineering and technology. London: InTechOpen. 2012.

Tung HH, Paul E, Midler M, McCauley JA. Crystallization of organic compounds: an industrial perspective. Hoboken: Wiley . 2008.

Verma S, Gokhale R, Burgess DJ. A Comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int J Pharm . 2009;380(1-2):216-22.

de Waard H, Grasmeijer N, Hinrichs WLJ, Eissens AC, Pfaffenbach PPF, Frijlink HW. Preparation of drug nanocrystals by controlled crystallization: application of a 3-way nozzle to prevent premature crystallization for large scale production. Eur J Pharm Sci . 2009;38(3):224-29.

Wu L, Zhang J. Watanabe W Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011;63(6):456-69.

Yang L, Chu D, Wang L, Ge G, Sun H. Facile synthesis of porous flower-like srco3 nanostructures by integrating bottom-up and top-down routes. Mater Lett. 2016;167:4-8.

Ye X, Patil H, Feng X, Tiwari RV, Lu J, Gryczke A, et al. Conjugation of hot-melt extrusion with high-pressure homogenization: a novel method of continuously preparing nanocrystal solid dispersions. AAPS PharmSciTech 2015;17(1):78-88.

Zhao H, Wang JX, Wang QA, Chen JF, Yun J. Controlled liquid antisolvent precipitation of hydrophobic pharmaceutical nanoparticles in a microchannel Reactor. Ind Eng Chem Res. 2007;46(24):8229-35.

Downloads

Published

2022-11-17

Issue

Section

Original Article

How to Cite

Efavirenz dissolution enhancement V - A combined top down/bottom up approach on nanocrystals formulation. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e18800