Biological activities of essential oils from six genotypes of four Ocotea species

Authors

  • Michele Andréia Rambo Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
  • Krissie Daian Soares Pharmaceutical Sciences Graduate Program https://orcid.org/0000-0001-5195-1269
  • Letícia Jacobi Danielli Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
  • Daiane Flores Dalla Lana Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
  • Sérgio Augosto de Loreto Bordignon Environmental Impact Assessment Graduate Program, La Salle University Center, Canoas, Rio Grande do Sul, Brazil
  • Alexandre Meneghello Fuentefria Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
  • Miriam Apel Pharmaceutical Sciences Graduate Program

DOI:

https://doi.org/10.1590/s2175-97902022e181097

Keywords:

Antifungal, Biological activity, Essential oil, Lauraceae, Ocotea

Abstract

Essential oils from four Ocotea species collected in southern Brazil were evaluated for chemical composition using gas chromatography coupled with mass spectrometry. The primary compound identified in O. acutifolia essential oil was an unsaturated tetracyclic diterpene, phyllocladene (67.7%), followed by a sesquiterpene hydrocarbon, β-selinene (18.0%). The sesquiterpene fraction was predominant in oils from two collections of O. puberula; β-caryophyllene (25.2%) and globulol (22.6%) were the major compounds identified in collections 1 and 2, respectively.

O. silvestris essential oil contained predominantly germacrene D and bicyclogermacrene. These compounds were also predominant in essential oil from O. indecora leaves collected from shady habitats. By contrast, essential oil extracted from O. indecora grown under direct sunlight contained mainly oxygenated sesquiterpenes, such as guaiol (30.2%), α-eudesmol (27.6%), and β-eudesmol (12.7%). Chemotaxis assays showed that Ocotea essential oils had no significant inhibitory activity on leukocyte migration compared with a chemotactic stimulant (lipopolysaccharide from Escherichia coli). However, the oils exhibited antifungal activity against Candida parapsilosis, with a minimum inhibitory concentration of 500 µg/mL. To our knowledge, this is the first study to investigate the in vitro antifungal and antichemotactic activities of essential oils from Ocotea species native to southern Brazil.

Downloads

Download data is not yet available.

References

Adams RP. Identification of Essential Oil by Ion Trap Mass Spectrometry. Academic Press, NY, USA; 2001.

Adams RP. Identification of Essential Oil Components by Gas Chromatogra-phy/Mass Spectrometry. Allured, IL, USA; 2009.

Almeida LFR, Portella RO, Bufalo J, Marques MOM, Facanali R, Frei R. Non-oxygenated sesquiterpenes in the essential oil of Copaifera langsdorffii Desf. increase during the day in the dry season. Plos One. 2016;11(2):1-12.

Baitello JB. Novas espécies de Lauraceae para a flora brasileira. Acta Bot Bras. 2001;15(3):445-450.

Baitello JB, Marcovino JR, Wanderley MGL, Shepherd G, Giulietti AM, Mehem TS. Lauraceae: Ocotea Aubl. In Flora fanerogâmica do Estado de São Paulo. 2003;3:179-208.

Bajpai VK, Al-reza SM, Choi UK, Lee JH, Kang SC. Chemical composition, antibacterial and antioxidant activities of leaf essential oil and extracts of Metasequio aglyptostroboides Miki ex Hu. ‎ Food Chem Toxicol. 2009;47(8):1876-1883.

Ballabeni V, Tognolini M, Bertoni S, Bruni R, Guerrini A, Rueda GM, et al. Antiplatelet and antithrombotic activities of essential oil from wild Ocotea quixos (Lam.) Kosterm. (Lauraceae) calices from Amazonian Ecuador. Pharmacol Res. 2007;55(1):23-30.

Ballabeni V, Tognolini M, Giorgio C, Bertoni S, Bruni R, Barocelli E. Ocotea quixos Lam. essential oil: In vitro and in vivo investigation on its anti-inflammatory properties. Fitoterapia. 2010;81(4):289-295.

Bannister JM, Conran JG, Lee DE. Lauraceae from rainforest surrounding an early Miocene maar lake, Otago, southern New Zealand. Rev Palaeobot Palynol. 2012;178:13-34.

Barbosa-Filho JM, Cunha RM, Dias CS, Athayde-Filho PF, Silva MS, Da-Cunha EVL, et al. GC-MS Analysis and cardiovascular activity of the essential oil of Ocotea duckei. Braz J Pharmacogn. 2008;18(1):37-41.

Biavatti MW, Vieira PC, Da Silva MFGF, Fernandes JB, Albuquerque S, Magalhães CMI, et al. Chemistry and bioactivity of Raulinoa echinata Cowan, an endemic Brazilian Rutaceae species. Phytomedicine. 2001;8(2): 121-124.

Blažeković B, Yang W, Wang Y, Li C, Kindl M, Pepeljnjak S, Knežević SV. Chemical composition, antimicrobial and antioxidant activities of essential oils of Lavandula × intermedia ‘Budrovka’ and L. angustifolia cultivated in Croatia. Ind Crops Prod. 2018;123:173-182.

Bulow N, Konig WA. The role of germacrene D as a precursor in sesquiterpene biosynthesis: investigations of acid catalyzed, photochemically and thermally induced rearrangements. Phytochemistry. 2000;55(2):141-168.

Burt S. Essential oils: their antibacterial properties and potential applications in foods- a review. Int J Food Microbiol. 2004;94(3):223-253.

Clinical and Laboratory Standards Institute. CLSI. 2008. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Document M27-A3. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.

Constantin MB, Sartorelli P, Limberger R, Henriques AT, Steppe M, Ferreira MJP, et al. Essential oils from Piper cernuum and Piper regnellii: antimicrobial activities and analysis by CG/MS and 13C-NMR. Planta Med. 2001;67(8):771-773.

Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999;12(4):564-582.

Cysne JB, Canuto KM, Pessoa ODL, Nunes EP, Silveira ER. Leaf essential oils of four Piper species from the State of Ceará - Northeast of Brazil. J Braz Chem Soc. 2005;16(6B):1378-1381.

Da Silva JK, Da Trindade R, Moreira EC, Maia JGS, Dosoky NS, Miller RS, et al. Chemical Diversity, Biological Activity, and Genetic. Aspects of Three Ocotea Species from the Amazon. Int J Mol Sci. 2017;18:1-15.

Daferera DJ, Ziogas BN, Polissioi MG. The effectiveness of plant essential oil on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Prot. 2003;22(1):39-44.

Danielli LJ, Pippi B, Duarte JÁ, Maciel AJ, Lopes W, Machado MM, Oliveira LFS, Vainstein MH, Teixeira ML, Bordignon SAL, Fuentefria AM, Apel MA. Antifungal mechanism of action of Schinus lentiscifolius Marchand essential oil and its synergistic effect in vitro with terbinafine and ciclopirox against dermatophytes. J Pharm Pharmacol. 2018;70:1216-1227.

De Araújo AJ, Lordello ALL, Maia BHLNS. Análise comparativa dos óleos essenciais de folhas e galhos de Ocotea puberula (Lauraceae). Revista Visão Acadêmica. 2001;2(2):81-84.

Deuschle RAN, De Camargo T, Alves SH, Mallmann CA, Heizmann BM. Fracionamento do extrato diclorometânico de Senecio desiderabilis Vellozo e avaliação da atividade antimicrobiana. Rev Bras Farmacogn. 2007;17(2):220-223.

Fach A, Gregel B, Simionatto E, Da Silva UF, Zanatta N, Morel AF, et al. Chemical analysis and antifungal activity of the essential oil of Calea clematidea. Planta Med . 2002;68(9):836-838.

Farmacopeia Brasileira, Agência Nacional de Vigilância Sanitária, Brasília, Brazil (2010).

Freire JM, Cardoso MG, Batista LR, Andrade MA. Essential oil of Origanum majorana L., Illicium verum Hook. f. and Cinnamomum zeylanicum Blume: chemical and antimicrobial characterization. Rev Bras Plantas Med. 2011;13(2):209-214.

Garcez FR, da Silva AFG, Garcez WS, Linck G, Matos MFC, Santos ECS, et al. Cytotoxic Aporphine Alkaloids from Ocotea acutifolia. Planta Med . 2011;77:383-387.

Guterres ZR, da Silva AFG, Garcez WS, Garcez FR, Fernandes CA, Garcez FR. Mutagenicity and recombinagenicity of Ocotea acutifolia (Lauraceae) aporphinoid alkaloids. Mutat Res. 2013;757:91-96.

Havlickova B, Friedrich M. The advantages of topical combination therapy in the treatment of inflammatory dermatomycoses. Mycoses. 2008;51(4):16-26.

Herms DA, Mattson WJ. The dilemma of plants: to grow or defend. Q Rev Biol. 1992;67(3):283-335.

Leporatti ML, Pintore G, Foddai M, Chessa M, Piana A, Petretto GL, et al. Chemical, biological, morphoanatomical and antimicrobial study of Ocotea puchury-major Mart. Nat Prod Res. 2014;28(5):294-300.

Mastelic, J, Jerkovic J, Blazevic I, Blazi MP, Borovic S, Bace II, et al. Comparative study on the antioxidant and biological activities of carvacrol, thymol and eugenol derivates. J Agric Food Chem. 2008;56(11):3989-3996.

Mendes CE, Casarin F, Ohland AL, Flach A, Costa LAMA, Denardin RBN, et al. Efeitos das condições ambientais sobre o teor e variabilidade dos óleos voláteis de Dalbergia frutescens (Vell.) Britton (Fabaceae). Quim Nova. 2012;35(9):1787-1793.

Moiteiro C, Esteves T, Ramalho I, Rojas R, Alvarez S, Bragança H. Essential oil characterization of two azorean Cryptomeria japonica populations and their biological evaluations. Nat Prod Commun. 2013;8(12):1785-1790.

Montrucchio DP, Miguel OG, Zanin SMW, Da Silva GA, Cardozo AM, Santos ARS. Antinociceptive Effects of a Chloroform Extract and the Alkaloid Dicentrine Isolated from fruits of Ocotea puberula. Planta Med . 2012;78(14):1543- 1548.

Oliveira PC, Paula CA, Rezende SA, Campos FT, Guimarães DAS. Anti-inflammatory activity of Lychnophora passerina, Asteraceae (Brazilian ‘’Arnica’’). J Ethnopharmacol. 2011;135(2):393-398.

Palá-Paúl J, Usano-Alemany J, Brophy JJ, Pérez-Alonso MJ, Soria AC. Essential oil composition of the different parts of Eryngium aquifolium from Spain. Nat Prod Commun . 2010;5(5):817-821.

Poulose AJ, Croteau R. Y-terpinene to p-cymene and thymol in Thymus vulgaris L. Arch Biochem Biophys. 1978;187:307- 314.

Raggi L. Estudo da composição química e das atividades biológicas de óleos voláteis de espécies de Lauraceae, em diferentes épocas do ano. [Master’s dissertation]. São Paulo: Instituto de Botânica da Secretaria do Meio Ambiente, 2008.

Reddy DN, Al-Rajab AJ, Sharma M, Moses MM, Reddy GR, Albratty M. Chemical constituents, in vitro antibacterial and antifungal activity of Mentha x Piperita L. (peppermint) essential oils. J King Saud Univ. doi.org/10.1016/j. jksus.2017.07.013. 2017.

» https://doi.org/doi.org/10.1016/j. jksus.2017.07.013

Santos RF, Isobe MTC, Lalla JG, Haber LL, Marques MOM, Ming LC. Chemical composition and productivity of essential oil of Baccharis dracunculifolia DC. as affected by organic compound. Rev Bras Plant Med. 2012;14:224-234.

Silva LDL, Da Silva DT, Garlet QL, Cunha MA, Mallmann CA, Baldisserotto B, et al. Anesthetic activity of Brazilian native plants in silvercat fish (Rhamdiaquelen). Neotrop Ichthyol. 2013;11(2):443-451.

Suyenaga ES, Konrath EL, Dresch RR, Apel MA, Zuanazzi JA, Chaves CG, Henriques AT. Appraisal of the antichemotactic activity of flavonoids on polymorphonuclear neutrophils. Planta Med . 2011;77(7):698-704.

Van Der Werff H, Ritcher HG. Toward and improved classification of Lauraceae. Ann Mo Bot Gard. 1996;83(3):409-418.

Downloads

Published

2022-11-17

Issue

Section

Original Article

How to Cite

Biological activities of essential oils from six genotypes of four Ocotea species. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e181097